86th Séminaire Lotharingien de Combinatoire
Bad Boll - September 8, 2021

Slack realization spaces and realizability of polytopes

Antonio Macchia
Freie Universität Berlin

joint work with João Gouveia (U Coimbra) and Amy Wiebe (FU Berlin)

Realizability of abstract polytopes

A classical problem in Polytope Theory concerns the existence of a convex realization of a given abstract polytope (lattice).

Theorem (Steinitz, 1922) A graph G is the edge graph of a 3-polytope if and only if G is simple, planar and 3 -connected.

Realizability of abstract polytopes

A classical problem in Polytope Theory concerns the existence of a convex realization of a given abstract polytope (lattice).

Theorem (Steinitz, 1922) A graph G is the edge graph of a 3-polytope if and only if G is simple, planar and 3-connected.

Similar results do not exist in higher dimension.
Non-realizability certificates with a precise structure, using final polynomials and Plücker relations: [Bokowski, Sturmfels, 1989], [Bokowski, Richter, 1990], [Firsching, 2020], [Pfeifle, 2020+].

Realizability of abstract polytopes

A classical problem in Polytope Theory concerns the existence of a convex realization of a given abstract polytope (lattice).

Theorem (Steinitz, 1922) A graph G is the edge graph of a 3-polytope if and only if G is simple, planar and 3-connected.

Similar results do not exist in higher dimension.
Non-realizability certificates with a precise structure, using final polynomials and Plücker relations: [Bokowski, Sturmfels, 1989], [Bokowski, Richter, 1990], [Firsching, 2020], [Pfeifle, 2020+].

Question Can we find certificates without any prescribed structure?
P abstract d-dim polytope with vertices v_{1}, \ldots, v_{n} and facets F_{1}, \ldots, F_{m}.
Symbolic slack matrix $S_{P}(\mathbf{x})$: sparse generic matrix whose (i, j) entry is zero if $v_{i} \in F_{j}$ and a variable otherwise.

$$
S_{P}(\boldsymbol{x})=\left[\begin{array}{cccc}
0 & x_{0} & x_{1} & 0 \\
0 & 0 & x_{2} & x_{3} \\
x_{4} & 0 & 0 & x_{5} \\
x_{6} & x_{7} & 0 & 0
\end{array}\right]
$$

P abstract d-dim polytope with vertices v_{1}, \ldots, v_{n} and facets F_{1}, \ldots, F_{m}.
Symbolic slack matrix $S_{P}(\mathbf{x})$: sparse generic matrix whose (i, j) entry is zero if $v_{i} \in F_{j}$ and a variable otherwise.

$$
S_{P}(\boldsymbol{x})=\left[\begin{array}{cccc}
0 & x_{0} & x_{1} & 0 \\
0 & 0 & x_{2} & x_{3} \\
x_{4} & 0 & 0 & x_{5} \\
x_{6} & x_{7} & 0 & 0
\end{array}\right]
$$

Slack variety $\mathcal{V}_{P}:=\overline{\left\{\xi \in \mathbb{R}_{*}^{N}: \operatorname{rank}\left(S_{P}(\xi)\right) \leq d+1\right\}}=\mathcal{V}\left(I_{P}\right)$ (slack ideal).

The Slack Variety
P abstract d-dim polytope with vertices v_{1}, \ldots, v_{n} and facets F_{1}, \ldots, F_{m}.
Symbolic slack matrix $S_{P}(\mathbf{x})$: sparse generic matrix whose (i, j) entry is zero if $v_{i} \in F_{j}$ and a variable otherwise.

$$
S_{P}(\boldsymbol{x})=\left[\begin{array}{cccc}
0 & x_{0} & x_{1} & 0 \\
0 & 0 & x_{2} & x_{3} \\
x_{4} & 0 & 0 & x_{5} \\
x_{6} & x_{7} & 0 & 0
\end{array}\right]
$$

Slack variety $\mathcal{V}_{P}:=\overline{\left\{\xi \in \mathbb{R}_{*}^{N}: \operatorname{rank}\left(S_{P}(\xi)\right) \leq d+1\right\}}=\mathcal{V}\left(I_{P}\right)$ (slack ideal).
Theorem (Gouveia, M., Thomas, Wiebe, 2019)
$\{$ Realizations of polytope P up to projective equivalence $\} \stackrel{1: 1}{\longleftrightarrow} \mathcal{V}_{\mathrm{P}} \cap \mathbb{R}_{++}^{N}$ up to column and row scalings by positive scalars.

In particular, P is not realizable if and only if $\mathcal{V}_{P} \cap \mathbb{R}_{++}^{N}=\varnothing$.
$\operatorname{Gr}(d+1, n)$ be the Grassmannian variety coordinatized by Plücker coordinates $\left\{p_{J}: J \subseteq\{1, \ldots, n\},|J|=d+1\right\}$.

$$
\Gamma_{0}=\left\{p_{J}: J \subseteq F_{i} \text { facet of } P\right\} \text { and } \Gamma_{1}=\left\{p_{J}: J \text { facet extension of } P\right\} .
$$

Facet extension: $J=\left\{j_{0}, \ldots, j_{d}\right\}$, where $\boldsymbol{j}_{0}, \ldots, j_{d-1}$ span a facet of P and j_{d} is not on that facet.
$\operatorname{Gr}(d+1, n)$ be the Grassmannian variety coordinatized by Plücker coordinates $\left\{p_{J}: J \subseteq\{1, \ldots, n\},|J|=d+1\right\}$.

$$
\Gamma_{0}=\left\{p_{J}: J \subseteq F_{i} \text { facet of } P\right\} \text { and } \Gamma_{1}=\left\{p_{J}: J \text { facet extension of } P\right\} .
$$

Facet extension: $J=\left\{j_{0}, \ldots, j_{d}\right\}$, where $\boldsymbol{j}_{0}, \ldots, j_{d-1}$ span a facet of P and j_{d} is not on that facet.

Grassmannian variety of P :

$$
\operatorname{Gr}(P):=\overline{\Pi_{\Gamma_{1}}\left(\left\{\xi \in \operatorname{Gr}(d+1, n): \begin{array}{ll}
p_{\jmath}(\xi)=0 & \text { if } J \in \Gamma_{0} \\
p_{J}(\xi) \neq 0 & \text { if } J \in \Gamma_{1}
\end{array}\right\}\right)}
$$

where $\Pi_{\Gamma_{1}}$ is the signed projection onto the coordinates of Γ_{1}.
$\operatorname{Gr}(d+1, n)$ be the Grassmannian variety coordinatized by Plücker coordinates $\left\{p_{\jmath}: J \subseteq\{1, \ldots, n\},|J|=d+1\right\}$.

$$
\Gamma_{0}=\left\{p_{J}: J \subseteq F_{i} \text { facet of } P\right\} \text { and } \Gamma_{1}=\left\{p_{J}: J \text { facet extension of } P\right\} .
$$

Facet extension: $J=\left\{j_{0}, \ldots, j_{d}\right\}$, where j_{0}, \ldots, j_{d-1} span a facet of P and j_{d} is not on that facet.

Grassmannian variety of P :

$$
\operatorname{Gr}(P):=\overline{\Pi_{\Gamma_{1}}\left(\left\{\xi \in \operatorname{Gr}(d+1, n): \begin{array}{ll}
p_{\jmath}(\xi)=0 & \text { if } J \in \Gamma_{0} \\
p_{J}(\xi) \neq 0 & \text { if } J \in \Gamma_{1}
\end{array}\right\}\right)}
$$

where $\Pi_{\Gamma_{1}}$ is the signed projection onto the coordinates of Γ_{1}.
Theorem (Gouveia, M., Wiebe, 2020+) The Grassmannian variety $\operatorname{Gr}(P)$ and the slack variety \mathcal{V}_{P} are essentially equivalent.

In particular, P is not realizable if and only if $\operatorname{Gr}(P) \cap \mathbb{R}_{++}^{N}=\varnothing$.

Realizability and positive points

P is not realizable if a certain variety has no positive points.
Theorem (Becker, 1986) A real variety $\mathcal{V}(I) \subseteq \mathbb{R}^{N}$ has no positive point if and only if there is an element of I of the form

$$
\mathbf{x}^{\alpha}+\sum \mathbf{x}^{\beta_{i}} \sigma_{i}(\mathbf{x}),
$$

where $\sigma_{i}(\mathbf{x})$ are sums of squares of polynomials.

Realizability and positive points

P is not realizable if a certain variety has no positive points.
Theorem (Becker, 1986) A real variety $\mathcal{V}(I) \subseteq \mathbb{R}^{N}$ has no positive point if and only if there is an element of I of the form

$$
\mathbf{x}^{\alpha}+\sum \mathbf{x}^{\beta_{i}} \sigma_{i}(\mathbf{x})
$$

where $\sigma_{i}(\mathbf{x})$ are sums of squares of polynomials.

In the case of $\operatorname{Gr}(P)$, the witness polynomials are called final polynomials and were used for certifying non-realizability [Bokowski, Sturmfels, 1989], [Bokowski, Richter, 1990].

Realizability and positive polynomials

- Sums of squares are hard to interpret and semidefinite programming has scalability issues.
- The ideal of $\operatorname{Gr}(P)$ is complicated and often one works with the subideal generated by 3-term Plücker relations.

Realizability and positive polynomials

- Sums of squares are hard to interpret and semidefinite programming has scalability issues.
- The ideal of $\operatorname{Gr}(P)$ is complicated and often one works with the subideal generated by 3-term Plücker relations.

An alternative is to consider scalar σ_{i}. We say that a polynomial is positive if it is non-zero and has non-negative coefficients.

Proposition Given a real variety $\mathcal{V}(I) \subseteq \mathbb{R}^{N}$, if I contains a positive polynomial, then $\mathcal{V}(I)$ has no positive points.

Grassmannian vs Slack model

Grassmannian model: ideal generated by quadratic polynomials, full set of Plücker coordinates limits brute force search.

- Bi-quadratic final polynomials [Bokowski, Richter, 1990]
- Positive Plücker tree certificates [Pfeifle, 2020+]

Grassmannian vs Slack model

Grassmannian model: ideal generated by quadratic polynomials, full set of Plücker coordinates limits brute force search.

- Bi-quadratic final polynomials [Bokowski, Richter, 1990]
- Positive Plücker tree certificates [Pfeifle, 2020+]

Slack model: slack ideal generated in higher degree, lower number of variables that can be further reduced by parametrizing the variety.

Let P be an abstract d-dimensional polytope.
Inputs:

- F: list of facets of abstract polytope P as lists of vertex labels
- d : dimension of P
- k : maximum number of factors in the products of constraints
- l: maximum degree of constraints to consider

Aim: Find a (k, l)-positive polynomial in \mathcal{V}_{P}.
The algorithm is implemented in Macaulay2 and Gurobi.

Step 1: Construct parametrization of $S_{P}(\boldsymbol{x})$

- Consider or construct an orientation of the facets of P.
- Choose a flag $\mathcal{F}=\left\{F_{1}, \ldots, F_{d+1}\right\}$ of facets of P :

$$
F_{1} \supsetneq\left(F_{1} \cap F_{2}\right) \supsetneq \cdots \supsetneq\left(F_{1} \cap \cdots \cap F_{d+1}\right)=\varnothing .
$$

- Consider the reduced symbolic slack matrix $S_{\mathcal{F}}(\boldsymbol{x})$, whose transpose rows are $S_{\mathcal{F}}^{v_{i}}$.
- Construct the parametrized slack matrix entries

$$
S_{P}\left(\boldsymbol{x}_{\mathcal{F}}\right)_{i, j}:=\operatorname{det}\left[S_{\mathcal{F}}^{v_{j_{1}}} \cdots S_{\mathcal{F}}^{v_{j_{d}}} S_{\mathcal{F}}^{V_{i}}\right]=p_{\left\{v_{i}\right\} \cup F_{j}}\left(S_{\mathcal{F}}(\boldsymbol{x})\right),
$$

where $v_{j_{1}}, \ldots, v_{j_{d}}$ span facet F_{j}.

Step 2: Construct constraints for linear program

The set of entries of $S_{P}\left(\mathbf{x}_{\mathcal{F}}\right)$ and any products thereof gives us a collection of positive polynomials.

- Let $G_{k, l}=\left\{g_{1}, \ldots, g_{M}\right\}$ be the set of entries of $S_{P}\left(\mathbf{x}_{F}\right)$ of degree $\leq l$ and of products of $\leq k$ of these entries, where $g_{i}=\sum_{\alpha} a_{i}^{\alpha} \boldsymbol{x}^{\alpha}$.
- We store the coefficients of g_{i} in a matrix

$$
\mathcal{M}_{k, l}=\begin{gathered}
\\
g_{1} \\
g_{2} \\
\vdots \\
g_{M}
\end{gathered}\left[\begin{array}{cccc}
\mathbf{x}^{\alpha_{1}} & \mathbf{x}^{\alpha_{2}} & \cdots & \mathbf{x}^{\alpha_{t}} \\
a_{1}^{\alpha_{1}} & a_{1}^{\alpha_{2}} & \cdots & a_{1}^{\alpha_{t}} \\
a_{2}^{\alpha_{1}} & a_{2}^{\alpha_{2}} & \cdots & a_{2}^{\alpha_{t}} \\
\vdots & \vdots & \ddots & \vdots \\
a_{M}^{\alpha_{1}} & a_{M}^{\alpha_{2}} & \cdots & a_{M}^{\alpha_{t}}
\end{array}\right]
$$

Notice that $\mathcal{M}_{k, l}$ records the linearization of the polynomials in $G_{k, l}$, that will be the constraints of our linear program.

Step 3: Solve linear program

We solve the following dual program whose coefficient matrix is the transpose of $\mathcal{M}_{k, l}$ using Gurobi:

$$
\begin{aligned}
\min 1-\sum_{i=1}^{M} c_{i} \text { subject to } & \sum_{i} c_{i} a_{i}^{\alpha}=0 \text { for all } \alpha \\
& \sum_{i=1}^{M} c_{i} \leq 1 \\
& c_{i} \geq \text { o for all } i=1, \ldots, M
\end{aligned}
$$

This is always feasible and its optimal values are $\mathbf{0}$ or $\mathbf{1}$. If it is $\mathbf{0}$, then we have a non-realizability certificate for P as $\sum g_{i}=0$.

Example 1: Doolittle's sphere

[Doolittle, 2020+] constructed some 4-dimensional simplicial spheres whose realizability was not known.

Example 1: Doolittle's sphere

[Doolittle, 2020+] constructed some A reduced slack matrix $S_{\mathcal{F}}(\boldsymbol{x})$ is 4-dimensional simplicial spheres whose realizability was not known.

One of them has 11 vertices and 44 facets. We consider the flag with positively oriented facets

$$
\begin{gathered}
\mathcal{F}=\left\{F_{1}=\{5,6,7,8\}, F_{2}=\{6,7,8,9\},\right. \\
\left.F_{3}=\{7,8,9,10\}, F_{4}=\{1,3,11,7\}, F_{5}=\{4,8,11,9\}\right\} .
\end{gathered}
$$

Example 1: Doolittle's sphere

[Doolittle, 2020+] constructed some A reduced slack matrix $S_{\mathcal{F}}(\boldsymbol{x})$ is 4-dimensional simplicial spheres whose realizability was not known.

One of them has 11 vertices and 44 facets. We consider the flag with positively oriented facets

$$
\begin{gathered}
\mathcal{F}=\left\{F_{1}=\{5,6,7,8\}, F_{2}=\{6,7,8,9\},\right. \\
\left.F_{3}=\{7,8,9,10\}, F_{4}=\{1,3,11,7\}, F_{5}=\{4,8,11,9\}\right\} .
\end{gathered}
$$

$$
\left[\begin{array}{ccccc}
x_{(1,1)} & x_{(1,2)} & x_{(1,3)} & 0 & x_{(1,5)} \\
x_{(2,1)} & x_{(2,2)} & x_{(2,3)} & x_{(2,4)} & x_{(2,5)} \\
x_{(3,1)} & x_{(3,2)} & x_{(3,3)} & 0 & x_{(3,5)} \\
x_{(4,1)} & x_{(4,2)} & x_{(4,3)} & x_{(4,4)} & 0 \\
0 & x_{(5,2)} & x_{(5,3)} & x_{(5,4)} & x_{(5,5)} \\
0 & 0 & x_{(6,3)} & x_{(6,4)} & x_{(6,5)} \\
0 & 0 & 0 & 0 & x_{(7,5)} \\
0 & 0 & 0 & x_{(8,4)} & 0 \\
0 & 0 & 0 & 0 \\
x_{(9,1)} & 0 & 0 & x_{(9,4)} & 0 \\
x_{(10,1)} & x_{(10,2)} & 0 & x_{(10,4)} & x_{(10,5)} \\
x_{(11,1)} & x_{(11,2)} & x_{(11,3)} & 0 & 0
\end{array}\right]
$$

Proposition (Gouveia, M., Wiebe, 2021+) A (4, 2)-positive polynomial certificate of non-realizability is:

$$
\begin{gathered}
S_{(10,6)} S_{(8,11)} S_{(5,2)} S_{(11,2)}+S_{(9,12)} S_{(10,7)} S_{(3,2)} S_{(11,2)}+S_{(4,7)} S_{(8,8)} S_{(3,2)} S_{(11,2)} \\
+S_{(9,13)} S_{(6,5)} S_{(3,2)} S_{(10,2)}+S_{(10,6)} S_{(8,10)} S_{(2,2)} S_{(11,2)}+S_{(9,13)} S_{(6,9)} S_{(3,2)} S_{(4,2)}=0,
\end{gathered}
$$

where we use some additional facets F_{6}, \ldots, F_{13}.

Example 2: Combinatorial Prismatoids

Prismatoid: all vertices lie in two parallel hyperplanes.
Used by Francisco Santos to construct a counterexample to the Hirsch Conjecture.

[Criado, Santos, 2019] constructed 4092 abstract 5-dimensional non-d-step prismatoids.

Example 2: Combinatorial Prismatoids

Prismatoid: all vertices lie in two parallel hyperplanes.
Used by Francisco Santos to construct a counterexample to the Hirsch Conjecture.

[Criado, Santos, 2019] constructed 4092 abstract 5-dimensional non-d-step prismatoids.
[Pfeifle, 2020+] proved that the 4 prismatoids with 14 vertices are nonrealizable.

Example 2: Combinatorial Prismatoids

Prismatoid: all vertices lie in two parallel hyperplanes.
Used by Francisco Santos to construct a counterexample to the Hirsch Conjecture.

[Criado, Santos, 2019] constructed 4092 abstract 5-dimensional non-d-step prismatoids.
[Pfeifle, 2020+] proved that the 4 prismatoids with 14 vertices are nonrealizable.

Theorem (Gouveia, M., Wiebe, 2021+) The 40 Criado-Santos prismatoids with 14 and 15 vertices are not realizable as convex polytopes.

Prismatoid \#3513 has dimension 5, 14 vertices and 94 facets. We consider the flag:

$$
\begin{gathered}
\mathcal{F}=\left\{F_{1}=\{1,2,6,8,14\}, F_{2}=\{1,6,8,14,9\}, F_{3}=\{1,5,8,9,14\}\right. \\
\left.F_{4}=\{8,9,10,11,12,13,14\}, F_{5}=\{6,8,9,12,11\}, F_{6}=\{1,2,3,4,5,6,7\}\right\} .
\end{gathered}
$$

and remove the vertices forming the triangle $\{2,4,7\}$.
We found a (3,3)-positive polynomial certificate of non-realizability:

$$
S_{(8,7)} S_{(12,8)} S_{(13,5)}+S_{(12,8)} S_{(11,9)} S_{(10,5)}+S_{(3,5)} S_{(13,8)} S_{(10,5)}=0,
$$

where we use some additional facets F_{7}, F_{8}, F_{9}.
Pfeifle found a certificate with 5 terms of degree 4.

Conclusions

- The slack model provides a simple method for studying realizability problems through the search for positive polynomials.
- Brute force: we do not search for certificates of a certain form (such as bi-quadratic final polynomials).
- This approach is doable and effective, but the complexity grows fast.

What's next:

- Implement the method in a unique system optimized for computations with matrices and polynomials. This would make previously intractable realizability problems possible.
- Develop new strategies to reduce the size of computations (e.g., vertex selection, exploit symmetry).

Bibliography

[1] J. Gouveia, A. Macchia, A. Wiebe, Slack realization spaces and realizability of polytopes, in preparation.
[2] J. Gouveia, A. Macchia, A. Wiebe, Combining realization space models of polytopes, preprint (2020), [arXiv:2001.11999].
[3] J. Gouveia, A. Macchia, R. R. Thomas, A. Wiebe, Projectively unique polytopes and toric slack ideals, J. Pure Appl. Algebra 224 (2020), 5, paper 106229.
[4] J. Gouveia, A. Macchia, R. R. Thomas, A. Wiebe, The slack realization space of a polytope, SIAM J. Discrete Math. 33 (2019), 3, 1637-1653.
[5] A. Macchia, A. Wiebe, Slack Ideals in Macaulay2, Mathematical software ICMS 2020, 7th international conference, Braunschweig, Germany, July 1316, 2020, Proceedings.

Thank you for listening!

