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Hyperplane Arrangements

Let A = {H1, . . . ,Hn} is a central hyperplane arrangement in a real vector space
V . This talk concerns chambers

C(A) =

(
open, connected

components of V \A

)
and intersections

L(A) =

{⋂
i∈B

Hi 6= ∅

∣∣∣∣∣ B ⊆ [n]

}
of this arrangement.
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Hyperplane Arrangements

The elements of L(A) form a poset under reverse inclusion. This poset is

a geometric lattice,

ranked by codimension, and

equipped with a Möbius function µ(X ,Y ) for X ⊇ Y in L(A).

The Whitney numbers of A are

ck(A) =
∑

X∈L(A)
rk(X )=k

|µ(V ,X )|.

We collect these into the Poincaré polynomial of the arrangement

Poin(A, t) =
∑
k≥0

ck(A) tk .
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Hyperplane Arrangements

Example

An arrangement A = {H1,H2,H3} ⊆ R2 (left) together with the Hasse diagram of
its intersection poset L(A) (right).

H2

H1

H3 R2

H1 H3H2

H1 ∩ H2 ∩ H3

The Poincaré polynomial of this arrangement is

Poin(A, t) = 1 + 3t + 2t2.
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Cones of Hyperplane Arrangements

Each hyperplane H ∈ A defines a pair of open halfpsaces.

Definition

A cone K of an arrangement A is an intersection of (open) half spaces defined by
some of the hyperplanes of A.

Example

One cone defined by H1 and H2.

H2H1

H3

Galen Dorpalen-Barry (UMN→ RUB) Cones, the Varchenko-Gel’fand Ring September 7, 2021 7 / 34



Cones of Hyperplane Arrangements

Each hyperplane H ∈ A defines a pair of open halfpsaces.

Definition

A cone K of an arrangement A is an intersection of (open) half spaces defined by
some of the hyperplanes of A.

Example

One cone defined by H1 and H2.

H2H1

H3

Galen Dorpalen-Barry (UMN→ RUB) Cones, the Varchenko-Gel’fand Ring September 7, 2021 7 / 34



Cones in an Arrangement

Definition

A cone K of an arrangement A is an intersection of (open) half spaces defined by
some of the hyperplanes of A.

Example

Let’s consider a cone K defined by H4 and H5 in the following three-dimensional
arrangement of which I’ve drawn an affine slice.

H4

H1

H2

H3

H5
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Cones in an Arrangement
As with arrangements, a cone K in an arrangement A has chambers and
intersections:

1 The chambers of K are the chambers C(K) ⊆ C(A) strictly contained in K.
2 The nonempty intersections Lint(K) ⊆ L(A) whose intersection with K is

nonempty are called interior intersections of K, i.e.

X ∈ Lint(K) if X ∩ K 6= ∅.

Example

H4

H1

H2

H3

H5

V

H1 H2 H3

H2 ∩ H3
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Cones in an Arrangement

The elements of Lint(K) form a poset under reverse inclusion. This poset is

a meet semi-lattice,

ranked by codimension, and

for all X ∈ Lint(K), the lower interval [V ,X ] is isomorphic to the
corresponding interval in L(A).

The (unsigned) Whitney numbers of K are

ck(K) =
∑

X∈Lint(K)
rk(X )=k

|µ(V ,X )|.

We collect these into the Poincaré polynomial of the cone

Poin(K, t) =
∑
k≥0

ck(K) tk .
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Cones in an Arrangement

Example

H4

H1

H2

H3

H5

V

H1 H2 H3

H2 ∩ H3

+1

−1 −1 −1

+1

1

3

1

Thus Poin(K, t) = 1 + 3t + t2.
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Zaslavsky’s Theorem for cones

Theorem (Zaslavsky, ’77)

For a cone K of an arrangement A with intersection poset Lint(K), we have

#C(K) =
∑

X∈Lint(K)

|µ(V ,X )| =
n∑

k=0

ck(K)

where µ(V ,X ) denotes the Möbius function of Lint(K) and { ck(K) } are the
(unsigned) Whitney numbers of the cone K.

In other words #C(K) = [Poin(K, t)]t=1 .

This result is well-known when we take K to be the full arrangement.
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Zaslavsky’s Theorem for cones

Example

H4

H1

H2

H3

H5

V

H1 H2 H3

H2 ∩ H3

+1

−1 −1 −1

+1

1

3

1

Zaslavsky says: there are 1 + 3 + 1 = 5 chambers in this cone.

Goal: Construct a ring from K whose Hilbert Series is Poin(K, t).
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The Varchenko-Gel’fand Ring
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The Varchenko-Gel’fand Ring of a Cone

Definition
The Varchenko-Gel’fand ring of a cone K is the collection of maps
VG (K) = {f : C(K)→ Z} under pointwise addition and multiplication.

For every cone K, VG (K) has a Z-basis of indicator functions of chambers in
C(K), as shown in the example.

Example

1 0

0

0

0 0 1

0

0

0 0 0

1

0

0 0 0

0

1

0 0 0

0

0

1
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The Varchenko-Gel’fand Ring of a Cone

Pick an orientation of A. It’s easy to see that the Varchenko-Gel’fand ring VG (K)
of a cone K is generated by Heaviside functions

xi (C ) =

{
1 if v ∈ H+

i ∩ K
0 else

for C ∈ C(K)

for each hyperplane Hi ∈ Lint(K).

Example

x1 =

0 1

1

1

1

x2 =

0 0

1

0

1

x3 =

0 0

0

1

1
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The Varchenko-Gel’fand Ring of a Cone

Example

x1 =

0 1
1

1

1

x2 =

0 0
1

0

1

x3 =

0 0
0

1

1

We can write the basis element corresponding to any chamber as a product of
Heavisde functions for its walls.

= (1− x2)x3x4 = (1− x2)x3
0 0

0

1

0
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Define a map

ϕ : Z[e1, . . . , en]→ VG (K)

ei 7→ xi .

By the previous observation, this map is surjective.

IK := kerϕ has a nice description.
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Signed Circuits

Recall,

We can choose a set of normal vectors for the hyperplanes of A so that vi is
normal to Hi .

A circuit of a collection of vectors is a minimal dependent set, i.e. a set of
linear dependent vectors such that if any single vector is removed, the set is
independent. We will view circuits as sets of indices, so that
C ⊆ {1, 2, . . . , n}.
We’ll keep track of signed circuits where we write down the explicit linear
relations ∑

c∈C

αcvc = 0 for αi ∈ R

and we sort the elements of C into C+ and C−, depending on whether
αc > 0 or αc < 0.
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Presenting the Varchenko-Gel’fand Ring

Theorem (D.-B., ’21)

Let K be a cone of a central arrangement A = {H1, . . . ,Hn}. Then
VG (K) ∼= Z[e1, . . . , en]/IK where IK is generated by

1 (Idempotent) e2i − ei for i ∈ [n],

2 (Unit) ei − 1 for i ∈ [n] such that Hi is a wall of K,

3 (Circuit)
∏
i∈C+

ei
∏
j∈C−

(ej − 1)−
∏
i∈C+

(ei − 1)
∏
j∈C−

ej for signed circuits

C = C+ ∪ C−,

This was proved in 1987 by Varchenko and Gel’fand for K = V .
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Example

Consider the following cone

H4

H1

H2

H3

H5
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Example

Consider the following cone with the orientation given by the red arrows

H4

H1

H2

H3

H5
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Example

Let’s write down some generators for IK.

The Idempotent relations are are

e21 − e1, e
2
2 − e2, e

2
3 − e3, e

2
4 − e4, e

2
5 − e5.

The Unit relations are
e4 − 1, e5 − 1

Some of the signed circuits are on the left and their corresponding Circuit

relation are on the right:

{2, 5} ∪ {1} → e2e5(e1 − 1)− (e2 − 1)(e5 − 1)e1

{1, 3} ∪ {2, 4} → e1e3(e2 − 1)(e4 − 1)− (e1 − 1)(e3 − 1)e2e4

{3, 4, 5} ∪ {1} → e3e4e5(e1 − 1)− (e3 − 1)(e4 − 1)(e5 − 1)e1

{2, 4} ∪ {3, 5} → e2e4(e3 − 1)(e5 − 1)− (e2 − 1)(e4 − 1)e3e5

By combining the Unit and Circuit relations, we can write down a more refined
set of generators.
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Presenting the Varchenko-Gel’fand Ring

Theorem (D.-B., ’21)

Let W = {i ∈ [n] | Hi is a wall of K}. For any graded monomial ordering on
Z[e1, ..., en], IK has Gröbner basisa:

1 (Idempotent) e2i −ei for i ∈ [n],

2 (Unit) ei−1 for i ∈ [n] such that i ∈W
3 (Combination Circuit) Let C = C+ ∪ C− be a signed circuit.

I If W ∩ C± 6= ∅ but W ∩ C∓ = ∅, then∏
i∈C+\W

ei
∏

j∈C−
(ej − 1) =

∏
i∈C\W

ei −±l.o.t.

I If W ∩ C = ∅, then∏
i∈C+

ei
∏

j∈C−
(ej − 1)−

∏
i∈C+

(ei − 1)
∏

j∈C−
ej =

∑
j∈C

±
∏

i∈C−{j}

ei ± l.o.t.

aThe leading term of any polynomial in IK is divisible by the leading term of some
polynomial in the Gröbner basis.
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Goal Theorem
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The Associated Graded Ring

For d ≥ 0, define Fd := Z · {monomials of degree ≤ d} ⊆ VG (K).

This yields a filtration F of VG (K): F0 ⊆ F1 ⊆ F2 ⊆ · · ·
From this filtration, we define the associated graded ring of VG (K):

grF (VG (K)) :=
⊕
d≥0

Fd/Fd−1

where we set F−1 = 0.

The Hilbert series (or Hilbert-Poincaré Series) of grF (VG (K)) is the formal
power series ∑

d≥0

rkZ(Fd/Fd−1)td
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The Hilbert series (or Hilbert-Poincaré Series) of grF (VG (K)) is the formal
power series ∑

d≥0

rkZ(Fd/Fd−1)td

Galen Dorpalen-Barry (UMN→ RUB) Cones, the Varchenko-Gel’fand Ring September 7, 2021 28 / 34



The Associated Graded Ring

For d ≥ 0, define Fd := Z · {monomials of degree ≤ d} ⊆ VG (K).

This yields a filtration F of VG (K): F0 ⊆ F1 ⊆ F2 ⊆ · · ·
From this filtration, we define the associated graded ring of VG (K):

grF (VG (K)) :=
⊕
d≥0

Fd/Fd−1

where we set F−1 = 0.

The Hilbert series (or Hilbert-Poincaré Series) of grF (VG (K)) is the formal
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The Hilbert Series of grF(VG (K))

Theorem (D.-B., ’21)

The Hilbert series of grF (VG (K)) is Poin(K, t).

This was proved in 1987 by Varchenko and Gel’fand for K = V , but without the
language of Gröbner bases.

Example

H4

H1

H2

H3

H5

V

H1 H2 H3

H2 ∩ H3

+1

−1 −1 −1

+1

1

3

1

The theorem says that the Hilbert series of grF (VG (K)) is 1 + 3t + t2.

Galen Dorpalen-Barry (UMN→ RUB) Cones, the Varchenko-Gel’fand Ring September 7, 2021 29 / 34



The Hilbert Series of grF(VG (K))

Theorem (D.-B., ’21)

The Hilbert series of grF (VG (K)) is Poin(K, t).

This was proved in 1987 by Varchenko and Gel’fand for K = V , but without the
language of Gröbner bases.
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The NBC basis (time permitting)
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No Broken Circuit Sets

Recall

Let C be a circuit of A. We can break C by removing the smallest index i
contained in C . We call C − {i} the broken circuit corresponding to C .

Let NBC (A) be the set of subsets of {1, . . . , n} containing no broken circuits.

Definition

A set N ∈ NBC (A) is a K-NBC set if⋂
i∈N

Hi ∈ Lint(K).

Denote the set of K-NBC sets by NBC (K).
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A Basis for the Varchenko-Gel’fand Ring

Theorem (D.-B., ’21)

Let K be a cone of a central arrangement A. Then VG (K) has{∏
i∈N

ei

∣∣∣∣∣ N ∈ NBC (K)

}

as a Z-basis.

This was proved in 1987 by Varchenko and Gel’fand for K = V .

Example

1

1 1

1

1

1

x1

0 1

1

1

1

x2

0 0

1

0

1

x3

0 0

0

1

1

x2x3

0 0

0

0

1
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Thank you!
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A worked example of the Theorem
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Example Computation I

Consider the following cone

H4

H1

H2

H3

H5

The cone has 5 chambers, so VG (K) ∼= Z5. Earlier we computed its Whitney
numbers, which are (1, 3, 1).
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Example Computation II

Let’s write down the Gröbner basis for IK. The Idempotent and Unit relations
are

e21 − e1, e
2
2 − e2, e

2
3 − e3, e

2
4 − e4, e

2
5 − e5

and e4 − 1, e5 − 1 respectively.

In order to write down the Combination Circuit

relations, we need to do some work. The signed circuits are on the left and the
relation is on the right:

{2, 5} ∪ {1} → e2(e1 − 1) = e1e2 − e2

{1, 3} ∪ {2, 4} → e1e3(e2 − 1) = e1e2e3 − e1e3

{3, 4, 5} ∪ {1} → (e1 − 1)e3 = e1e3 − e3

{2, 4} ∪ {3, 5} → 0
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Example Computation III

From this we can write down the NBC-basis of VG (K) itself. The circuits are on
the left and the broken circuits are on the right:

125→ 25

1234→ 234

1345→ 345

2345→ 345

The no broken circuit sets associated to A are:

∅,
1, 2, 3, 4, 5,

12, 13, 14, 15, 23, 24, 34, 35, 45,

123, 124, 134, 135, 145
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Example Computation IV

The NBC-basis for VG (K) is

1

1 1

1

1

1

x1

0 1

1

1

1

x2

0 0

1

0

1

x3

0 0

0

1

1

x2x3

0 0

0

0

1

So the associated graded ring is

grF (VG (K)) ∼= Z · {1} ⊕ Z · {x1, x2, x3} ⊕ Z · {x2x3}

and has Hilbert series 1 + 3t + t2.

Galen Dorpalen-Barry (UMN→ RUB) Cones, the Varchenko-Gel’fand Ring September 7, 2021 7 / 12



Supersolvable Arrangements
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What is a supersolvable arrangement?

Definition
An arrangement is supersolvable if there is a maximal chain ∆ of the intersection
lattice L(A) such that for every chain K , the sublattice generated by ∆ and K is
distributivea.

aA lattice L is distributive if for all x , y ∈ L, we have x ∨ (y ∧ z) = (x ∨ y)∧ (x ∨ z).

Example

The (n − 1)st braid arrangement is supersolvable and consists of hyperplanes
Hij = {x ∈ Rd | xi = xj} for i , j ∈ [n]. A linearly equivalent picture of the (3− 1)st
braid arrangement is below (left) together with its intersection poset L(A) (right).

H2

H1

H3 R2

H1 H2H3

H1 ∩ H2 ∩ H3
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What is a supersolvable arrangement?

Theorem (Björner-Ziegler, ’91)

When we order the broken circuits of a supersolvable arrangement by inclusion,
the minimal broken circuits have cardinality exactly 2.

Example

The (3− 1)st braid arrangement.

H2

H1

H3 R2

H1 H2H3

H1 ∩ H2 ∩ H3

There is one circuit consisting of all three hyperplanes {1, 2, 3}.
The broken circuit is {2, 3}.

* The (n − 1)st braid arrangement is the complete graph arrangement.
Upshot: We can write down the circuits of the braid arrangement from the
circuits of the complete graph.Galen Dorpalen-Barry (UMN→ RUB) Cones, the Varchenko-Gel’fand Ring September 7, 2021 10 / 12



What does being supersolvable have to do with the
Varchenko-Gel’fand ring?

Definition
The Varchenko-Gel’fand ring of a cone K over a field F is the collection of maps
VGF(K) = {f : C(K)→ F} under pointwise addition and multiplication.

* Our previous theorems still hold for VGF(K)

(in fact they are easier because we’re now over a field!)

Theorem (D.-B. ’21)

If A is a supersolvable arrangement, then for every cone K, the associated graded
ring gr(VGF(K)) is Koszul.

(!!) This theorem fits into a larger context.
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Fitting this into a Larger Context: the Orlik-Solomon
Algebra

The Orlik-Solomon algebra is a noncommutative analogue of the
Varchenko-Gel’fand ring.

Theorem (D.-B. ’21)

If A is a supersolvable arrangement, then for every cone K, the associated graded
ring gr(VGF(K)) is Koszul.

Theorem (Peeva ’02)

If A is a supersolvable arrangement, then the Orlik-Solomon algebra of A is
supersolvable.
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