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REFLECTING (ON) THE MODULO 9
KANADE–RUSSELL (CONJECTURAL) IDENTITIES

ALI UNCU AND WADIM ZUDILIN

To Doron Zeilberger, with Experimental Mathematics wishes,
on his twentieth prime birthday

Abstract. We examine complexity and versatility of five modulo 9 Kanade–
Russell identities through their finite (aka polynomial) versions and images under
the q 7→ 1/q reflection.

1. Introduction

Every second paper about partition identities features the Rogers–Ramanujan
identities as toy examples. Let us follow this tradition and consider one of those
burdened with fame as the limiting case of the finite version∑

n≥0

qn
2

[
N

n

]
=
∑
k∈Z

(−1)kqk(5k+1)/2

[
2N

N + 2k

]
(1)

due to Bressoud [8]. Here and in what follows we make use of standard q-hypergeo-
metric notation:[

N

n

]
=

[
N

n

]
q

=


(q; q)N

(q; q)n(q; q)N−n
, for n = 0, 1, . . . , N,

0, otherwise,

denotes a q-binomial coefficient,

(a; q)n =
n−1∏
j=0

(1− aqj)

is a q-shifted factorial (q-Pochhammer symbol), also meaningful for n =∞, and

(a1, a2, . . . , ak; q)n = (a1; q)n(a2; q)n · · · (ak; q)n.

When |q| < 1, the limit as N →∞ in (1) translates the equality of two polynomials
into ∑

n≥0

qn
2

(q; q)n
=

1

(q; q)∞

∑
k∈Z

(−1)kqk(5k+1)/2 =
1

(q, q4; q5)∞
, (2)
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where Jacobi’s triple product identity was applied to the sum on the right-hand
side. On the other hand, we can reflect the identity (1) to obtain a different one by
applying the involution q 7→ 1/q. Since

[
n+m

m

]
q−1

= q−nm
[
n+m

m

]
q

,

we find that

q−N
2
∑
n≥0

qnN
[
N

n

]
= q−N

2
∑
k∈Z

(−1)kqk(3k−1)/2
[

2N

N + 2k

]

(in the sum on the left-hand side we changed the summation index n 7→ N − n).
Apparently, this identity is not as interesting as the original (1): the polynomial

obtained from the multiplication of either side by qN
2

tends to (boring) 1 as N →∞.
Let us take a look at a contemporary and more advanced (in particular, conjec-

tural!) example that arises from the inspiring work [11] of Kanade and Russell.
Denote by sN(n) the number of partitions λ = (λ1, λ2, . . . ) of n such that:

(a) the largest part of λ is at most N ;
(b) λ has no parts of size 1;
(c) the difference of parts at distance 2 is at least 3;
(d) if consecutive parts differ by at most 1 then their sum is congruent to 2 (mod 3).

Then the generating function SN(q) =
∑

n≥0 sN(n)qn is (clearly) a polynomial for
each N ≥ 0, and the polynomials SN(q) satisfy the recursion

SN(q) = SN−1(q) + qN ×


(1 + qN−1)SN−3(q) + qN−2SN−4(q), if N ≡ 0 (mod 3),

SN−2(q) + qNSN−3(q), if N ≡ 1 (mod 3),

SN−2(q), if N ≡ 2 (mod 3),

for N = 1, 2, . . . , with initial conditions S0(q) = 1 and SN(q) = 0 for N < 0. The
generating function S∞(q) = limN→∞ SN(q) counts partitions with the condition
on the largest part dropped, that is, satisfying hypotheses (b)–(d) above, and the
conjecture from [11] predicts that

S∞(q)
?
=

1

(q2; q3)∞(q3; q9)∞
=

1

(q2, q3, q5, q8; q9)∞
. (3)

As we will see later, the series S∞(q) can be written as a double-sum Rogers–
Ramanujan type identity — this was found by Kurşungöz [14]. The conjecture in (3)
has a surprisingly different (and supposedly more difficult) counterpart, which was
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observed by Warnaar [21]:

lim
M→∞

qM(3M+2)S3M(q−1)
?
=

1

(q2; q3)∞(q3, q9, q12, q21, q30, q36, q39; q45)∞
,

lim
M→∞

qM(3M+5)S3M+1(q
−1)

?
=

1

(q2; q3)∞(q3, q12, q18, q21, q27, q30, q39; q45)∞
,

lim
M→∞

q(M+1)(3M+2)S3M+2(q
−1)

?
= lim

M→∞
qM(3M+2)S3M(q−1)

+ q2 lim
M→∞

qM(3M+5)S3M+1(q
−1). (4)

One goal of this work is to analyze this q 7→ 1/q phenomenon from a more general
perspective, in particular, to provide other modulo 45 product sides of all other
(five in total) Kanade–Russell modulo 9 partition counting functions. On the way,
we give explicit finite versions of the functions (for example, of SN(q) above) and
explicit (Rogers–Ramanujan type) sums for the reflected identities. One pleasing
outcome of this routine is a proof of (4) as well as other similar cases.

Doron Zeilberger’s combined interests in combinatorics of generalized Rogers–
Ramanujan identities [9], algorithmic aspects of q-identities and Experimental Math-
ematics have served as a fruitful motivation for many, junior and senior, to produce
beautiful research pieces. One notable recent illustration is the discovery of novel
identities for classical partitions by Doron’s mathematical descendant, Matthew
Russell, and the latter’s then Rutgers graduate mate, Shashank Kanade [11,12,17].
We are happy to dedicate this note to Doron.

2. Capparelli’s finite sums and their reflections

Before immersing into the topic of the Kanade–Russell identities, we first exam-
ine a similar but more familiar ground. We return to the theme of the Rogers–
Ramanujan identity (2) but now from the perspective of another finite version,∑

n≥0

qn
2

[
N − n
n

]
=
∑
k∈Z

(−1)kqk(5k+1)/2

[
N

b(N + 5k + 1)/2c

]
,

found by Schur and explicitly stated by Andrews [2] (see also [18, Identity 3.18]).

Substituting 1/q for q and multiplying the result by qb(N/2)2c, we obtain, depending
on whether N = 2M or N = 2M + 1,∑

n≥0

qn
2

[
M + n

2n

]
=
∑
k∈Z

(−1)kqb(5k+1)/2c2−k(5k+1)/2

[
2M

M + b(5k + 1)/2c

]
,

∑
n≥0

qn
2+n

[
M + n+ 1

2n+ 1

]
=
∑
k∈Z

(−1)kqb5k/2c
2+b5k/2c−k(5k+1)/2

[
2M + 1

M + b5k/2c+ 1

]
.

(We made the change n 7→ M − n in the sums on the left-hand sides.) These two
(different!) identities are due to Andrews [3, 4] and listed in [18, Identities 3.79
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and 3.94]; their limiting cases as M →∞,

∑
n≥0

qn
2

(q; q)2n
=

1

(q; q2)∞(q4, q16; q20)∞
,

∑
n≥0

qn
2+n

(q; q)2n+1

=
1

(q, q2, q8, q9; q10)∞(q5, q6, q14, q15; q20)∞
,

appear in Rogers’ famous “second memoir” [16].
Secondly, it is natural to draw parallels of the story below with some finite sums

from [5, 6] underlying Capparelli’s identities [10]. One of this, corresponding to the
analytic counterpart [12, eq. (7.11)], [13, Theorem 8] of the first Capparelli identity

∑
m,n≥0

q2(m
2+3mn+3n2)

(q; q)m(q3; q3)n
= (−q2,−q4; q6)∞(−q3; q3)∞, (5)

is given in [6, Theorem 4.3]:

∑
m,n≥0

q2(m
2+3mn+3n2)

[
3N − 3m− 6n

m

]
q

[
2N − 2m− 3n

n

]
q3

=
∑
l≥0

q3(N−2l)(N−2l−1)/2
[
N

2l

]
q3

(−q2,−q4; q6)l.

By considering separately the cases N = 2M and N = 2M − 1 and performing the
reflection q 7→ 1/q, we arrive at

q−6M
2
∑
a,b≥0

q2(a
2−3ab+3b2)

[
3b

2a

]
q

[
M + a

2b

]
q3

= q−6M
2
∑
c≥0

q3c
[
2M

2c

]
q3

(−q2,−q4; q6)M−c,

q−6M(M+1)
∑
a,b≥0

q2(a
2−3ab+3b2)+2a−3b−1

[
3b

2a+ 1

]
q

[
M + a

2b

]
q3

= q−6M(M+1)
∑
c≥0

q3c
[

2M

2c+ 1

]
q3

(−q2,−q4; q6)M−c,
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respectively, and we find that

∑
a,b≥0

q2(a
2−3ab+3b2)

(q3; q3)2b

[
3b

2a

]
= (−q2,−q4; q6)∞

∑
c≥0

q3c

(q3; q3)2c

=
1

(q2, q10; q12)∞(q3, q6, q9, q9, q12, q15, q15, q21, q27, q33, q33, q36, q39, q39, q42, q45; q48)∞
,

∑
a,b≥0

q2(a
2−3ab+3b2)+2a−3b−1

(q3; q3)2b

[
3b

2a+ 1

]
= (−q2,−q4; q6)∞

∑
c≥0

q3c

(q3; q3)2c+1

=
1

(q2, q10; q12)∞

× 1

(q3, q3, q9, q12, q15, q18, q21, q21, q27, q27, q30, q33, q36, q39, q45, q45; q48)∞
,

where the right-hand sides were classically summed.
The same identity (5) admits a different finite version [5, Theorem 7.1]:

∑
m,n≥0

q2(m
2+3mn+3n2)(q3; q3)N

(q; q)m(q3; q3)n(q3; q3)N−m−2n
=

N∑
l=−N

ql(3l+1)

[
2N

N + l

]
q3
.

Its q 7→ 1/q reflection after multiplication of both sides by qN(3N+1) reads

∑
k,n≥0

(−1)nqn(3n+1)/2+k(3N+1)(q3; q3)N
(q; q)N−k−2n(q3; q3)k(q3; q3)n

=
N∑

l=−N

qN−l
[

2N

N + l

]
q3
,

and the limit as N →∞ is uninspiringly equal to 1/(q; q3)∞.

3. Finite versions of the Kanade–Russell–Kurşungöz style double
series

The five modulo 9 conjectures about partition generating functions were originally
displayed in [11, 17] through difference equations; one of these four is already given
in the introduction. Their double-sum Rogers–Ramanujan type versions read

KR1(q) =
∑

m,n≥0

qm
2+3mn+3n2

(q; q)m(q3; q3)n
, (6)

KR2(q) =
∑

m,n≥0

qm
2+3mn+3n2+m+3n

(q; q)m(q3; q3)n
, (7)

KR3(q) =
∑

m,n≥0

qm
2+3mn+3n2+2m+3n

(q; q)m(q3; q3)n
, (8)
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KR4(q) =
∑

m,n≥0

qm
2+3mn+3n2+m+2n

(q; q)m(q3; q3)n
, (9)

KR5(q) =
∑

m,n≥0

qm
2+3mn+3n2+2m+4n(1 + q + qm+3n+2)

(q; q)m(q3; q3)n
. (10)

Here, entries (6)–(9) were found by Kurşungöz [14], and they correspond to the
I1–I4 instances of Kanade and Russell [11], respectively. The expression (10) corre-
sponds to the later found asymmetric mod 9 conjecture; its combinatorial version is
represented in Russell’s thesis [17], and the analytic sum is constructed by us using
Kurşungöz’s technique. The product sides,

KR1(q)
?
=

1

(q, q3, q6, q8; q9)∞
, (11)

KR2(q)
?
=

1

(q2, q3, q6, q7; q9)∞
, (12)

KR3(q)
?
=

1

(q3, q4, q5, q6; q9)∞
, (13)

KR4(q)
?
=

1

(q2, q3, q5, q8; q9)∞
, (14)

KR5(q)
?
=

1

(q, q4, q6, q7; q9)∞
, (15)

are precisely the conjectures of Kanade and Russell [11, 17]. Notice that (14) is an
equivalent form of identity (3). We call the products on the right-hand sides of
(11)-(13) symmetric as, for any residue class i mod 9, the residue class −i mod 9 is
also present in the product. The products on the right-hand sides of (14) and (15)
will then be deemed asymmetric.

Following the footsteps of the recent articles [5, 19, 20] of the first author, some
in collaboration with Berkovich, and using the combinatorial interpretation of the
sum sides from [11,17], we can write finite generating functions as follows:

KR1(q,N) =
∑

m,n≥0

qm
2+3mn+3n2

[
N −m− 3n+ 1

m

]
q

[
b2
3
Nc −m− n+ 1

n

]
q3
, (16)

KR2(q,N) =
∑

m,n≥0

qm
2+3mn+3n2+m+3n

[
N −m− 3n

m

]
q

[
b2
3
Nc −m− n

n

]
q3
, (17)

KR3(q,N) =
∑

m,n≥0

qm
2+3mn+3n2+2m+3n

[
N −m− 3n− 1

m

]∗
q

[
b2
3
Nc −m− n

n

]
q3
, (18)
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KR4(q,N) =
∑

m,n≥0

qm
2+3mn+3n2+m+2n

[
N −m− 3n

m

]
q

[
b2
3
(N − 1)c −m− n+ 1

n

]
q3
,

(19)

KR5(q,N) =
∑

m,n≥0

qm
2+3mn+3n2+2m+4n(1 + q)

·
[
N −m− 3n− 1

m

]
q

[
b2
3
(N − 2)c −m− n+ 1

n

]
q3

+
∑

m,n≥0

qm
2+3mn+3n2+3m+7n+2

·
[
N −m− 3n− 2

m

]
q

[
b2
3
(N − 2)c −m− n+ δ3|(N−2)

n

]
q3
,

(20)

where the asterisk in (18) means that the q-binomial
[
N−m−3n−1

m

]
q

is understood as 1

when it becomes
[−1

0

]
q

(in other words, when m = N −m− 3n = 0, which may only

occur when N ≡ 0 (mod 3)); furthermore δa|b used in (20) stands for 1 if a | b and
for 0 otherwise. Then clearly the limits as N → ∞ of (16)–(20) become (6)–(10);
it is also routine to verify that the polynomial (finite) versions of the latter double
sums indeed satisfy the recurrence equations given in [11, 17]. Since we find the
technique of converting infinite sums into finite versions important, we select it for
preservation in Appendix A below.

In all the expressions (6)–(10) the exponent of q keeps track of the size of the
counted partitions. In fact, the technique developed in [5,14,19,20] allows us to write
the generating functions with an additional statistics by multiplying the (m,n)-th
term in the sum by x2n+m in (16)–(19) and taking, for instance,

KR5(q,N ;x) =
∑

m,n≥0

qm
2+3mn+3n2+2m+4n(1 + xq)

[
N −m− 3n− 1

m

]
q

·
[
b2
3
(N − 2)c −m− n+ 1

n

]
q3
xm+2n

+
∑

m,n≥0

qm
2+3mn+3n2+3m+7n+2

[
N −m− 3n− 2

m

]
q

·
[
b2
3
(N − 2)c −m− n+ δ3|(N−2)

n

]
q3
xm+2n+1.

Then the exponent of x in these general generated functions keeps track of the
number of parts in the counted partitions. We leave this as a side remark but keep
a hope that the more involved series can be used for approaching conjectures (11)–
(15).
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4. Modulo 45 reflections

In our language here, Warnaar’s conjectures from the introduction can be stated
as follows. Define

RK

4(q, 3M) = qM(3M+2) KR4(1/q, 3M),

RK

4(q, 3M + 1) = qM(3M+5) KR4(1/q, 3M + 1),

RK

4(q, 3M + 2) = q(M+1)(3M+2) KR4(1/q, 3M + 2).

Then

RK

4(q, 3∞) = lim
M→∞

RK

4(q, 3M)

?
=

1

(q2; q3)∞(q3, q9, q12, q21, q30, q36, q39; q45)∞
,

RK

4(q, 3∞+ 1) = lim
M→∞

RK

4(q, 3M + 1)

?
=

1

(q2; q3)∞(q3, q12, q18, q21, q27, q30, q39; q45)∞
,

RK

4(q, 3∞+ 2) = lim
M→∞

RK

4(q, 3M + 2)

?
=

RK

4(q, 3∞) + q2
RK

4(q, 3∞+ 1).

To convert the limits into infinite sums we use the finite sum representation (19).
We deduce that

RK

4(q, 3M) = qM(3M+2) KR4(1/q, 3M)

= q3M
2+2M

∑
m,n≥0

qm
2+3mn+3n2−(2n+m)(3M+1)

[
3M − 3n−m

m

]
q

[
2M − n−m

n

]
q3
.

By a change of the summation to a summation over a = 3M − 2m − 3n, b =
2M −m− 2n (equivalently, m = 3b− 2a, n = M + a− 2b), the sum turns into

RK

4(q, 3M) =
∑
a,b≥0

qa
2−3ab+3b2+b

[
3b− a
a

]
q

[
M + a− b

b

]
q3
,

leading to

RK

4(q, 3∞) =
∑
a,b≥0

qa
2−3ab+3b2+b

(q3; q3)b

[
3b− a
a

]
?
=

1

(q2; q3)∞(q3, q9, q12, q21, q30, q36, q39; q45)∞
. (21)
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Similarly, we have

RK

4(q, 3M + 1) =
∑
a,b≥0

qa
2−3ab+3b2+b−2

[
3b− a− 1

a

]
q

[
M + a− b+ 1

b

]
q3
,

RK

4(q, 3M + 2) =
∑
a,b≥0

qa
2−3ab+3b2+b

[
3b− a+ 1

a

]
q

[
M + a− b

b

]
q3
,

hence

RK

4(q, 3∞+ 1) =
∑
a,b≥0

qa
2−3ab+3b2+b−2

(q3; q3)b

[
3b− a− 1

a

]
?
=

1

(q2; q3)∞(q3, q12, q18, q21, q27, q30, q39; q45)∞
, (22)

RK

4(q, 3∞+ 2) =
∑
a,b≥0

qa
2−3ab+3b2+b

(q3; q3)b

[
3b− a+ 1

a

]
=

RK

4(q, 3∞) + q2

RK

4(q, 3∞+ 1). (23)

Here the expression (23) follows from∑
a,b≥0

qa
2−3ab+3b2+b

(q3; q3)b

([
3b− a− 1

a

]
+

[
3b− a
a

]
−
[
3b− a+ 1

a

])
= 0,

which is a consequence of the simple single-sum evaluation

L+1∑
a=0

qa(a−L)
([
L− a− 1

a

]
+

[
L− a
a

]
−
[
L− a+ 1

a

])
= 0, for L = 0, 1, 2, . . . . (24)

Quite remarkably, a similar structure is inherited by the other ‘asymmetric’ con-
jecture (15). Define

RK

5(q, 3M) = qM(3M+1) KR5(1/q, 3M),

RK

5(q, 3M + 1) = q(M+1)(3M+1) KR5(1/q, 3M + 1),

RK

5(q, 3M + 2) = q(M+2)(3M+1) KR5(1/q, 3M + 2).

Then

lim
M→∞

RK

5(q, 3M + 1)
?
=

1

(q; q3)∞(q6, q9, q15, q24, q33, q36, q42; q45)∞
,

lim
M→∞

RK

5(q, 3M + 2)
?
=

1

(q; q3)∞(q6, q15, q18, q24, q27, q33, q42; q45)∞
,

lim
M→∞

RK

5(q, 3M)
?
= lim

M→∞

RK

5(q, 3M + 1) + q2 lim
M→∞

RK

5(q, 3M + 2).
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Our analysis as before translates the expectations into

RK

5(q, 3∞+ 1) =
∑
a,b≥0

qa
2−3ab+3b2+2b(1 + q)

(q3; q3)b

[
3b− a
a

]

+
∑
a,b≥0

qa
2−3ab+3b2−a+5b+2

(q3; q3)b

[
3b− a+ 1

a

]
?
=

1

(q; q3)∞(q6, q9, q15, q24, q33, q36, q42; q45)∞
, (25)

RK

5(q, 3∞+ 2) =
∑
a,b≥0

qa
2−3ab+3b2+2b−2(1 + q)

(q3; q3)b

[
3b− a− 1

a

]

+
∑
a,b≥0

qa
2−3ab+3b2−a+5b

(q3; q3)b

[
3b− a
a

]
?
=

1

(q; q3)∞(q6, q15, q18, q24, q27, q33, q42; q45)∞
, (26)

RK

5(q, 3∞) =
∑
a,b≥0

qa
2−3ab+3b2+2b(1 + q)

(q3; q3)b

[
3b− a+ 1

a

]

+
∑
a,b≥0

qa
2−3ab+3b2−a+5b+2

(q3; q3)b

[
3b− a+ 2

a

]
=

RK

5(q, 3∞+ 1) + q2

RK

5(q, 3∞+ 2). (27)

Again, the equality in (27) follows from (24).
In spite of the suggested simplicity of the reflections in the asymmetric cases,

our investigation of the symmetric ones (11)–(13) brings to life somewhat more
sophisticated expectations:

∑
a,b≥0

qa
2−3ab+3b2−1

(q3; q3)b

[
3b− a− 1

a

]
q

= lim
M→∞

q3M(M+1) KR1(q
−1, 3M) =

RK

1(q, 3∞)

?
= 〈2, 8, 11, 20〉+ q3〈2, 14, 20, 22〉 − q8〈17, 19, 20, 22〉
= 〈1, 8, 13, 20〉 − q〈4, 7, 13, 20〉+ q5〈7, 16, 17, 20〉, (28)∑

a,b≥0

qa
2−3ab+3b2

(q3; q3)b

[
3b− a
a

]
q

= lim
M→∞

q3(M+1)2 KR1(q
−1, 3M + 2) =

RK

1(q, 3∞+ 2)

?
= 〈1, 7, 11, 20〉+ q6〈11, 13, 14, 20〉 − q6〈8, 14, 19, 20〉
= 〈1, 4, 17, 20〉 − q4〈2, 16, 19, 20〉 − q5〈4, 16, 20, 22〉, (29)
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a,b≥0

qa
2−3ab+3b2−a+3b

(q3; q3)b

[
3b− a
a

]
q

= lim
M→∞

q3M(M+1) KR2(q
−1, 3M) =

RK

2(q, 3∞)

?
= 〈2, 5, 14, 22〉 − q2〈5, 7, 16, 17〉 − q5〈5, 17, 19, 22〉
= q−3〈1, 5, 8, 13〉 − q−3〈2, 5, 8, 11〉 − q−2〈4, 5, 7, 13〉, (30)∑

a,b≥0

qa
2−3ab+3b2−a+3b

(q3; q3)b

[
3b− a+ 1

a

]
q

= lim
M→∞

q3(M+1)2−1 KR2(q
−1, 3M + 2) =

RK

2(q, 3∞+ 2)

?
= 〈2, 5, 16, 19〉 − q2〈5, 8, 14, 19〉+ q2〈5, 11, 13, 14〉
= q−4〈1, 4, 5, 17〉 − q−4〈1, 5, 7, 11〉 − q〈4, 5, 16, 22〉, (31)

1 +
∑
a,b≥0

qa
2−3ab+3b2+a

(q3; q3)b

[
3b− a− 2

a

]
q

= lim
M→∞

q3M(M+1) KR3(q
−1, 3M + 1) =

RK

3(q, 3∞)

?
= 〈4, 7, 10, 13〉 − q4〈7, 10, 16, 17〉 − q7〈10, 17, 19, 22〉
= q−1〈1, 8, 10, 13〉 − q−1〈2, 8, 10, 11〉 − q2〈2, 10, 14, 22〉, (32)∑

a,b≥0

qa
2−3ab+3b2+a−2

(q3; q3)b

[
3b− a− 1

a

]
q

= lim
M→∞

q3N(M+2) KR3(q
−1, 3M + 2) =

RK

3(q, 3∞+ 2)

?
= 〈2, 10, 16, 19〉+ q〈4, 10, 16, 22〉 − q2〈8, 10, 14, 19〉
= q−4〈1, 4, 10, 17〉 − q−4〈1, 7, 10, 11〉 − q2〈10, 11, 13, 14〉, (33)

where the summands are (modular) products

〈c1, c2, c3, c4〉 =
(q45; q45)∞

(q3; q3)∞
∏4

j=1(q
cj , q45−cj ; q45)∞

. (34)

One can notice that the conjectural right-hand sides in all the above instances (28)–
(33) are represented by two equal sums of three products; the equality of the two
in each case is not difficult to verify, because they belong to a finite-dimensional
space over Q— this is dictated by the modularity of these symmetric products (af-
ter multiplication of them by the appropriate powers qN(c1,c2,c3,c4)). Nevertheless, it
is quite remarkable that in each of the six examples sums of three products record
the shortest representatives within the space and that there are exactly two such
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representations. Furthermore, identity (24) and its modifications also give us (prov-
ably!) ∑

a,b≥0

qa
2−3ab+3b2

(q3; q3)b

[
3b− a+ 1

a

]
q

= lim
M→∞

q3M(M+1)+1 KR1(q
−1, 3M + 1)

=

RK

1(q, 3∞+ 1) = q

RK

1(q, 3∞) +

RK

1(q, 3∞+ 2), (35)∑
a,b≥0

qa
2−3ab+3b2−a+3b

(q3; q3)b

[
3b− a+ 2

a

]
q

= lim
M→∞

q3M(M+1) KR2(q
−1, 3M + 1)

=

RK

2(q, 3∞+ 1) =

RK

2(q, 3∞) +

RK

2(q, 3∞+ 2), (36)∑
a,b≥0

qa
2−3ab+3b2+a

(q3; q3)b

[
3b− a
a

]
q

= lim
M→∞

q3M(M+1) KR3(q
−1, 3M + 1)

=

RK

3(q, 3∞+ 1) =

RK

2(q, 3∞) + q2

RK

2(q, 3∞+ 2). (37)

One interesting outcome of these conjectures is the positivity of the q-expansions
of the linear combinations of products that appear on the right-hand sides forRK

i(q, 3∞ + l) for i = 1, 2, 3 and l = 0, 1, 2. In fact, we have checked numer-
ically that the combinations remain positive after each of them is multiplied by
(q3; q3)∞/(q

45; q45)∞, but for that we have no explanation.
The complexity of the reflections serves as a good reason for lack of simple single-

sum evaluations for the original sums KRi(q,N), where i = 1, 2, 3.
One may also argue that the (combinatorially motivated!) finite versions (16)–

(20) may be not best in approaching the Kanade–Russell identities (11)–(15) and
one can possibly try more general sums like

F (N,M) :=
∑

m,n≥0

qm
2+3mn+3n2

[
N −m− 3n

m

]
q

[
M −m− n

n

]
q3

for different specializationsM = M(N)→∞ asN →∞ instead. Although using [1]
it is easy to observe that the F (N,M)’s satisfy simple-looking recurrences such as

F (N,M) = F (N − 1,M) + qN−1F (N − 2,M − 1) for 3 - N,

none of these variations seem to produce (linear combinations of) products for the
limits of the sums reflected under q 7→ 1/q. In other words, the combinatorics of
the Kanade–Russell partition functions are a delicate sensor of arithmetic features.

5. Modular remarks

Without giving precise definitions of modular (and mock modular) functions, for
which the reader may consult some standard sources (e.g., [15, 22]), we notice that
it was the modularity of the product sides in (11)–(13) that led us to reasonable
guesses for (28)–(37). The use of the servers at the Research Institute for Sym-
bolic Computation (RISC) for the actual calculations significantly cooled down our
laptops.
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The individual products in (14) and (15) (and, similarly, the products in (21),
(25), and in (22), (26)) are not modular but, possibly, can be paired to form vector-
valued modular forms (and linked to mock theta functions).

The main obstacle for using the powerful (mock) modular structure in proving
the Kanade–Russell conjectures and their reflected counterparts is the difficulty in
establishing the modular behavior for the sum sides of the identities.
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his KR4 observations and for his patience in trivializing many intermediate obser-
vations by these authors, like explaining that the KR-looking identities∑

m,n≥0

qm
2+2mn+2n2

(q; q)m(q2; q2)n
=

(q3; q3)2∞
(q; q)∞(q6; q6)∞

,

∑
m,n≥0

qm
2+2mn+2n2+m+2n

(q; q)m(q2; q2)n
=

(q6; q6)2∞
(q2; q2)∞(q3; q3)∞
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Appendix A. Combinatorial construction of the finite versions of
the Kanade–Russell–Kurşungöz style double series

We give a brief description and considerations that go into identifying the polyno-
mial analogues (16)–(20) of (6)–(10). To that end, we present how we combinatori-
ally construct the refinement of (9). Recall that (9) was shown by Kurşungöz [14] to
be the generating function for the number of partitions that satisfy the gap condi-
tions prescribed in the I4 conjecture of [11]. Here we prove that the finite analogue
(19) is the generating function for the number of partitions into parts ≤ N that
satisfy the gap conditions prescribed in the I4 conjecture — the conditions are given
as (a)–(d) in the Introduction. We will be mimicking the constructions of [5,19,20],
and invite the interested reader to examine these references to see longer expositions
of this technique.
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Recall conditions (b) and (c) from the second page. The I4 conjecture considers
partitions in which 1 does not appear as a part, the difference between parts is ≥ 3 at
distance 2 such that, if two successive parts differ by ≤ 1, then their sum is congruent
to 2 (mod 3). First we would like to explain how to interpret, partition-theoretically,
the pieces of (9), ∑

m,n≥0

qm
2+3mn+3n2+m+2n

(q; q)m(q3; q3)n
,

as the generating function for these partitions. This is done in the spirit of Kur-
şungöz’s construction in [14] using the vocabulary of [5, 19, 20]. For the rest of this
discussion, we consider a partition to be a finite sequence of non-decreasing positive
integers. The q-factor qm

2+3mn+3n2+m+2n is the size of the partition

πm,n = (2, 3, 5, 6, . . . , 3n− 1, 3n, 3n+ 2, 3n+ 4, . . . , 3n+ 2m).

We call the underlined consecutive parts of πm,n pairs and the rest of the terms
singletons. Notice that πm,n is a partition that satisfies the gap conditions of I4.
Moreover, it is not hard to observe that πm,n is the partition with the smallest pos-
sible size that satisfies the gap conditions of I4 into 2n+m parts, where the minimal
distance condition (if two successive parts differ by ≤ 1, then their sum is congruent
to 2 (mod 3)) appears exactly n times. We call πm,n a minimal configuration with
2n+m parts and n minimal gaps.

If one adds any non-negative integer value rm to the largest part 3n + 2m of
πm,n, the outcome partition still satisfies the gap conditions of I4. Similarly, after
adding rm to the largest part, if one adds some non-negative integer rm−1 ≤ rm to
the second largest value of πm,n, the outcome partition satisfies the gap conditions
of I4. Repeating this process, we can conclude that if one adds (r1, . . . , rm), where
0 ≤ r1 ≤ r2 ≤ · · · ≤ rm, to the m largest parts (the singletons) of πm,n, the outcome
partition πn still satisfies the gap conditions of I4. Moreover, this addition can be
reversed. Given a partition πn, where the singletons are possibly not at their original
locations while the pairs are left untouched, we can easily recover the list (r1, . . . , rm)
and the minimal configuration πn,m that gives rise to πn. Finally, we note that the
lists (r1, . . . , rm), where 0 ≤ r1 ≤ · · · ≤ rm, are in one-to-one correspondence to
partitions into ≤ m parts. The generating function for the partitions into ≤ m
parts is (q; q)−1m . Hence, now we can conclude that

qm
2+3mn+3n2+m+2n

(q; q)m

is the generating function for the number of all the partitions of the form

πn = (2, 3, 5, 6, . . . , 3n− 1, 3n, s1, s2, . . . , sm),

where 3n+ 2 ≤ s1 and si − si−1 ≥ 2 for i = 2, . . . ,m.
Now, given a partition πn with m singletons, assuming that there are no close-by

singletons, we can move the largest pair to the next permissible pair and repeat
this (reversible) process to generate other partitions with n arbitrary pairs and
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m singletons. To be precise, there are two possible (free) forward motions of pairs
and these are

3k − 1, 3k 7→ 3k + 1, 3k + 1 and 3k + 1, 3k + 1 7→ 3k + 2, 3k + 3.

In both forward motions of a pair, the total size change of the partition is 3. Similarly
to moving singletons, by moving the largest pair, followed by the second largest pair,
etc., we never need to worry about pairs crossing each other. However, although
the forward motions of singletons were done freely, as we move a pair, we may come
close to a singleton and violate the gap conditions of I4. To avoid this, we define
(reversible) cross-over rules of pairs over singletons. The two necessary cross-over
rules are as follows:

3k − 1, 3k, 3k + 2 7→ 3k − 1, 3k + 2, 3k + 3,

3k + 1, 3k + 1, 3k + 4 7→ 3k + 1, 3k + 4, 3k + 4.

Notice that these motions also add 3 to the total size of the partition. Hence, now
given a partition πn, starting from the largest pair, we can move the pairs forward
and make new partitions into 2n + m parts that have n pairs which satisfy the
gap conditions of I4. Similarly to the singletons’ case, the forward motion lists of
the pairs corresponds to partitions into ≤ n parts. Since each motion of the pairs
adds 3 to the total size of the partition, we instead use (q3; q3)−1∞ here. Therefore,
the summand of (9),

qm
2+3mn+3n2+m+2n

(q; q)m(q3; q3)n
,

is the generating function for the partitions that satisfy the gap conditions of I4 and
have n pairs and m singletons. Summing over all m and n, we obtain the generating
function for all the partitions that satisfy the gap conditions of I4. This finishes the
combinatorial construction/interpretation of (9) in the spirit of Kurşungöz.

For the finite analogue, all we need to do is to restrict the forward motions of
the terms. If we want to add the new restriction that all the parts of our partitions
are ≤ N (condition (a) on the second page), the forward motion of the largest
singleton must not be free. In this situation rm must be ≤ N− (3n+2m), hence the
generating function for partitions into ≤ m parts, which represented the reversible
forward motion of the singletons, is now replaced by the generating function for the
partitions into ≤ m parts with each part ≤ N−(3n+2m). This generating function
is [

N − (3n+ 2m) +m

m

]
q

.

Similarly, we need to adjust the reversible forward motion of the pairs. At each
move of a pair, the midpoint of a pair (the arithmetic mean of the elements in the
pair) moves 2/3 steps. From the largest pair 3n− 1, 3n to the upper bound N , there
are exactly b2(N − 3n)/3c + δ3|(N−1) many steps that a pair can move forward if
all the motions are done via free motion rules. As a pair moves forward, it may
cross up to m singletons, and crossing over each singleton also means missing one
possible location where the pair could have stopped. Hence, the actual number of
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steps a pair can move forward is b2(N − 3n)/3c+ δ3|(N−1) −m. Therefore, we need
to replace the generating function (q3; q3)−1n by the q-binomial coefficient[

b2(N − 3n)/3c+ δ3|(N−1) −m+ n

n

]
q3

to restrict the forward motion of the n pairs, where all the parts still remain ≤ N
after the motions. Compiling the above discussion we get that∑

m,n≥0

qm
2+3mn+3n2+m+2n

[
N −m− 3n

m

]
q

[
b2(N − 3n)/3c+ δ3|(N−1) −m+ n

n

]
q3

is the generating function for the partitions into parts ≤ N which satisfy the gap
conditions of I4, and this expression is equal to (19) after simplification of the top
argument of the second q-binomial coefficient.
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