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Realizability of abstract polytopes

A classical problem in Polytope Theory concerns the existence of a
convex realization of a given abstract polytope (lattice).

Theorem (Steinitz, 1922) A graph G is the edge graph of a 3-polytope
if and only if G is simple, planar and 3-connected.

Similar results do not exist in higher dimension.

Non-realizability certificates with a precise structure, using final poly-
nomials and Plücker relations: [Bokowski, Sturmfels, 1989], [Bokowski,
Richter, 1990], [Firsching, 2020], [Pfeifle, 2020+].

Question Can we find certificates without any prescribed structure?
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The Slack Variety

P abstract d-dim polytope with vertices v1, ... , vn and facets F1, ... , Fm.

Symbolic slack matrix SP(x): sparse generic matrix whose (i, j) entry
is zero if vi ∈ Fj and a variable otherwise.

v1 v2

v3v4

F1

F3

F4 F2 SP(x) =


0 x0 x1 0
0 0 x2 x3

x4 0 0 x5

x6 x7 0 0



Slack variety VP := {ξ ∈ RN∗ : rank(SP(ξ)) ≤ d+ 1} = V(IP) (slack ideal).

Theorem (Gouveia, M., Thomas, Wiebe, 2019)

{Realizations of polytope P up to projective equivalence} 1:1←→ VP∩RN++

up to column and row scalings by positive scalars.

In particular, P is not realizable if and only if VP ∩ RN++ = ∅.
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The Grassmannian Variety

Gr(d+ 1,n) be the Grassmannian variety coordinatized by Plücker co-
ordinates {pJ : J ⊆ {1, ... ,n}, |J| = d+ 1}.

Γ0 = {pJ : J ⊆ Fi facet of P} and Γ1 = {pJ : J facet extension of P}.

Facet extension: J = {j0, ... , jd}, where j0, ... , jd−1 span a facet of P and
jd is not on that facet.

Grassmannian variety of P:

Gr(P) := ΠΓ1

({
ξ ∈ Gr(d+1,n) : pJ(ξ) = 0 if J ∈ Γ0

pJ(ξ) ̸= 0 if J ∈ Γ1

})
,

where ΠΓ1 is the signed projection onto the coordinates of Γ1.

Theorem (Gouveia, M., Wiebe, 2020+) The Grassmannian variety Gr(P)
and the slack variety VP are essentially equivalent.

In particular, P is not realizable if and only if Gr(P) ∩ RN++ = ∅.
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Realizability and positive points

P is not realizable if a certain variety has no positive points.

Theorem (Becker, 1986) A real variety V(I) ⊆ RN has no positive point
if and only if there is an element of I of the form

xα +
∑

xβiσi(x),

where σi(x) are sums of squares of polynomials.

In the case of Gr(P), the witness polynomials are called final polyno-
mials and were used for certifying non-realizability [Bokowski, Sturm-
fels, 1989], [Bokowski, Richter, 1990].
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Realizability and positive polynomials

• Sums of squares are hard to interpret and semidefinite program-
ming has scalability issues.

• The ideal of Gr(P) is complicated and often one works with the
subideal generated by 3-term Plücker relations.

An alternative is to consider scalar σi. We say that a polynomial is
positive if it is non-zero and has non-negative coefficients.

Proposition Given a real variety V(I) ⊆ RN, if I contains a positive
polynomial, then V(I) has no positive points.
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Grassmannian vs Slack model

Grassmannian model: ideal generated by quadratic polynomials, full
set of Plücker coordinates limits brute force search.
• Bi-quadratic final polynomials [Bokowski, Richter, 1990]
• Positive Plücker tree certificates [Pfeifle, 2020+]

Slack model: slack ideal generated in higher degree, lower number of
variables that can be further reduced by parametrizing the variety.
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The Algorithm

Let P be an abstract d-dimensional polytope.

Inputs:
• F: list of facets of abstract polytope P as lists of vertex labels
• d: dimension of P
• k: maximum number of factors in the products of constraints
• l: maximum degree of constraints to consider

Aim: Find a (k, l)-positive polynomial in VP.

The algorithm is implemented in Macaulay2 and Gurobi.



Step 1: Construct parametrization of SP(x)

• Consider or construct an orientation of the facets of P.
• Choose a flag F = {F1, ... , Fd+1} of facets of P:

F1 ⊋ (F1 ∩ F2) ⊋ · · · ⊋ (F1 ∩ · · · ∩ Fd+1) = ∅.

v1 v2

v3v4

F1

F3

F4 F2

P

F4F3F2F1

v4v3v2v1

∅

• Consider the reduced symbolic slack matrix SF (x), whose trans-
pose rows are SviF .

• Construct the parametrized slack matrix entries

SP(xF )i,j := det[Svj1F · · · S
vjd
F SviF ] = p{vi}∪Fj(SF (x)),

where vj1 , ... , vjd span facet Fj.



Step 2: Construct constraints for linear program

The set of entries of SP(xF ) and any products thereof gives us a col-
lection of positive polynomials.
• Let Gk,l = {g1, ... ,gM} be the set of entries of SP(xF ) of degree ≤ l

and of products of ≤ k of these entries, where gi =
∑

α aαi x
α.

• We store the coefficients of gi in a matrix

Mk,l =

xα1 xα2 · · · xαt


g1 aα1
1 aα2

1 · · · aαt1
g2 aα1

2 aα2
2 · · · aαt2

...
...

...
. . .

...
gM aα1

M aα2
M · · · aαtM

Notice that Mk,l records the linearization of the polynomials in Gk,l,
that will be the constraints of our linear program.



Step 3: Solve linear program

We solve the following dual program whose coefficient matrix is the
transpose ofMk,l using Gurobi:

min 1−
M∑
i=1

ci subject to
∑

i ciaαi = 0 for all α∑M
i=1 ci ≤ 1

ci ≥ 0 for all i = 1, ... ,M.

This is always feasible and its optimal values are 0 or 1. If it is 0, then
we have a non-realizability certificate for P as

∑
gi = 0.



Example 1: Doolittle’s sphere

[Doolittle, 2020+] constructed some
4-dimensional simplicial spheres whose
realizability was not known.

One of them has 11 vertices and 44 facets.
We consider the flag with positively ori-
ented facets

F = {F1 ={5, 6, 7, 8}, F2 ={6, 7, 8, 9},

F3 ={7, 8, 9, 10}, F4 ={1, 3, 11, 7}, F5 ={4, 8, 11, 9}}.

A reduced slack matrix SF (x) is

x(1,1) x(1,2) x(1,3) 0 x(1,5)
x(2,1) x(2,2) x(2,3) x(2,4) x(2,5)
x(3,1) x(3,2) x(3,3) 0 x(3,5)
x(4,1) x(4,2) x(4,3) x(4,4) 0

0 x(5,2) x(5,3) x(5,4) x(5,5)
0 0 x(6,3) x(6,4) x(6,5)
0 0 0 0 x(7,5)
0 0 0 x(8,4) 0

x(9,1) 0 0 x(9,4) 0
x(10,1) x(10,2) 0 x(10,4) x(10,5)
x(11,1) x(11,2) x(11,3) 0 0



Proposition (Gouveia, M., Wiebe, 2021+) A (4, 2)-positive polynomial certifi-
cate of non-realizability is:

S(10,6)S(8,11)S(5,2)S(11,2) + S(9,12)S(10,7)S(3,2)S(11,2) + S(4,7)S(8,8)S(3,2)S(11,2)

+S(9,13)S(6,5)S(3,2)S(10,2) + S(10,6)S(8,10)S(2,2)S(11,2) + S(9,13)S(6,9)S(3,2)S(4,2) = 0,

where we use some additional facets F6, ... , F13.
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Example 2: Combinatorial Prismatoids

Prismatoid: all vertices lie in two parallel
hyperplanes.
Used by Francisco Santos to construct a
counterexample to the Hirsch Conjecture.

[Criado, Santos, 2019] constructed 4092 abstract 5-dimensional non-
d-step prismatoids.

[Pfeifle, 2020+] proved that the 4 prismatoids with 14 vertices are non-
realizable.

Theorem (Gouveia, M., Wiebe, 2021+) The 40 Criado-Santos prisma-
toids with 14 and 15 vertices are not realizable as convex polytopes.
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Prismatoid #3513

Prismatoid #3513 has dimension 5, 14 vertices and 94 facets. We con-
sider the flag:

F = {F1 = {1, 2, 6, 8, 14}, F2 = {1, 6, 8, 14, 9}, F3 = {1, 5, 8, 9, 14},

F4 = {8, 9, 10, 11, 12, 13, 14}, F5 = {6, 8, 9, 12, 11}, F6 = {1, 2, 3, 4, 5, 6, 7}}.

and remove the vertices forming the triangle {2, 4, 7}.

We found a (3, 3)-positive polynomial certificate of non-realizability:

S(8,7)S(12,8)S(13,5) + S(12,8)S(11,9)S(10,5) + S(3,5)S(13,8)S(10,5) = 0,

where we use some additional facets F7, F8, F9.

Pfeifle found a certificate with 5 terms of degree 4.



Conclusions

• The slack model provides a simple method for studying realizability
problems through the search for positive polynomials.

• Brute force: we do not search for certificates of a certain form (such
as bi-quadratic final polynomials).

• This approach is doable and effective, but the complexity grows fast.

What’s next:
• Implement the method in a unique system optimized for computa-

tions with matrices and polynomials. This would make previously
intractable realizability problems possible.

• Develop new strategies to reduce the size of computations (e.g., ver-
tex selection, exploit symmetry).
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