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For any n ≥ 1, we define and study and a family of polynomials
in q, the remixed Eulerian numbers Ac(q) indexed by

Wn := {c = (c1, · · · , cn) | ci ∈ N,
n∑
i=1

ci = n}.



For any n ≥ 1, we define and study and a family of polynomials
in q, the remixed Eulerian numbers Ac(q) indexed by

1) Mixed Eulerian numbers Ac := Ac(1).

Wn := {c = (c1, · · · , cn) | ci ∈ N,
n∑
i=1

ci = n}.

3) Special subfamilies.

4) General properties.

PLAN

2) Definition of Ac(q) and probabilistic interpretation.
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Permutahedron

Let (λ1, λ2, . . . , λn+1) ∈ Rn+1 with λ1 ≥ λ2 ≥ · · · ≥ λn+1.

Definition The permutahedron Perm(λ1, λ2, . . . , λn+1) is the
convex hull of the points (λσ(1), . . . , λσ(n+1)) for σ ∈ Sn+1.

Perm(2, 1, 0)

λ = (2, 1, 0)
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Permutahedron

Let (λ1, λ2, . . . , λn+1) ∈ Rn+1 with λ1 ≥ λ2 ≥ · · · ≥ λn+1.

Definition The permutahedron Perm(λ1, λ2, . . . , λn+1) is the
convex hull of the points (λσ(1), . . . , λσ(n+1)) for σ ∈ Sn+1.

Perm(2, 1, 0)

The volume V (λ1, λ2, . . . , λn+1) is the volume of the
permutahedron projected on {λn+1 = 0}.

V (2, 1, 0) = 3.

λ = (2, 1, 0)

(2, 0, 1)

(1, 0, 2) (0, 1, 2)

(0, 2, 1)

(1, 2, 0)



Mixed Eulerian numbers

V (λ1, . . . , λn+1) is a polynomial in the λi,
homogeneous of degree n.

The following results come from (Postnikov ’09).

Ex: V (λ1, λ2, λ3) =
λ2
1

2 + λ1λ2 − 2λ1λ3 − 2
λ2
2

2 + λ2λ3 +
λ2
3
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Mixed Eulerian numbers

V (λ1, . . . , λn+1) is a polynomial in the λi,
homogeneous of degree n.

The following results come from (Postnikov ’09).

V (λ1, · · · , λn+1) only depends on the differences
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Mixed Eulerian numbers

V (λ1, . . . , λn+1) is a polynomial in the λi,
homogeneous of degree n.

The following results come from (Postnikov ’09).

V (λ1, · · · , λn+1) only depends on the differences
µi = λi − λi+1.

→ V̂ (µ1, . . . , µn) := V (λ1, · · · , λn+1).

V̂ (µ1, · · · , µn) =
∑

c∈Wn

Ac
µc11 · · ·µcnn
c1! · · · cn!

Definition The mixed Eulerian numbers Ac are the normalized
coefficients of V̂

Ex: V̂ (µ1, µ2) =
µ2
1

2 + 2µ1µ2 +
µ2
2

2

Ex: V (λ1, λ2, λ3) =
λ2
1

2 + λ1λ2 − 2λ1λ3 − 2
λ2
2

2 + λ2λ3 +
λ2
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Perm(λ1, · · · , λn+1) =

with ∆k,n = Perm(1k, 0n+1−k) the kth hypersimplex.

µ1∆1,n+1 + µ2∆2,n+1 + · · ·+ µn∆n,n+1(+point)

One has the decomposition
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Perm(λ1, · · · , λn+1) =

with ∆k,n = Perm(1k, 0n+1−k) the kth hypersimplex.

µ1∆1,n+1 + µ2∆2,n+1 + · · ·+ µn∆n,n+1(+point)

One has the decomposition

• By taking volumes in this decomposition, it expresses Ac as
n! times the mixed volume of hypersimplices, with ∆k,n+1

occurring ck times.

(Corollary: the Ac are positive integers.)



Mixed ? Eulerian ?

• One has n!V (∆k,n+1) = Ak−1n (known already to Laplace).
Ak−1n is an Eulerian number: it counts permutations of Sn
with k − 1 descents.

Perm(λ1, · · · , λn+1) =

with ∆k,n = Perm(1k, 0n+1−k) the kth hypersimplex.

µ1∆1,n+1 + µ2∆2,n+1 + · · ·+ µn∆n,n+1(+point)

One has the decomposition

• By taking volumes in this decomposition, it expresses Ac as
n! times the mixed volume of hypersimplices, with ∆k,n+1

occurring ck times.

(Corollary: the Ac are positive integers.)

kth position

It follows that A...,0,n,0... = Ak−1n
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Remixed Eulerian numbers

{
Li(c) := (. . . , ci−1+1, ci−1, ci+1, . . . )

Ri(c) := (. . . , ci−1, ci−1, ci+1+1, . . . )
(ci ≥ 1)

Fix n. For any c ∈Wn, define Li(c), Ri(c) ∈Wn



Remixed Eulerian numbers

{
Li(c) := (. . . , ci−1+1, ci−1, ci+1, . . . )

Ri(c) := (. . . , ci−1, ci−1, ci+1+1, . . . )

Definition-Theorem [N.-Tewari ’21] There exists a unique
family Ac(q) with c ∈Wn that satisfies

(ci ≥ 1)

Ac(q) are the remixed Eulerian numbers.

(q + 1)Ac(q) = qALi(c)(q) +ARi(c)(q) ∀ c, i with ci ≥ 2

with the normalization A1,...,1(q) = [n]q!.

Fix n. For any c ∈Wn, define Li(c), Ri(c) ∈Wn



Remixed Eulerian numbers

{
Li(c) := (. . . , ci−1+1, ci−1, ci+1, . . . )

Ri(c) := (. . . , ci−1, ci−1, ci+1+1, . . . )

Definition-Theorem [N.-Tewari ’21] There exists a unique
family Ac(q) with c ∈Wn that satisfies

(ci ≥ 1)

Ac(q) are the remixed Eulerian numbers.

(q + 1)Ac(q) = qALi(c)(q) +ARi(c)(q) ∀ c, i with ci ≥ 2

with the normalization A1,...,1(q) = [n]q!.

One must show that this system of linear equations has indeed
a unique solution (necessarily in Q(q)).

Fix n. For any c ∈Wn, define Li(c), Ri(c) ∈Wn



Ac(q) for n = 3

A111(q) = [3]q! = 1 + 2q + 2q2 + q3

A120(q) = 1+2q+q2

A012(q) = q2 + q3

A102(q) = q+ q2 + q3

A201(q) = 1 + q + q2

A210(q) = 1 + q
A021(q) = q + 2q2 + q3

A300(q) = 1
A030(q) = 2q + 2q2

A003(q) = q3

(The sum in each group is [3]q!; we will explain that later.)
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(q + 1)Ac(q) = qALi(c)(q) +ARi(c)(q) ∀c, i with ci ≥ 2

with A1,...,1(q) = [n]q!.

Recall the definition



First properties

(q + 1)Ac(q) = qALi(c)(q) +ARi(c)(q) ∀c, i with ci ≥ 2

with A1,...,1(q) = [n]q!.

There holds Ac(1) = Ac in general.

The proof goes by finding an alternative, direct definition of
Ac(q) that uses “q-divided symmetrization”, which is a
q-deformation of a linear form defined by Postnikov to give a
formula for V (λ1, · · · , λn+1).

Remark: From that alternative definition follows moreover the
existence of Ac(q), and the fact that Ac(q) ∈ Z[q].

Recall the definition



Probabilistic model for Ac(q) (q ≥ 0)

States: Sequences c = (ci)i∈Z with sum
∑
i ci = n,

seen as particle configurations

0

c = (. . . , 0, 3, 0, 1, 1, 2, 0, 2, 0, . . . )

1 2 3 4 5−1−2−3
⇔



Probabilistic model for Ac(q) (q ≥ 0)

States: Sequences c = (ci)i∈Z with sum
∑
i ci = n,

seen as particle configurations

0

c = (. . . , 0, 3, 0, 1, 1, 2, 0, 2, 0, . . . )

1 2 3 4 5−1−2−3

i

q
1+q

1
1+q

(reaches Li(c))
If ci ≥ 2, particle at site i can jump:
• left with probability q

1+q

• right with probability 1
1+q

Transitions:

(reaches Ri(c))

⇔



Probabilistic model (q ≥ 0)

Model: Start with an initial configuration c. Then “let
particles jump” until a stable configuration is reached.

(stable = at most one particle per site, identified with I ⊂ Z, |I| < +∞)
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Model: Start with an initial configuration c. Then “let
particles jump” until a stable configuration is reached.

(stable = at most one particle per site, identified with I ⊂ Z, |I| < +∞)

Facts: (termination) The process stabilizes almost surely.

(abelianness) The order in which particles jump does
not change the probability of the final configuration.



Probabilistic model (q ≥ 0)

Model: Start with an initial configuration c. Then “let
particles jump” until a stable configuration is reached.

(stable = at most one particle per site, identified with I ⊂ Z, |I| < +∞)

Facts: (termination) The process stabilizes almost surely.

(abelianness) The order in which particles jump does
not change the probability of the final configuration.

Theorem (N.-Tewari ’21)

If c ∈Wn, P (c→ {1, . . . , n}) =
Ac(q)

[n]q!

Definition Let P (c→ I) be the probability that, starting
from c, the final stable configuration is I.

Clearly P (c→ {1, . . . , n}) = 0 if c 6∈Wn.
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Illustration c = (3, 0, 0)

0 1 2 3 4−1−2
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q
1+q

1
1+q



Illustration c = (3, 0, 0)

0 1 2 3 4−1−2

0 1 2 3 4−1−2 0 1 2 3 4−1−2

0 1 2 3 4−1−2 0 1 2 3 4−1−20 1 2 3 4−1−2

q
1+q

1
1+q

q2

1+q+q2

1+q
1+q+q2 q+q2

1+q+q2

1
1+q+q2



Illustration c = (3, 0, 0)

0 1 2 3 4−1−2

0 1 2 3 4−1−2 0 1 2 3 4−1−2

0 1 2 3 4−1−2 0 1 2 3 4−1−20 1 2 3 4−1−2

q
1+q

1
1+q

q2

1+q+q2

1+q
1+q+q2 q+q2

1+q+q2

1
1+q+q2

Prob = q3

[3]q ! Prob = 2q+2q2

[3]q !
Prob = 1

[3]q !



Proof

Theorem (N.-Tewari ’21) P (c→ {1, . . . , n}) =
Ac(q)

[n]q!

P (c→ I) = q
1+qP (Li(c)→ I) + 1

1+qP (Ri(c)→ I)

If c stable, P (c→ I) = 1 if c = I, 0 if c 6= I.

[n]q!P (c 7→ {1, . . . , n}) satisfies the
conditions of the definition of Ac(q).

Proof If ci ≥ 2, then (abelian+transition)



Proof

Theorem (N.-Tewari ’21) P (c→ {1, . . . , n}) =
Ac(q)

[n]q!

P (c→ I) = q
1+qP (Li(c)→ I) + 1

1+qP (Ri(c)→ I)

If c stable, P (c→ I) = 1 if c = I, 0 if c 6= I.

[n]q!P (c 7→ {1, . . . , n}) satisfies the
conditions of the definition of Ac(q).

This is an example of Internal Diffusion Limited Aggregation
process, introduced in (Diaconis-Fulton ’93).

Proof If ci ≥ 2, then (abelian+transition)



Special cases

• c = (. . . , 0, n, 0, . . . ), n in kth position.

Ac(q) = polynomial enumerating
permutations in Sn with k − 1 descents
according to their inversion number.

Refined
eulerian
numbers

Let c = (c1, . . . , cn) ∈Wn.
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Special cases

• c = (n− k, 0, 0, . . . , 0, k)

• c = (. . . , 0, n, 0, . . . ), n in kth position.

Ac(q) = polynomial enumerating
permutations in Sn with k − 1 descents
according to their inversion number.

Ac(q) = q(
k
2) [n]q !

[k]q ![n−k]q !

Refined
eulerian
numbers

• c = (c1, · · · , cn) with
∑
i≤k ci ≥ k for all k.

q-binomials aka
Gaussian coefficients.

Ac(q) = an explicit product of q-integers.

Exercise

Let c = (c1, . . . , cn) ∈Wn.
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n−k).{
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The interval case

We assume c = (c1, c2, . . . , ck, 0
n−k).

Theorem (N.-Tewari ’20+)∑
j≥0

[j+1]c1q · · · [j+k]ckq t
j =

∑
0≤i≤n−k A0i,c1,...,ck,0n−k−i(q)ti

(1− t)(1− tq) · · · (1− tqn)

{
> 0



The interval case

We assume c = (c1, c2, . . . , ck, 0
n−k).

Theorem (N.-Tewari ’20+)∑
j≥0

[j+1]c1q · · · [j+k]ckq t
j =

∑
0≤i≤n−k A0i,c1,...,ck,0n−k−i(q)ti

(1− t)(1− tq) · · · (1− tqn)

q = 1: (Berget-Spink-Tseng ’20)

k = 1: special case of identity of MacMahon-Carlitz

In fact by comparison with work of (Garsia-Remmel ’84), one
recovers precisely the family of hit polynomials coming from
rook theory.

{
> 0



A cyclic rule

• Write c ∼ c′ if (c, 0) is a cyclic shift of (c′, 0).

(3, 0, 1, 1, 0) ∼ (0, 3, 0, 1, 1) ∼ (1, 1, 0, 0, 3)

(There are Catalann equivalence classes)



A cyclic rule

Proof sketch: Consider the previous process on a discrete ring
Z/(n+ 1)Z = {0, 1, . . . , n}.

• Write c ∼ c′ if (c, 0) is a cyclic shift of (c′, 0).

(3, 0, 1, 1, 0) ∼ (0, 3, 0, 1, 1) ∼ (1, 1, 0, 0, 3)

Proposition For any C ∈Wn/ ∼,
∑
c∈C

Ac(q) = [n]q!

(There are Catalann equivalence classes)



A cyclic rule

Proof sketch: Consider the previous process on a discrete ring
Z/(n+ 1)Z = {0, 1, . . . , n}.

• Write c ∼ c′ if (c, 0) is a cyclic shift of (c′, 0).

(3, 0, 1, 1, 0) ∼ (0, 3, 0, 1, 1) ∼ (1, 1, 0, 0, 3)

Proposition For any C ∈Wn/ ∼,
∑
c∈C

Ac(q) = [n]q!

For q = 1, conjectured by Stanley, proved by Postnikov using
the Coxeter arrangement of affine type Ãn .

(There are Catalann equivalence classes)



Polynomial properties

Ac(q) = 2q20 + 6q19 + 11q18 + 18q17 + 27q16 + 35q15 + 40q14 +
42q13 + 40q12 + 35q11 + 27q10 + 18q9 + 11q8 + 6q7 + 2q6

c = (0, 3, 0, 0, 0, 1, 3) ∈W7



Polynomial properties

Proposition For any c ∈Wn, Ac(q) has coefficients in N.

Ac(q) = 2q20 + 6q19 + 11q18 + 18q17 + 27q16 + 35q15 + 40q14 +
42q13 + 40q12 + 35q11 + 27q10 + 18q9 + 11q8 + 6q7 + 2q6

c = (0, 3, 0, 0, 0, 1, 3) ∈W7

One can prove this by finding a recurrence relation from which it
follows immediately.



Polynomial properties

Proposition For any c ∈Wn, Ac(q) has coefficients in N.

Ac(q) = 2q20 + 6q19 + 11q18 + 18q17 + 27q16 + 35q15 + 40q14 +
42q13 + 40q12 + 35q11 + 27q10 + 18q9 + 11q8 + 6q7 + 2q6

c = (0, 3, 0, 0, 0, 1, 3) ∈W7

Proposition For any c ∈Wn, Ac(q) is palindromic.

In the example, vc = 6, dc = 20.

One can prove this by finding a recurrence relation from which it
follows immediately.

This means Ac(q) = qvc+dcAc(q
−1), where vc is the valuation

of Ac(q) and dc its degree.



Polynomial properties

For c ∈Wn, define h(c) = (h1, h2, . . . , hn)

by hi := (c1 + c2 + · · ·+ ci)− i.

Proposition For any c ∈Wn, there holds

vc =
∑
i,hi<0

|hi| dc =

(
n

2

)
−
∑
i,hi>0

hi

for all i.

and



Polynomial properties

For c ∈Wn, define h(c) = (h1, h2, . . . , hn)

by hi := (c1 + c2 + · · ·+ ci)− i.

Proposition For any c ∈Wn, there holds

vc =
∑
i,hi<0

|hi| dc =

(
n

2

)
−
∑
i,hi>0

hi

for all i.

1 2 3 4 5 6 7

h(c) = (−1, 1, 0,−1,−2,−2, 0)

c = (0, 3, 0, 0, 0, 1, 3)

and

successive heights



Combinatorial interpretation

Given c = (c1, . . . , cn) define l1 := 1, l2, . . . , ln+1 by
li+1 − li = ci + 1.

Consider complete, plane binary trees with n+ 1 leaves (thus
n internal nodes) labeled with {1, 2, . . . , 2n+ 1}:
(1) Leaves are labeled l1, . . . , ln+1 from left to right.
(2) Each internal node has label larger than its left child and
smaller than its right child.

1 3 4 7 9 11

52

8
10

6

c = 1 0 2 1 1

T (c) = {these trees}



Combinatorial interpretation

Theorem (Liu ’16 (q=1), N.-Tewari ’20+)

Ac(1) is the number of pairs (T, ω) where :
(1) T ∈ T (c)
(2) ω is a decreasing labeling on the nodes of c.

Moreover, Ac(q) is obtained by counting each such (T, ω)
with weight q|Inv(ω)|.

ω viewed as permutation via projection.

ω ↔ 35124

1 3 4 7 9 11

52

8

10
6 5

4

3
2

1
q5



FIN



How we got into this



A one-page summary

Let Pn be the permutahedral variety over C. It is a subvariety,
of dimension n, inside the larger flag variety Flags(Cn+1).

To get some information on it, we intersect it with some
special subvarieties, the Schubert varieties Xw indexed by
w ∈ Sn+1 with n inversions.

The intersection consists of a bunch of points: our leading
question is how many ?

aw := #(Pn ∩Xw) ∈ N



A one-page summary

Let Pn be the permutahedral variety over C. It is a subvariety,
of dimension n, inside the larger flag variety Flags(Cn+1).

To get some information on it, we intersect it with some
special subvarieties, the Schubert varieties Xw indexed by
w ∈ Sn+1 with n inversions.

The intersection consists of a bunch of points: our leading
question is how many ?

aw := #(Pn ∩Xw) ∈ N

Using a rather long and winding road, these can be
decomposed as follows:

aw =
1

n!

∑
i∈Red(w)

Ac(i)(1).(N.-Tewari ’20)
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It follows immediately aw > 0 and aw = aw−1 from this
formula. (No proof known yet using algebraic geometry)



From 1 to q

aw =
1

n!

∑
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by probabilistic and combinatorial reasons...



From 1 to q

aw =
1

n!

∑
i∈Red(w)

Ac(i)(1).

It follows immediately aw > 0 and aw = aw−1 from this
formula. (No proof known yet using algebraic geometry)

Why the q-deformation? Reasonably motivated a posteriori
by probabilistic and combinatorial reasons...

aw(q) :=
1

[n]q!

∑
i∈Red(w)

Ac(i)(q).

turns out to solve an analogous intersection problem in
characteristic p > 0 when q = pf .

(Pn replaced with a Deligne-Lusztig variety).

... there’s more:


