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Realizability of abstract polytopes

A classical problem in Polytope Theory concerns the existence of a
convex realization of a given abstract polytope (lattice).

Theorem (Steinitz, 1922) A graph G is the edge graph of a 3-polytope
if and only if G is simple, planar and 3-connected.
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[ Question Can we find certificates without any prescribed structure? ]




The Slack Variety

P abstract d-dim polytope with vertices vy, ..., v, and facets Fi, ..., Fp.

Symbolic slack matrix Sp(x): sparse generic matrix whose (i,j) entry
is zero if v; € F; and a variable otherwise.
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The Slack Variety

P abstract d-dim polytope with vertices vy, ..., v, and facets Fi, ..., Fp.

Symbolic slack matrix Sp(x): sparse generic matrix whose (i,j) entry
is zero if v; € F; and a variable otherwise.

Vy F3 V3
O Xo X1 O
O O X2 X
Fy [ Sp(x) = >
X X O O
" Fi Vo 6 7

Slack variety Vp := {¢ € RN : rank(Sp(¢)) < d +1} = V(Ip) (slack ideal).

Theorem (Gouveia, M., Thomas, Wiebe, 2019)
o o a o o 1:1 N
{Realizations of polytope P up to projective equivalence} <— VpNRY

up to column and row scalings by positive scalars.

In particular, P is not realizable if and only if Ve NRY, = .




The Grassmannian Variety

Gr(d +1,n) be the Grassmannian variety coordinatized by Plicker co-
ordinates {p;: ] € {1,...,n}, ]| =d +1}.

lo={p;:J C F;facet of P} and 'y = {p, : ] facet extension of P}.

Facet extension: J = {jo,..,jq}, where jo,...,ja_, span a facet of P and
jq is not on that facet.
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Gr(d +1,n) be the Grassmannian variety coordinatized by Plicker co-
ordinates {p;: ] € {1,...,n}, ]| =d +1}.

lo={p;:J C F;facet of P} and 'y = {p, : ] facet extension of P}.
Facet extension: J = {jo,..,jq}, where jo,...,ja_, span a facet of P and
jq is not on that facet.

Grassmannian variety of P:

Gr(P):= nn({g € Gr(d+1,n) : 28 ; 2 :H i ;? })

where M, is the signed projection onto the coordinates of I'.

Theorem (Gouveia, M., Wiebe, 2020+) The Grassmannian variety Gr(P)
and the slack variety Vp are essentially equivalent.

In particular, P is not realizable if and only if Gr(P) "R, = @.



Realizability and positive points

P is not realizable if a certain variety has no positive points.

Theorem (Becker, 1986) A real variety V(I) € RN has no positive point
if and only if there is an element of | of the form

X+ ZXBiO','(X),

where oj(x) are sums of squares of polynomials.
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P is not realizable if a certain variety has no positive points.

Theorem (Becker, 1986) A real variety V(I) € RN has no positive point
if and only if there is an element of | of the form

X+ ZXBiO','(X),

where oj(x) are sums of squares of polynomials.

In the case of Gr(P), the witness polynomials are called final polyno-
mials and were used for certifying non-realizability [Bokowski, Sturm-
fels, 1989], [Bokowski, Richter, 1990].



Realizability and positive polynomials

e Sums of squares are hard to interpret and semidefinite program-
ming has scalability issues.

e The ideal of Gr(P) is complicated and often one works with the
subideal generated by 3-term Pliicker relations.



Realizability and positive polynomials

e Sums of squares are hard to interpret and semidefinite program-
ming has scalability issues.

e The ideal of Gr(P) is complicated and often one works with the
subideal generated by 3-term Pliicker relations.

An alternative is to consider scalar o;. We say that a polynomial is
positive if it is non-zero and has non-negative coefficients.

Proposition Given a real variety V(I) C RN, if I contains a positive
polynomial, then V(I) has no positive points.




Grassmannian vs Slack model

Grassmannian model: ideal generated by quadratic polynomials, full
set of Plicker coordinates limits brute force search.

e Bi-quadratic final polynomials [Bokowski, Richter, 1990]
e Positive Pliicker tree certificates [Pfeifle, 2020+]



Grassmannian vs Slack model

Grassmannian model: ideal generated by quadratic polynomials, full
set of Plicker coordinates limits brute force search.

e Bi-quadratic final polynomials [Bokowski, Richter, 1990]
e Positive Pliicker tree certificates [Pfeifle, 2020+]

Slack model: slack ideal generated in higher degree, lower number of
variables that can be further reduced by parametrizing the variety.



The Algorithm

Let P be an abstract d-dimensional polytope.

Inputs:

e F: list of facets of abstract polytope P as lists of vertex labels
e d: dimension of P

e k: maximum number of factors in the products of constraints

e [: maximum degree of constraints to consider

Aim: Find a (R, [)-positive polynomial in V.

The algorithm is implemented in Macaulay2 and Gurobi.



Step 1: Construct parametrization of Sp(x)

e Consider or construct an orientation of the facets of P.
e Choose a flag 7 = {F,..., Fy.+} of facets of P:
FF2(FRNFR)2 - 2(FRN---NF,) = 2.

P
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e Consider the reduced symbolic slack matrix Sz(x), whose trans-
pose rows are S’
e Construct the parametrized slack matrix entries
. Vi .
Sp(Xx);j 1= det[S2 -+ S} %] = pryyur, (SF(X)),

where v;,, ..., V;, span facet F;.



Step 2: Construct constraints for linear program

The set of entries of Sp(xx) and any products thereof gives us a col-
lection of positive polynomials.

o Let Gy = {G4,...,gm} be the set of entries of Sp(xx) of degree < |
and of products of < k of these entries, where g; = > afx®.

e We store the coefficients of g; in a matrix

XOé‘l xOéz - xoc’t
g1 a(y1 a(y; L aat
1 1 1
at
g |@" a@* - a4
./\/lk,[ =
gM aﬁ‘l aﬁz . a;t

Notice that My, records the linearization of the polynomials in Gy,
that will be the constraints of our linear program.



Step 3: Solve linear program

We solve the following dual program whose coefficient matrix is the
transpose of My using Gurobi:

M
min1— Y "¢ subjectto Y ;ca® =oforalla
i=1 "
Zi:1 G =1
¢i>oforalli=n1,..,M.

This is always feasible and its optimal values are o or 1. If it is 0, then
we have a non-realizability certificate for Pas }_g; = 0.
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Example 1: Doolittle’s sphere

[Doolittle, 2020+] constructed some  Areduced slack matrix Sz(x) is
4-dimensional simplicial spheres whose  [X(1) X@2) X3 O Xas)]

2ahili X)) X@2) X@23) X@u) X@s)
realizability was not known. Xon X2 Xz O Xass)
X)) X(@2) X(@w3) Y
o )

One of them has 11 vertices and 44 facets. X(52) X(5.3
0

X(58) X(55)

We consider the flag with positively ori- o X6,3) X(64) X(65)
ented facets 0O 0 0 0 Xg
o (o] o X(S,A) (0]
F = {F'I :{51 61 718}1’:2:{61 7, 81 9}' X(9’1) ° 0 X(9,4) °

X(04) X(102) O X(104) X(1055)
F3={7,8,9,10},F,=1{1,3,11,7}, F5s={48,11,9}}.  [X(1,1) X(112) X3 ©O o



Example 1: Doolittle’s sphere

[Doolittle, 2020+] constructed some  Areduced slack matrix Sx(x) is
4-dimensional simplicial spheres whose  [X(@1) X(2) X(13)

2ahili X)) X@2) X@23) X@u) X@s)

realizability was not known. Xon X2 Xz O Xass)

X(é.),n Xw2) X@w3) X@w) O
)

One of them has 11 vertices and 44 facets. Xs2) X(53) X(4) X(55)
0

We consider the flag with positively ori- o X6,3) X(64) X(65)
ented facets o 0 0 0 Xy
o (o] o X(S,A) 0o
F= {F" = {51 61 7 8}1 F2 = {61 7 81 9}! X(9’1) ° 0 X(9,4) 0

X(10,) X(102) O X(104) X(105)
F3={7,8,9,10},F,=1{1,3,11,7}, F5s={48,11,9}}.  [X(1,1) X(112) X3 ©O o

O X5 T

\.

Proposition (Gouveia, M., Wiebe, 2021+) A (4,2)-positive polynomial certifi-

cate of non-realizability is:
S(10,6)5(8,11)5(5,2)5(11,2) + S(9,12)5(10,7)5(3,2)5(11,2) + S(4,7)5(8,8)5(3,2)5(11,2)
T5(913)5(65)5(32)S(10,2) + S(10,6)5(8,10)5(22)S(11.2) + S(9,13)3(69)5(3.2)S42) = O

where we use some additional facets Fg, ..., F13.

N
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[Criado, Santos, 2019] constructed 4092 abstract 5-dimensional non-
d-step prismatoids.
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Example 2: Combinatorial Prismatoids

Prismatoid: all vertices lie in two parallel
hyperplanes.

Used by Francisco Santos to construct a
counterexample to the Hirsch Conjecture. ‘

[Criado, Santos, 2019] constructed 4092 abstract 5-dimensional non-
d-step prismatoids.

[Pfeifle, 2020+] proved that the 4 prismatoids with 14 vertices are non-
realizable.

Theorem (Gouveia, M., Wiebe, 2021+) The 40 Criado-Santos prisma-
toids with 14 and 15 vertices are not realizable as convex polytopes.




Prismatoid #3513

Prismatoid #3513 has dimension 5, 14 vertices and 94 facets. We con-
sider the flag:

F={F=1{1,2,6,8,14},F, = {1,6,8,14,9},F; = {1,5,8,9,14},
F, = {8,9,10,11,12,13,14},Fs = {6,8,9,12,11},Fs = {1,2,3,4,5,6,7} }.
and remove the vertices forming the triangle {2, 4,7}
We found a (3, 3)-positive polynomial certificate of non-realizability:
S(8,7)5(12,8)5(135) T S(12.8)3(11,9)(10,5) T 5(35)5(13.8)S(105) = O
where we use some additional facets F;, Fg, F.

Pfeifle found a certificate with 5 terms of degree 4.



Conclusions

e The slack model provides a simple method for studying realizability
problems through the search for positive polynomials.

e Brute force: we do not search for certificates of a certain form (such
as bi-quadratic final polynomials).

e This approach is doable and effective, but the complexity grows fast.

What's next:

e Implement the method in a unique system optimized for computa-
tions with matrices and polynomials. This would make previously
intractable realizability problems possible.

e Develop new strategies to reduce the size of computations (e.g, ver-
tex selection, exploit symmetry).
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