Goulden and Jackson's b-conjecture and Matching-Jack conjecture

Houcine Ben Dali

Université de Paris, CNRS, IRIF, Paris Université de Lorraine, CNRS, IECL, Nancy

86th Séminaire Lotharingien de Combinatoire Bad Boll, September 7, 2021

Maps

Maps

■ A map is a graph embedded into a surface, oriented or not. A map is oriented if it is the case of the underlying surface.
■ A map is bipartite if its vertices are colored in white and black, and each white vertex has only black neighbors.

Figure 1: A non-oriented bipartite map on the Klein bottle.

Maps

- A bipartite map is rooted by distinguishing an oriented white corner.
■ Example:

Figure 1: A rooted non-oriented bipartite map on the Klein bottle.

Maps

$\square(\lambda, \mu, \nu)$ is the profile of the bipartite map M if λ is the partition given by the face degrees divided by 2 , and μ (resp. ν) is the partition given by the degrees of the white (resp. black) vertices.

Figure 1: A non-oriented bipartite map on the Klein bottle with profile ([9], [4, 2, 2, 1], [4, 2, 2, 1]).

Generating series of oriented bipartite maps

Oriented bipartite maps

1 For every triplet (λ, μ, ν), we have the bijection Oriented (edge-) labelled bipartite maps of profile (λ, μ, ν)
couples of permutations $\left(\sigma_{1}, \sigma_{2}\right)$ such that the cyclic type of σ_{1}, σ_{2} and $\sigma_{1} \sigma_{2}$ are respectively λ, μ and ν

Oriented bipartite maps

11 For every triplet (λ, μ, ν), we have the bijection Oriented (edge-) labelled
bipartite maps of profile
couples of permutations $\left(\sigma_{1}, \sigma_{2}\right)$ such that the cyclic type of σ_{1}, σ_{2} and $\sigma_{1} \sigma_{2}$ are respectively λ, μ and ν
2 [Representation theory of the symmetric group]

$$
\sum_{\theta} t^{|\theta|} \frac{|\theta|!}{\operatorname{dim}(\theta)} s_{\theta}(\mathbf{p}) s_{\theta}(\mathbf{q}) s_{\theta}(\mathbf{r})=\sum_{n \geq 0} \frac{t^{n}}{n!} \sum_{\sigma_{1}, \sigma_{2} \in \mathfrak{S}_{n}} p_{\text {type }\left(\sigma_{1}\right)} q_{t y p e\left(\sigma_{2}\right)} r_{\text {type }\left(\sigma_{1} \sigma_{2}\right)}
$$

s_{θ} : the Schur function associated to the partition θ, expressed in the power-sum basis.

$$
\mathbf{p}:=\left(p_{i}\right)_{i \geq 1} ; \mathbf{q}:=\left(q_{i}\right)_{i \geq 1} ; ; \mathbf{r}:=\left(r_{i}\right)_{i \geq 1} .
$$

Oriented bipartite maps

11 For every triplet (λ, μ, ν), we have the bijection Oriented (edge-) labelled
bipartite maps of profile
couples of permutations $\left(\sigma_{1}, \sigma_{2}\right)$ such that the cyclic type of σ_{1}, σ_{2} and $\sigma_{1} \sigma_{2}$ are respectively λ, μ and ν

2 [Representation theory of the symmetric group]

$$
\sum_{\theta} t^{|\theta|} \frac{|\theta|!}{\operatorname{dim}(\theta)} s_{\theta}(\mathbf{p}) s_{\theta}(\mathbf{q}) s_{\theta}(\mathbf{r})=\sum_{n \geq 0} \frac{t^{n}}{n!} \sum_{\sigma_{1}, \sigma_{2} \in \mathfrak{S}_{n}} p_{\text {type }\left(\sigma_{1}\right)} q_{\text {type }\left(\sigma_{2}\right)} r_{\text {type }\left(\sigma_{1} \sigma_{2}\right)}
$$

s_{θ} : the Schur function associated to the partition θ, expressed in the power-sum basis.

$$
\mathbf{p}:=\left(p_{i}\right)_{i \geq 1} ; \mathbf{q}:=\left(q_{i}\right)_{i \geq 1} ; ; \mathbf{r}:=\left(r_{i}\right)_{i \geq 1} .
$$

- [Classical]

Generating series of non-oriented maps

Labelled Maps

- A map is labelled if it is equipped with a bijection between its edge-sides and the set $\mathcal{A}_{n}:=\{1, \hat{1}, \ldots, n, \hat{n}\}$.
■ Example:

Figure 2: A labelled non-oriented bipartite map on the Klein bottle

Matchings

■ A matching δ on $\mathcal{A}_{n}=\{1, \hat{1}, \ldots, n, \hat{n}\}$ is a 1 -regular graph.

Figure 3: An example of a matching on \mathcal{A}_{8}.

Matchings

- A matching is bipartite if each one of its edges is of the form (i, \hat{j}).

Figure 3: An example of a bipartite matching on \mathcal{A}_{8}.

Matchings

■ For every $n \geq 1$, we denote by ε the bipartite matching on \mathcal{A}_{n} formed by the pairs of the form (i, \hat{i}).

Figure 3: The matching ε on \mathcal{A}_{8}.

Matchings

■ For two matchings δ and δ^{\prime} on \mathcal{A}_{n}, we define $\Lambda\left(\delta, \delta^{\prime}\right)$ as the partition given by half-sizes of the connected components of the graph $\delta \cup \delta^{\prime}$.

- Once and for all, we fix for every partition λ a bipartite matching δ_{λ} such that $\Lambda\left(\varepsilon, \delta_{\lambda}\right)=\lambda$.

Figure 3: An example of the graph of $\varepsilon \cup \delta_{\lambda}$ for $\lambda=[3,3,2]$

Matchings

- We have a bijection between \mathfrak{S}_{n} and bipartite matchings on \mathcal{A}_{n} : $\sigma \longmapsto$ the matching formed by $(i, \sigma \hat{(j)})$.
- Example:
$7 \quad 8$
$(1,2,3)(4,5,6)(7,8) \longmapsto$

Remark

A permutation of cycle type λ is associated to a matching δ such that $\Lambda(\varepsilon, \delta)=\lambda$.

Matchings

■ We have a bijection between \mathfrak{S}_{n} and bipartite matchings on \mathcal{A}_{n} : $\sigma \longmapsto$ the matching formed by $(i, \sigma(j))$.

- Example:

$(1,2,3)(4,5,6)(7,8) \longmapsto$

Remark

A permutation of cycle type λ is associated to a matching δ such that $\Lambda(\varepsilon, \delta)=\lambda$.

- The profile of $\left(\delta_{1}, \delta_{2}, \delta_{3}\right)$ is the triplet of partitions $\left(\Lambda\left(\delta_{1}, \delta_{2}\right), \Lambda\left(\delta_{1}, \delta_{3}\right), \Lambda\left(\delta_{2}, \Lambda_{3}\right)\right)$.

Correspondence between bipartite maps and matchings

For a labelled bipartite map M we define three matchings;

δ_{1} relating the labels of edge-sides forming a white corner.
δ_{2} relating the labels of edge-sides forming a black corner.
δ_{3} relating the labels of the two sides of a same edge.

Correspondence between bipartite

 maps and matchingsFor a labelled bipartite map M we define three matchings;

δ_{1} relating the labels of edge-sides forming a white corner.
δ_{2} relating the labels of edge-sides forming a black corner.
δ_{3} relating the labels of the two sides of a same edge.
$\Lambda\left(\delta_{1}, \delta_{2}\right)$ gives the face degrees.
$\Lambda\left(\delta_{1}, \delta_{3}\right)$ gives the white vertices degrees.
$\Lambda\left(\delta_{2}, \delta_{3}\right)$ gives the black vertices degrees.

Generating series of non-oriented maps

[Goulden and Jackson '96]

1 We obtain the following bijection :

Labelled bipartite maps of profile (λ, μ, ν)
$\left(\delta_{1}, \delta_{2}, \delta_{3}\right)$ of profile
(λ, μ, ν)

2 [Representation Theory of the Gelfand pair ($\left.\mathfrak{S}_{2 n}, \mathfrak{B}_{n}\right)$]
$\sum_{\theta} t^{|\theta|} \frac{\operatorname{dim}(2 \theta)}{|2 \theta|!} Z_{\theta}(\mathbf{p}) Z_{\theta}(\mathbf{q}) Z_{\theta}(\mathbf{r})=\sum_{n \geq 0} \frac{t^{n}}{(2 n)!} \sum_{\substack{\delta_{0}, \delta_{1}, \delta_{2} \\ \text { mademasin }}} p_{\Lambda\left(\delta_{0}, \delta_{1}\right)} q_{\Lambda\left(\delta_{1}, \delta_{2}\right)} r_{\Lambda\left(\delta_{1}, \delta_{2}\right)}$
Z_{θ} : the zonal polynomial associated to the partition θ, expressed in the power-sum basis.
$\mathbf{p}:=\left(p_{i}\right)_{i \geq 1} ; \mathbf{q}:=\left(q_{i}\right)_{i \geq 1} ; \mathbf{r}:=\left(r_{i}\right)_{i \geq 1}$.

Generating series of non-oriented maps

[Goulden and Jackson '96]

1 We obtain the following bijection :

Labelled bipartite maps of profile (λ, μ, ν)
$\left(\delta_{1}, \delta_{2}, \delta_{3}\right)$ of profile
(λ, μ, ν)

2 [Representation Theory of the Gelfand pair ($\left.\mathfrak{S}_{2 n}, \mathfrak{B}_{n}\right)$]

$$
\sum_{\theta} t^{|\theta|} \frac{\operatorname{dim}(2 \theta)}{|2 \theta|!} Z_{\theta}(\mathbf{p}) Z_{\theta}(\mathbf{q}) Z_{\theta}(\mathbf{r})=\sum_{n \geq 0} \frac{t^{n}}{(2 n)!} \sum_{\substack{\delta_{0}, \delta_{1}, \delta_{2} \\ \text { mand } \\ \text { andemosin }}} p_{\Lambda\left(\delta_{0}, \delta_{1}\right)} q_{\Lambda\left(\delta_{1}, \delta_{2}\right)} r_{\Lambda\left(\delta_{1}, \delta_{2}\right)}
$$

Z_{θ} : the zonal polynomial associated to the partition θ, expressed in the power-sum basis.
$\mathbf{p}:=\left(p_{i}\right)_{i \geq 1} ; \mathbf{q}:=\left(q_{i}\right)_{i \geq 1} ; \mathbf{r}:=\left(r_{i}\right)_{i \geq 1}$.
3
$2 \frac{t \partial}{\partial t} \log \left(\sum_{\theta} t^{\theta \theta} \frac{\operatorname{dim}(2 \theta)}{|2 \theta|!} Z_{\theta}(\mathbf{p}) Z_{\theta}(\mathbf{q}) Z_{\theta}(\mathbf{r})\right)=\sum_{\substack{\text { connecied rooted } \\ \text { bppantien mass }}} t^{|M|} p_{\wedge^{\circ}(M)} q_{\Lambda \bullet(M)} r_{\Lambda}$

Jack polynomials and a one parameter deformation of the generating series of bipartite maps

Jack polynomials

We consider the following deformation of the Hall scalar product $\langle., .\rangle_{b}$ defined on symmetric functions by

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle_{b}=\delta_{\lambda \mu} z_{\lambda}(1+b)^{\ell(\lambda)} .
$$

Jack polynomials

We consider the following deformation of the Hall scalar product $\langle., .\rangle_{b}$ defined on symmetric functions by

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle_{b}=\delta_{\lambda \mu} z_{\lambda}(1+b)^{\ell(\lambda)}
$$

Definition

Jack polynomials of parameter $1+b$, denoted $J_{\lambda}^{(b)}$ are defined as follows :
1 Triangularity and normalisation: if $\lambda \vdash n$, then

$$
J_{\lambda}^{(b)}=\sum_{\mu \vdash n, \mu \leq \lambda} u_{\lambda \mu} m_{\mu}
$$

such that $u_{\lambda\left[^{n}\right]}=n!$.
(predominance order $\mu \leq \lambda: \mu_{1}+\mu_{2}+\ldots+\mu_{i} \leq \lambda_{1}+\lambda_{2} \ldots+\lambda_{i} \forall i$)
2 Orthogonality: if $\lambda \neq \mu$ then $\left\langle J_{\lambda}^{(b)}, J_{\mu}^{(b)}\right\rangle_{b}=0$.

Jack polynomials

■ For $b=0 \longrightarrow$ Schur functions $J_{\lambda}^{(0)}=\frac{|\lambda|!}{\operatorname{dim}(\lambda)} s_{\lambda}$.
■ For $b=1 \longrightarrow$ Zonal polynomials $J_{\lambda}^{(1)}=Z_{\lambda}$.
We define

$$
\tau_{b}(t, \mathbf{p}, \mathbf{q}, \mathbf{r}):=\sum_{\theta} \frac{t^{|\theta|}}{j_{\theta}^{(b)}} J_{\theta}^{(b)}(\mathbf{p}) J_{\theta}^{(b)}(\mathbf{q}) J_{\theta}^{(b)}(\mathbf{r}),
$$

where $j_{\theta}^{(b)}=\left\langle J_{\theta}^{(b)}, J_{\theta}^{(b)}\right\rangle_{b}$.
$b=0$

$$
\begin{gathered}
\tau_{0}(t, \mathbf{p}, \mathbf{q}, \mathbf{r})=\sum_{n \geq 0} \sum_{\lambda \vdash n} \frac{t^{n}}{z_{\lambda}} \sum_{\substack{\delta \text { bipartite } \\
\text { matching on } \mathcal{A}_{n}}} p_{\lambda} q_{\Lambda(\varepsilon, \delta)} r_{\Lambda\left(\delta_{\lambda}, \delta\right)} . \\
\frac{t \partial}{\partial t} \log \left(\tau_{0}(t, \mathbf{p}, \mathbf{q}, \mathbf{r})\right)=\sum_{\substack{M \text { oriented } \\
\text { connected biparitie map }}} t^{|M|} p_{\Lambda^{\circ}(M)} q_{\Lambda} \bullet(M) r_{\Lambda \circ}(M) .
\end{gathered}
$$

b=0

$$
\begin{gathered}
\tau_{0}(t, \mathbf{p}, \mathbf{q}, \mathbf{r})=\sum_{n \geq 0} \sum_{\lambda \vdash n} \frac{t^{n}}{z_{\lambda}} \sum_{\substack{\delta \text { bipartite } \\
\text { matching on } \mathcal{A}_{n}}} p_{\lambda} q_{\Lambda(\varepsilon, \delta)} r_{\Lambda\left(\delta_{\lambda}, \delta\right)} \\
\frac{t \partial}{\partial t} \log \left(\tau_{0}(t, \mathbf{p}, \mathbf{q}, \mathbf{r})\right)=\sum_{\substack{M \text { oriented } \\
\text { connected bipartite map mat }}} t^{|M|} p_{\Lambda^{\circ}(M)} q_{\Lambda} \bullet(M) r_{\Lambda^{\circ}(M)} .
\end{gathered}
$$

b=1

$$
\begin{aligned}
& \tau_{1}(t, \mathbf{p}, \mathbf{q}, \mathbf{r})=\sum_{n \geq 0} \sum_{\lambda \vdash n} \frac{t^{n}}{z_{\lambda} 2^{\ell(\lambda)}} \sum_{\delta \text { matching on } \mathcal{A}_{n}} p_{\lambda} q_{\Lambda(\varepsilon, \delta)} r_{\Lambda\left(\delta_{\lambda}, \delta\right)} \\
& 2 \frac{t \partial}{\partial t} \log \left(\tau_{1}(t, \mathbf{p}, \mathbf{q}, \mathbf{r})\right)=\sum_{\substack{M \text { rooted } \\
\text { connected biparitie map }}} t^{|M|} p_{\Lambda^{\circ}(M)} q_{\Lambda^{\bullet}(M)} r_{\Lambda^{\circ}(M)} .
\end{aligned}
$$

Goulden and Jackson's conjectures '96

Matching-Jack conjecture

$$
\tau_{b}(t, \mathbf{p}, \mathbf{q}, \mathbf{r})=\sum_{n \geq 0} \sum_{\lambda \vdash n} \frac{t^{n}}{z_{\lambda}(1+b)^{\ell(\lambda)}} \sum_{\delta \text { matching on } \mathcal{A}_{n}} b^{\vartheta \lambda}(\delta) p_{\lambda} q_{\Lambda(\varepsilon, \delta)} r_{\Lambda\left(\delta_{\lambda}, \delta\right)},
$$

where for every partition $\lambda \vdash n, \vartheta_{\lambda}$ a function on the matchings of \mathcal{A}_{n} with non-negative integer values, such that $\vartheta_{\lambda}(\delta)=0$ iff δ is a bipartite matching.

Goulden and Jackson's conjectures '96

Matching-Jack conjecture

$$
\tau_{b}(t, \mathbf{p}, \mathbf{q}, \mathbf{r})=\sum_{n \geq 0} \sum_{\lambda \vdash n} \frac{t^{n}}{z_{\lambda}(1+b)^{\ell(\lambda)}} \sum_{\delta \text { matching on } \mathcal{A}_{n}} b^{\vartheta_{\lambda}(\delta)} p_{\lambda} q_{\Lambda(\varepsilon, \delta)} r_{\Lambda\left(\delta_{\lambda}, \delta\right)}
$$

where for every partition $\lambda \vdash n, \vartheta_{\lambda}$ a function on the matchings of \mathcal{A}_{n} with non-negative integer values, such that $\vartheta_{\lambda}(\delta)=0$ iff δ is a bipartite matching.

b-conjecture (Hypermap-Jack conjecture)

$$
(1+b) \frac{t \partial}{\partial t} \log \left(\tau_{b}(t, \mathbf{p}, \mathbf{q}, \mathbf{r})\right)=\sum_{\substack{M \text { rooted connected } \\ \text { bipartite map }}} t^{|M|} b^{\vartheta(M)} p_{\wedge^{\circ}(M)} q_{\wedge} \bullet(M) r_{\wedge^{\circ}(M)}
$$

where ϑ is a function on connected rooted maps with non-negative integer value, such that $\vartheta(M)=0$ iff M is oriented.

Some partial results

Theorem (Dołęga-Féray '15)

The coefficient of $p_{\lambda} q_{\mu} r_{\nu}$ in the function $\tau_{b}(t, \mathbf{p}, \mathbf{q}, \mathbf{r})$ multiplied by $z_{\lambda}(1+b)^{\ell(\lambda)}$ is a polynomial in b with rational coefficients.

Theorem (Dołęga-Féray '17)

The coefficient of $p_{\lambda} q_{\mu} r_{\nu}$ in the function $(1+b) \frac{t \partial}{\partial t} \log \left(\tau_{b}(t, \mathbf{p}, \mathbf{q}, \mathbf{r})\right)$ is a polynomial in b with rational coefficients.

Some partial results

Theorem (Chapuy-Dołęga '20)

$$
\left.(1+b) \frac{t \partial}{\partial t} \log \left(\tau_{b}(t, \mathbf{p}, \mathbf{q}, \underline{u})\right)=\sum_{M \text { rooted connected }}^{\text {bparatie map }} \right\rvert\, t^{|M|} b^{\vartheta(M)} p_{\Lambda^{\wedge}} q_{\Lambda^{\circ}(M)} u^{\ell\left(\Lambda^{\bullet}(M)\right)}
$$

where ϑ is a function on connected rooted maps with non-negative integer value, such that $\vartheta(M)=0$ iff M is oriented.

$$
\begin{aligned}
& \mathbf{p}:=\left(p_{1}, p_{2}, p_{3}, \ldots\right), \\
& \mathbf{q}:=\left(q_{1}, q_{2}, q_{3}, \ldots\right), \\
& \underline{u}:=(u, u, u \ldots) .
\end{aligned}
$$

Some partial results

Theorem (B.D. '21, arXiv:2106.15414)

$$
\tau_{b}(t, \mathbf{p}, \mathbf{q}, \underline{u})=\sum_{n \geq 0} \sum_{\lambda \vdash n} \frac{t^{n}}{z_{\lambda}(1+b)^{\ell(\lambda)}} \sum_{\delta \text { matching on } \mathcal{A}_{n}} b^{\vartheta_{\lambda}(\delta)} p_{\lambda} q_{\Lambda(\varepsilon, \delta)} u^{\ell\left(\Lambda\left(\delta_{\lambda}, \delta\right)\right)},
$$

where for every partition $\lambda \vdash n, \vartheta_{\lambda}$ a function on the matchings of \mathcal{A}_{n} with non-negative integer values, such that $\vartheta_{\lambda}(\delta)=0$ iff δ is a bipartite matching.

$$
\begin{aligned}
& \mathbf{p}:=\left(p_{1}, p_{2}, p_{3}, \ldots\right) \\
& \mathbf{q}:=\left(q_{1}, q_{2}, q_{3}, \ldots\right), \\
& \underline{u}:=(u, u, u \ldots) .
\end{aligned}
$$

Some partial results

Theorem (B.D. '21, arXiv:2106.15414)

$$
\tau_{b}(t, \mathbf{p}, \mathbf{q}, \underline{u})=\sum_{n \geq 0} \sum_{\lambda \vdash n} \frac{t^{n}}{z_{\lambda}(1+b)^{\ell(\lambda)}} \sum_{\delta \text { matching on } \mathcal{A}_{n}} b^{\vartheta_{\lambda}(\delta)} p_{\lambda} q_{\Lambda(\varepsilon, \delta)} u^{\ell\left(\Lambda\left(\delta_{\lambda}, \delta\right)\right)},
$$

where for every partition $\lambda \vdash n, \vartheta_{\lambda}$ a function on the matchings of \mathcal{A}_{n} with non-negative integer values, such that $\vartheta_{\lambda}(\delta)=0$ iff δ is a bipartite matching.
$\mathbf{p}:=\left(p_{1}, p_{2}, p_{3}, \ldots\right)$,
$\mathbf{q}:=\left(q_{1}, q_{2}, q_{3}, \ldots\right)$,
$\underline{u}:=(u, u, u \ldots)$.

Remark

All the precedent results can be generalized to the case of k-constellations.

Recall:

Theorem (Dołęga-Féray '15)

The coefficient of $p_{\lambda} q_{\mu} r_{\nu}$ in the function $\tau_{b}(t, \mathbf{p}, \mathbf{q}, \mathbf{r})$ multiplied by $z_{\lambda}(1+b)^{\ell(\lambda)}$ is a polynomial in b with rational coefficients.

Recall:

Theorem (Dołęga-Féray '15)

The coefficient of $p_{\lambda} q_{\mu} r_{\nu}$ in the function $\tau_{b}(t, \mathbf{p}, \mathbf{q}, \mathbf{r})$ multiplied by $z_{\lambda}(1+b)^{\ell(\lambda)}$ is a polynomial in b with rational coefficients.

Upcoming result (joint work with Chapuy and Dołęga):

Theorem

The coefficient of $p_{\lambda} q_{\mu} r_{\nu}$ in the function $\tau_{b}(t, \mathbf{p}, \mathbf{q}, \mathbf{r})$ multiplied by $z_{\lambda}(1+b)^{e(\lambda)}$ is a polynomial in b with integer coefficients.

Proof: The integrality of the coefficients $\tau_{b}(t, \mathbf{p}, \mathbf{q}, \underline{u})+$ Farahat-Higman Algebra.

