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GENERATING FUNCTIONS OF PERMUTATIONS
WITH RESPECT TO THEIR ALTERNATING RUNS

MIKLÓS BÓNA

Abstract. We present a short, direct proof of the fact that the
generating function of all permutations of a fixed length n ≥ 4
with respect to the number of their alternating runs is divisible by
(1 + z)m, where m = b(n− 2)/2c.

1. Introduction

Let p = p1p2 · · · pn be a permutation. For an index i ∈ [2, n− 1], we
say that p changes directions at i if pi−1 < pi > pi+1 or pi−1 > pi <
pi+1. Furthermore, we say that p has k alternating runs if p changes
directions a total of k − 1 times.

Let run(p) be the number of alternating runs of p, and let

Rn(z) =
∑
p

zrun(p),

where the sum is taken over all permutations of length n. In this note,
we prove that, for n ≥ 4, the polynomial Rn(z) is divisible by a high
power of (1 + z), namely by (1 + z)m, where m = b(n− 2)/2c.

This result was known before, by an analytic proof given by Herbert
Wilf [5] (which can also be found as Theorem 1.42 in [2] on page 31) that
was based on the relation between the Eulerian polynomials and Rn(z),
and also by an induction proof by Richard Ehrenborg and the present
author [1] that touched upon Eulerian polynomials. However, in this
paper, we provide a direct, non-inductive proof. This proof differs from
the previous ones in that it is algebraic (it uses enumeration under
group action), and it shows a clear reason for the high multiplicity of
−1 as a root of Rn(z).

2. A group action on permutations

Let p = p1p2 · · · pn be a permutation. The complement of p is the
permutation p = n + 1 − p1 n + 1 − p2 · · ·n + 1 − pn. For instance,
the complement of 425613 is 352164. It is clear that p and p have the
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same number of alternating runs, since the diagram of p is just the
diagram of p reflected through a horizontal line. In what follows, we
will say flipped instead of reflected through a horizontal line. Note that
this symmetry implies that all coefficients of Rn(z) are even for n ≥ 2.

Let s be a string of entries in p that are in consecutive positions.
Let S be set of entries that occur in s, in other words, the underlying
set of s. Then the complement of s relative to S is the string obtained
from s so that, for each j, the jth smallest entry of S is replaced by the
jth largest entry of S. For example, if s = 24783, then the complement
of s relative to its underlying set S is 84327.

We will use a similar notion for sets. Let T ⊆ U be finite sets. Let
T = {t1, t2, . . . , tj}, where the ti are listed in increasing order. Let us
assume that ti is the aith smallest element of U . Then the vertical
complement of T with respect to U is the set consisting of the aith
largest elements of U , for all i. For instance, if T = {1, 4, 6}, and
U = {1, 2, 3, 4, 6, 8, 9}, then the vertical complement of T with respect
to U is {3, 4, 9}. Indeed, T consists of the first, fourth, and fifth smallest
elements of U , so its vertical complement with respect to U consists of
the first, fourth, and fifth largest elements of U .

Definition 2.1. For 1 ≤ i ≤ n, let ci be the transformation on the set
of all permutations p = p1p2 · · · pn that leaves the string p1p2 · · · pi−1 un-
changed, and replaces the string pipi+1 · · · pn by its complement relative
to its underlying set.

Note that c1(p) = p and cn(p) = p for all p.

Example 2.2. Let p = 315462. Then c3(p) = 314526, while c5(p) =
315426.

Proposition 2.3. Let n ≥ 4, and let 3 ≤ i ≤ n − 1. Let p be any
permutation of length n. Then one of p and ci(p) has exactly one
more alternating run than the other.

Proof. As ci does not change the number of runs of the string
p1p2 · · · pi−1 or the number of runs of the string pipi+1 · · · pn and its
image, all changes occur within the four-element string pi−2pi−1pipi+1.
There are only 24 possibilities for the pattern of these four entries, and
it is routine to verify the statement for each of the possible 12 pairs.
In fact, checking the six pairs in which pi−2 < pi−1 is sufficient, for
symmetry reasons. �

It follows immediately from the proposition that zrun(p) + zrun(ci(p)) is
divisible by 1 + z.

The following lemma is crucial for our purposes.
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Lemma 2.4. Let 1 ≤ i ≤ j − 2 ≤ n− 2. Then, for all permutations p
of length n, the identity ci(cj(p)) = cj(ci(p)) holds.

Proof. Neither ci nor cj acts on any part of the initial segment
p1p2 · · · pi−1, so that segment, unchanged, will start both ci(cj(p)) and
cj(ci(p)). The ending segment pjpj+1 · · · pn gets flipped twice by both
cicj and cjci, so in the end, the pattern of the last n − j + 1 entries
will be the same in ci(cj(p)) and cj(ci(p)), because in both permuta-
tions it will be the same pattern as it was in p. The middle segment
pipi+1 · · · pj will get flipped once by both cicj and cjci, so on both sides
the pattern of entries in positions i, i+ 1, . . . , j will be the complement
of the pattern of pipi+1 · · · pj.

Finally, the set of entries in the last n− j + 1 positions is the same
in both ci(cj(p)) and cj(ci(p)), since both sets are equal to the ver-
tical complement of the set {pj, pj+1, . . . , pn} with respect to the set
{pi, pj+1, . . . , pn}. �

Note that ci(cj(p)) 6= p, since the segment pi · · · pj−1 is of length at
least two, and gets flipped at least once.

Example 2.5. Continuing Example 2.2, we get that c3(c5(315462)) =
c5(c3(315462)) = 314562.

Now let n ≥ 4 be any integer. If n is even, let

Cn = {c3, c5, c7, . . . , cn−1}.
If n is odd, let

Cn = {c3, c5, c7, . . . , cn−2}.
In both cases, Cn consists of m = b(n− 2)/2c operators. Each of these
operators are involutions, and, by Lemma 2.4, they pairwise commute.
No element of Cn can be generated by the other elements of Cn. There-
fore, the elements of Cn define a group Gm

∼= Zm
2 that acts on the set

of all permutations of length n. Note that the action of the individual
ci on the set of all permutations of length n is independent in the fol-
lowing sense. If p is a permutation and ci(p) has one more alternating
run than p, then cj(ci(p)) also has one more alternating run than cj(p).

The action of Gm on the set of all permutations of length n creates
orbits of size 2m.

Lemma 2.6. Let A be any orbit of Gm on the set of all permutations
of length n. Then the equality∑

p∈A

zrun(p) = za(1 + z)m

holds, where a is a nonnegative integer.
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Proof. Let p ∈ A. Going through p from left to right, let us apply or not
apply each element of Cn so as to minimize the number of alternating
runs of the obtained permutation. That is, if application of ci increases
the number of alternating runs, then do not apply it, if it decreases
the number of alternating runs, then apply it. Let q be the obtained
permutation. Then we call q the minimal permutation in A, since,
among all permutations in A, it is q that has the smallest number of
alternating runs. Now elements of A with i more alternating runs than
q can be obtained from q by applying exactly i elements of Cn to q. As
there are

(
m
i

)
ways to choose i such elements, our statement is proved

by summing over i. �

Theorem 2.7. For n ≥ 4, the equality

Rn(z) = (1 + z)m
∑
q

zrun(q)

holds, where the summation is over permutations q that are minimal
in their orbit under the action of Gm. Here m = b(n− 2)/2c.

Proof. This follows from Lemma 2.6 by summing over all orbits. �

3. Longest alternating subsequences

Following Richard Stanley [3, 4], we say that an alternating sub-
sequence in a permutation is a subsequence a1a2 · · · of entries, not
necessarily in consecutive positions, so that a1 > a2 < a3 > · · · . Let
as(p) denote the length of the longest alternating subsequence of p. It
is easy to see that, if p = p1p2 · · · pn is a permutation, and p1 > p2,
then 1 + run(p) = as(p), while, if p1 < p2, then run(p) = as(p). In
other words, if ASn(z) =

∑
p∈Sn

zas(p), then the equality

ASn(z) =
(1 + z)Rn(z)

2

holds. Comparing this with Theorem 2.7, it follows that ASn(z) is
divisible by (1 + z)m+1 = (1 + z)bn/2c for all n ≥ 4. We would like to
point out that it is possible to prove this statement directly, by defining

C ′n = Cn ∪ {c1},
and then repeating the argument that was used to prove Lemma 2.6.

4. Numerical Data and Further directions

The first few polynomials Rn(z) are the following.

• R1(z) = z,
• R2(z) = 2z,
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• R3(z) = 4z2 + 2z,
• R4(z) = 2z(5z + 1)(z + 1),
• R5(z) = 2z(16z2 + 13z + 1)(z + 1),
• R6(z) = 2z(61z2 + 28z + 1)(z + 1)2,
• R7(z) = 2z(272z3 + 297z2 + 60z + 1)(z + 1)2,
• R8(z) = 2z(1385z3 + 1011z2 + 123z + 1)(z + 1)3,
• R9(z) = 2z(7936z4 + 10841z3 + 3651z2 + 251z + 1)(z + 1)3,
• R10(z) = 2z(50521z4 + 50666z3 + 11706z2 + 506z + 1)(z + 1)4.

It would be interesting to find other applications for this group action
in counting permutations according to various statistics. It would also
be interesting to find another example for the significance of the n!/2m

minimal permutations defined in the proof of Lemma 2.6.
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