(Re)mixed Eulerian numbers

Philippe Nadeau (CNRS, Univ. Lyon 1)

Joint work with Vasu Tewari (Univ. of Hawai'i)

Sept 82021
SLC86, Bad Boll, Germany.

For any $n \geq 1$, we define and study and a family of polynomials in q, the remixed Eulerian numbers $A_{\mathbf{c}}(q)$ indexed by

$$
W_{n}:=\left\{\mathbf{c}=\left(c_{1}, \cdots, c_{n}\right) \mid c_{i} \in \mathbb{N}, \sum_{i=1}^{n} c_{i}=n\right\} .
$$

For any $n \geq 1$, we define and study and a family of polynomials in q, the remixed Eulerian numbers $A_{\mathbf{c}}(q)$ indexed by

$$
W_{n}:=\left\{\mathbf{c}=\left(c_{1}, \cdots, c_{n}\right) \mid c_{i} \in \mathbb{N}, \sum_{i=1}^{n} c_{i}=n\right\} .
$$

PLAN

1) Mixed Eulerian numbers $A_{\mathbf{c}}:=A_{\mathbf{c}}(1)$.
2) Definition of $A_{\mathbf{c}}(q)$ and probabilistic interpretation.
3) Special subfamilies.
4) General properties.

Postnikov's
 Mixed Eulerian numbers

Permutahedron

$$
\text { Let }\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n+1}\right) \in \mathbb{R}^{n+1} \text { with } \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n+1}
$$

Definition The permutahedron $\operatorname{Perm}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n+1}\right)$ is the convex hull of the points $\left(\lambda_{\sigma(1)}, \ldots, \lambda_{\sigma(n+1)}\right)$ for $\sigma \in S_{n+1}$.
$\operatorname{Perm}(2,1,0)$

Permutahedron

$$
\text { Let }\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n+1}\right) \in \mathbb{R}^{n+1} \text { with } \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n+1}
$$

Definition The permutahedron $\operatorname{Perm}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n+1}\right)$ is the convex hull of the points $\left(\lambda_{\sigma(1)}, \ldots, \lambda_{\sigma(n+1)}\right)$ for $\sigma \in S_{n+1}$.
$\operatorname{Perm}(2,1,0)$

$$
V(2,1,0)=3 .
$$

The volume $V\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n+1}\right)$ is the volume of the permutahedron projected on $\left\{\lambda_{n+1}=0\right\}$.

Mixed Eulerian numbers

The following results come from (Postnikov '09).

- $V\left(\lambda_{1}, \ldots, \lambda_{n+1}\right)$ is a polynomial in the λ_{i}, homogeneous of degree n.

Ex: $V\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\frac{\lambda_{1}^{2}}{2}+\lambda_{1} \lambda_{2}-2 \lambda_{1} \lambda_{3}-2 \frac{\lambda_{2}^{2}}{2}+\lambda_{2} \lambda_{3}+\frac{\lambda_{3}^{2}}{2}$.

Mixed Eulerian numbers

The following results come from (Postnikov '09).

- $V\left(\lambda_{1}, \ldots, \lambda_{n+1}\right)$ is a polynomial in the λ_{i}, homogeneous of degree n.

Ex: $V\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\frac{\lambda_{1}^{2}}{2}+\lambda_{1} \lambda_{2}-2 \lambda_{1} \lambda_{3}-2 \frac{\lambda_{2}^{2}}{2}+\lambda_{2} \lambda_{3}+\frac{\lambda_{3}^{2}}{2}$.

- $V\left(\lambda_{1}, \cdots, \lambda_{n+1}\right)$ only depends on the differences

$$
\mu_{i}=\lambda_{i}-\lambda_{i+1} .
$$

$$
\rightarrow \hat{V}\left(\mu_{1}, \ldots, \mu_{n}\right):=V\left(\lambda_{1}, \cdots, \lambda_{n+1}\right) .
$$

Ex: $\hat{V}\left(\mu_{1}, \mu_{2}\right)=\frac{\mu_{1}^{2}}{2}+2 \mu_{1} \mu_{2}+\frac{\mu_{2}^{2}}{2}$

Mixed Eulerian numbers

The following results come from (Postnikov '09).

- $V\left(\lambda_{1}, \ldots, \lambda_{n+1}\right)$ is a polynomial in the λ_{i}, homogeneous of degree n.

Ex: $V\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)=\frac{\lambda_{1}^{2}}{2}+\lambda_{1} \lambda_{2}-2 \lambda_{1} \lambda_{3}-2 \frac{\lambda_{2}^{2}}{2}+\lambda_{2} \lambda_{3}+\frac{\lambda_{3}^{2}}{2}$.

- $V\left(\lambda_{1}, \cdots, \lambda_{n+1}\right)$ only depends on the differences $\mu_{i}=\lambda_{i}-\lambda_{i+1}$.

$$
\rightarrow \hat{V}\left(\mu_{1}, \ldots, \mu_{n}\right):=V\left(\lambda_{1}, \cdots, \lambda_{n+1}\right) .
$$

Ex: $\hat{V}\left(\mu_{1}, \mu_{2}\right)=\frac{\mu_{1}^{2}}{2}+2 \mu_{1} \mu_{2}+\frac{\mu_{2}^{2}}{2}$
Definition The mixed Eulerian numbers $A_{\mathbf{c}}$ are the normalized coefficients of \hat{V}

$$
\hat{V}\left(\mu_{1}, \cdots, \mu_{n}\right)=\sum_{\mathbf{c} \in W_{n}} A_{\mathbf{c}} \frac{\mu_{1}^{c_{1}} \cdots \mu_{n}^{c_{n}}}{c_{1}!\cdots c_{n}!}
$$

Mixed ? Eulerian ?

Mixed ? Eulerian ?

One has the decomposition

$$
\begin{aligned}
& \operatorname{Perm}\left(\lambda_{1}, \cdots, \lambda_{n+1}\right)= \\
& \quad \mu_{1} \Delta_{1, n+1}+\mu_{2} \Delta_{2, n+1}+\cdots+\mu_{n} \Delta_{n, n+1}(+ \text { point })
\end{aligned}
$$

with $\Delta_{k, n}=\operatorname{Perm}\left(1^{k}, 0^{n+1-k}\right)$ the $k^{t h}$ hypersimplex.

Mixed ? Eulerian ?

One has the decomposition

$$
\begin{aligned}
& \operatorname{Perm}\left(\lambda_{1}, \cdots, \lambda_{n+1}\right)= \\
& \quad \mu_{1} \Delta_{1, n+1}+\mu_{2} \Delta_{2, n+1}+\cdots+\mu_{n} \Delta_{n, n+1}(+ \text { point })
\end{aligned}
$$

with $\Delta_{k, n}=\operatorname{Perm}\left(1^{k}, 0^{n+1-k}\right)$ the $k^{t h}$ hypersimplex.

- By taking volumes in this decomposition, it expresses $A_{\mathbf{c}}$ as n ! times the mixed volume of hypersimplices, with $\Delta_{k, n+1}$ occurring c_{k} times.
(Corollary: the $A_{\mathbf{c}}$ are positive integers.)

Mixed ? Eulerian ?

One has the decomposition

$$
\begin{aligned}
& \operatorname{Perm}\left(\lambda_{1}, \cdots, \lambda_{n+1}\right)= \\
& \quad \mu_{1} \Delta_{1, n+1}+\mu_{2} \Delta_{2, n+1}+\cdots+\mu_{n} \Delta_{n, n+1}(+ \text { point })
\end{aligned}
$$

with $\Delta_{k, n}=\operatorname{Perm}\left(1^{k}, 0^{n+1-k}\right)$ the $k^{t h}$ hypersimplex.

- By taking volumes in this decomposition, it expresses A_{c} as n ! times the mixed volume of hypersimplices, with $\Delta_{k, n+1}$ occurring c_{k} times.
(Corollary: the $A_{\mathbf{c}}$ are positive integers.)
- One has $n!V\left(\Delta_{k, n+1}\right)=A_{n}^{k-1}$ (known already to Laplace). A_{n}^{k-1} is an Eulerian number: it counts permutations of S_{n} with $k-1$ descents.
It follows that $A_{\ldots, 0, n, 0 \ldots}=A_{n}^{k-1}$
$k^{\text {th }}$ position

Remixed Eulerian numbers

Remixed Eulerian numbers

Fix n. For any $\mathbf{c} \in W_{n}$, define $L_{i}(\mathbf{c}), R_{i}(\mathbf{c}) \in W_{n}$

$$
\left\{\begin{array}{l}
L_{i}(\mathbf{c}):=\left(\ldots, c_{i-1}+1, c_{i}-1, c_{i+1}, \ldots\right) \\
R_{i}(\mathbf{c}):=\left(\ldots, c_{i-1}, c_{i}-1, c_{i+1}+1, \ldots\right)
\end{array} \quad\left(c_{i} \geq 1\right)\right.
$$

Remixed Eulerian numbers

Fix n. For any $\mathbf{c} \in W_{n}$, define $L_{i}(\mathbf{c}), R_{i}(\mathbf{c}) \in W_{n}$

$$
\left\{\begin{array}{l}
L_{i}(\mathbf{c}):=\left(\ldots, c_{i-1}+1, c_{i}-1, c_{i+1}, \ldots\right) \\
R_{i}(\mathbf{c}):=\left(\ldots, c_{i-1}, c_{i}-1, c_{i+1}+1, \ldots\right)
\end{array} \quad\left(c_{i} \geq 1\right)\right.
$$

Definition-Theorem [N.-Tewari '21] There exists a unique family $A_{\mathbf{c}}(q)$ with $\mathbf{c} \in W_{n}$ that satisfies

$$
(q+1) A_{\mathbf{c}}(q)=q A_{L_{i}(\mathbf{c})}(q)+A_{R_{i}(\mathbf{c})}(q) \quad \forall \mathbf{c}, i \text { with } c_{i} \geq 2
$$

with the normalization $A_{1, \ldots, 1}(q)=[n]_{q}$!.
$A_{\mathbf{c}}(q)$ are the remixed Eulerian numbers.

Remixed Eulerian numbers

Fix n. For any $\mathbf{c} \in W_{n}$, define $L_{i}(\mathbf{c}), R_{i}(\mathbf{c}) \in W_{n}$

$$
\left\{\begin{array}{l}
L_{i}(\mathbf{c}):=\left(\ldots, c_{i-1}+1, c_{i}-1, c_{i+1}, \ldots\right) \\
R_{i}(\mathbf{c}):=\left(\ldots, c_{i-1}, c_{i}-1, c_{i+1}+1, \ldots\right)
\end{array} \quad \quad\left(c_{i} \geq 1\right)\right.
$$

Definition-Theorem [N.-Tewari '21] There exists a unique family $A_{\mathbf{c}}(q)$ with $\mathbf{c} \in W_{n}$ that satisfies

$$
(q+1) A_{\mathbf{c}}(q)=q A_{L_{i}(\mathbf{c})}(q)+A_{R_{i}(\mathbf{c})}(q) \quad \forall \mathbf{c}, i \text { with } c_{i} \geq 2
$$

with the normalization $A_{1, \ldots, 1}(q)=[n]_{q}$!.
$A_{\mathbf{c}}(q)$ are the remixed Eulerian numbers.
One must show that this system of linear equations has indeed a unique solution (necessarily in $\mathbb{Q}(q)$).

$A_{\mathbf{c}}(q)$ for $n=3$

$$
A_{111}(q)=[3]_{q}!=1+2 q+2 q^{2}+q^{3}
$$

$$
\begin{array}{ll}
A_{210}(q)=1+q & A_{120}(q)=1+2 q+q^{2} \\
A_{021}(q)=q+2 q^{2}+q^{3} & A_{012}(q)=q^{2}+q^{3}
\end{array}
$$

$$
\begin{aligned}
& A_{300}(q)=1 \\
& A_{030}(q)=2 q+2 q^{2} \\
& A_{003}(q)=q^{3}
\end{aligned}
$$

$$
\begin{aligned}
& A_{102}(q)=q+q^{2}+q^{3} \\
& A_{201}(q)=1+q+q^{2}
\end{aligned}
$$

(The sum in each group is $[3]_{q}!$; we will explain that later.)

First properties

Recall the definition

$$
\begin{aligned}
& (q+1) A_{\mathbf{c}}(q)=q A_{L_{i}(\mathbf{c})}(q)+A_{R_{i}(\mathbf{c})}(q) \quad \forall \mathbf{c}, i \text { with } c_{i} \geq 2 \\
& \text { with } A_{1, \ldots, 1}(q)=[n]_{q}!.
\end{aligned}
$$

First properties

Recall the definition

$$
\begin{aligned}
& (q+1) A_{\mathbf{c}}(q)=q A_{L_{i}(\mathbf{c})}(q)+A_{R_{i}(\mathbf{c})}(q) \quad \forall \mathbf{c}, i \text { with } c_{i} \geq 2 \\
& \text { with } A_{1, \ldots, 1}(q)=[n]_{q}!.
\end{aligned}
$$

There holds $A_{\mathbf{c}}(1)=A_{\mathbf{c}}$ in general.
The proof goes by finding an alternative, direct definition of $A_{\mathbf{c}}(q)$ that uses " q-divided symmetrization", which is a q-deformation of a linear form defined by Postnikov to give a formula for $V\left(\lambda_{1}, \cdots, \lambda_{n+1}\right)$.

Remark: From that alternative definition follows moreover the existence of $A_{\mathbf{c}}(q)$, and the fact that $A_{\mathbf{c}}(q) \in \mathbb{Z}[q]$.

Probabilistic model for $A_{\mathbf{c}}(q)(q \geq 0)$

States: Sequences $\mathbf{c}=\left(c_{i}\right)_{i \in \mathbb{Z}}$ with sum $\sum_{i} c_{i}=n$, seen as particle configurations

$$
\mathbf{c}=(\ldots, 0,3,0,1,1,2,0,2,0, \ldots)
$$

Probabilistic model for $A_{\mathbf{c}}(q)(q \geq 0)$

States: Sequences $\mathbf{c}=\left(c_{i}\right)_{i \in \mathbb{Z}}$ with sum $\sum_{i} c_{i}=n$, seen as particle configurations

$$
\mathbf{c}=(\ldots, 0,3,0,1,1,2,0,2,0, \ldots)
$$

Transitions: If $c_{i} \geq 2$, particle at site i can jump:

- left with probability $\frac{q}{1+q} \quad\left(\right.$ reaches $L_{i}(\mathbf{c})$)
- right with probability $\frac{1}{1+q}$ (reaches $R_{i}(\mathbf{c})$)

Probabilistic model $(q \geq 0)$

Model: Start with an initial configuration c. Then "let particles jump" until a stable configuration is reached. (stable $=$ at most one particle per site, identified with $I \subset \mathbb{Z},|I|<+\infty$)

Probabilistic model $(q \geq 0)$

Model: Start with an initial configuration c. Then "let particles jump" until a stable configuration is reached. (stable $=$ at most one particle per site, identified with $I \subset \mathbb{Z},|I|<+\infty$)
Facts: |(termination) The process stabilizes almost surely.
(abelianness) The order in which particles jump does not change the probability of the final configuration.

Probabilistic model $(q \geq 0)$

Model: Start with an initial configuration c. Then "let particles jump" until a stable configuration is reached. (stable $=$ at most one particle per site, identified with $I \subset \mathbb{Z},|I|<+\infty$)
Facts: |(termination) The process stabilizes almost surely. (abelianness) The order in which particles jump does not change the probability of the final configuration.

Definition Let $P(\mathbf{c} \rightarrow I)$ be the probability that, starting from \mathbf{c}, the final stable configuration is I.

Theorem (N.-Tewari '21)
If $\mathbf{c} \in W_{n}, P(\mathbf{c} \rightarrow\{1, \ldots, n\})=\frac{A_{\mathbf{c}}(q)}{[n]_{q}!}$
Clearly $P(\mathbf{c} \rightarrow\{1, \ldots, n\})=0$ if $\mathbf{c} \notin W_{n}$.

Illustration $\mathbf{c}=(3,0,0)$

Illustration $\mathbf{c}=(3,0,0)$

Illustration $\mathbf{c}=(3,0,0)$

Illustration $\mathbf{c}=(3,0,0)$

Proof

Theorem (N.-Tewari '21) $P(\mathbf{c} \rightarrow\{1, \ldots, n\})=\frac{A_{\mathbf{c}}(q)}{[n]_{q}!}$
Proof - If $c_{i} \geq 2$, then (abelian+transition)

$$
P(\mathbf{c} \rightarrow I)=\frac{q}{1+q} P\left(L_{i}(\mathbf{c}) \rightarrow I\right)+\frac{1}{1+q} P\left(R_{i}(\mathbf{c}) \rightarrow I\right)
$$

- If \mathbf{c} stable, $P(c \rightarrow I)=1$ if $\mathbf{c}=I, 0$ if $\mathbf{c} \neq I$.
$\longrightarrow \quad[n]_{q}!P(\mathbf{c} \mapsto\{1, \ldots, n\})$ satisfies the conditions of the definition of $A_{\mathbf{c}}(q)$.

Proof

Theorem (N.-Tewari '21) $P(\mathbf{c} \rightarrow\{1, \ldots, n\})=\frac{A_{\mathbf{c}}(q)}{[n]_{q}!}$
Proof - If $c_{i} \geq 2$, then (abelian+transition)

$$
P(\mathbf{c} \rightarrow I)=\frac{q}{1+q} P\left(L_{i}(\mathbf{c}) \rightarrow I\right)+\frac{1}{1+q} P\left(R_{i}(\mathbf{c}) \rightarrow I\right)
$$

- If \mathbf{c} stable, $P(c \rightarrow I)=1$ if $\mathbf{c}=I, 0$ if $\mathbf{c} \neq I$.
$\longrightarrow \quad[n]_{q}!P(\mathbf{c} \mapsto\{1, \ldots, n\})$ satisfies the conditions of the definition of $A_{\mathbf{c}}(q)$.

This is an example of Internal Diffusion Limited Aggregation process, introduced in (Diaconis-Fulton '93).

Special cases

Let $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in W_{n}$.

- $\mathbf{c}=(\ldots, 0, n, 0, \ldots), n$ in k th position.
$A_{\mathbf{c}}(q)=$ polynomial enumerating permutations in S_{n} with $k-1$ descents according to their inversion number.

Refined eulerian numbers

Special cases

Let $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in W_{n}$.

- $\mathbf{c}=(\ldots, 0, n, 0, \ldots), n$ in k th position.
$A_{\mathbf{c}}(q)=$ polynomial enumerating permutations in S_{n} with $k-1$ descents according to their inversion number.

Refined eulerian numbers

- $\mathbf{c}=(n-k, 0,0, \ldots, 0, k)$

$$
A_{\mathbf{c}}(q)=q^{\left(\frac{k}{2}\right)} \frac{[n]_{q}!}{[k] q![n-k]_{q}!} \quad \begin{aligned}
& q \text {-binomials aka } \\
& \text { Gaussian coefficients. } .
\end{aligned}
$$

Special cases

Let $\mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \in W_{n}$.

- $\mathbf{c}=(\ldots, 0, n, 0, \ldots), n$ in k th position.
$A_{\mathbf{c}}(q)=$ polynomial enumerating permutations in S_{n} with $k-1$ descents according to their inversion number.

Refined eulerian numbers

- $\mathbf{c}=(n-k, 0,0, \ldots, 0, k)$

$$
A_{\mathbf{c}}(q)=q^{\left(\frac{k}{2}\right)} \frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!} \quad \begin{aligned}
& q \text {-binomials aka } \\
& \text { Gaussian coefficients. } .
\end{aligned}
$$

- $\mathbf{c}=\left(c_{1}, \cdots, c_{n}\right)$ with $\sum_{i \leq k} c_{i} \geq k$ for all k.
$A_{\mathbf{c}}(q)=$ an explicit product of q-integers.
Exercise

The interval case

We assume $\mathbf{c}=(\underbrace{c_{1}, c_{2}, \ldots, c_{k}}_{>0}, 0^{n-k})$.

The interval case

We assume $\mathbf{c}=(\underbrace{c_{1}, c_{2}, \ldots, c_{k}}_{>0}, 0^{n-k})$.

Theorem (N.-Tewari '20+)

$$
\sum_{j \geq 0}[j+1]_{q}^{c_{1}} \cdots[j+k]_{q}^{c_{k}} t^{j}=\frac{\sum_{0 \leq i \leq n-k} A_{0^{i}, c_{1}, \ldots, c_{k}, 0^{n-k-i}}(q) t^{i}}{(1-t)(1-t q) \cdots\left(1-t q^{n}\right)}
$$

The interval case

We assume $\mathbf{c}=(\underbrace{c_{1}, c_{2}, \ldots, c_{k}}_{>0}, 0^{n-k})$.

Theorem (N.-Tewari '20+)

$$
\sum_{j \geq 0}[j+1]_{q}^{c_{1}} \cdots[j+k]_{q}^{c_{k}} t^{j}=\frac{\sum_{0 \leq i \leq n-k} A_{0^{i}, c_{1}, \ldots, c_{k}, 0^{n-k-i}}(q) t^{i}}{(1-t)(1-t q) \cdots\left(1-t q^{n}\right)}
$$

$q=1$: (Berget-Spink-Tseng '20)
$k=1$: special case of identity of MacMahon-Carlitz
In fact by comparison with work of (Garsia-Remmel '84), one recovers precisely the family of hit polynomials coming from rook theory.

A cyclic rule

- Write $\mathbf{c} \sim \mathbf{c}^{\prime}$ if $(\mathbf{c}, 0)$ is a cyclic shift of $\left(\mathbf{c}^{\prime}, 0\right)$.

$$
(3,0,1,1,0) \sim(0,3,0,1,1) \sim(1,1,0,0,3)
$$

(There are Catalan ${ }_{n}$ equivalence classes)

A cyclic rule

- Write $\mathbf{c} \sim \mathbf{c}^{\prime}$ if $(\mathbf{c}, 0)$ is a cyclic shift of $\left(\mathbf{c}^{\prime}, 0\right)$.

$$
(3,0,1,1,0) \sim(0,3,0,1,1) \sim(1,1,0,0,3)
$$

(There are Catalan ${ }_{n}$ equivalence classes)
Proposition For any $C \in W_{n} / \sim, \sum_{\mathbf{c} \in C} A_{\mathbf{c}}(q)=[n]_{q}$!
Proof sketch: Consider the previous process on a discrete ring $\mathbb{Z} /(n+1) \mathbb{Z}=\{0,1, \ldots, n\}$.

A cyclic rule

- Write $\mathbf{c} \sim \mathbf{c}^{\prime}$ if $(\mathbf{c}, 0)$ is a cyclic shift of $\left(\mathbf{c}^{\prime}, 0\right)$.

$$
(3,0,1,1,0) \sim(0,3,0,1,1) \sim(1,1,0,0,3)
$$

(There are Catalan ${ }_{n}$ equivalence classes)
Proposition For any $C \in W_{n} / \sim, \sum_{\mathbf{c} \in C} A_{\mathbf{c}}(q)=[n]_{q}$!
Proof sketch: Consider the previous process on a discrete ring $\mathbb{Z} /(n+1) \mathbb{Z}=\{0,1, \ldots, n\}$.

For $q=1$, conjectured by Stanley, proved by Postnikov using the Coxeter arrangement of affine type \tilde{A}_{n}.

Polynomial properties

$$
\begin{aligned}
\mathbf{c}= & (0,3,0,0,0,1,3) \in W_{7} \\
& A_{\mathbf{c}}(q)=2 q^{20}+6 q^{19}+11 q^{18}+18 q^{17}+27 q^{16}+35 q^{15}+40 q^{14}+ \\
& 42 q^{13}+40 q^{12}+35 q^{11}+27 q^{10}+18 q^{9}+11 q^{8}+6 q^{7}+2 q^{6}
\end{aligned}
$$

Polynomial properties

$$
\begin{aligned}
\mathbf{c}= & (0,3,0,0,0,1,3) \in W_{7} \\
& A_{\mathbf{c}}(q)=2 q^{20}+6 q^{19}+11 q^{18}+18 q^{17}+27 q^{16}+35 q^{15}+40 q^{14}+ \\
& 42 q^{13}+40 q^{12}+35 q^{11}+27 q^{10}+18 q^{9}+11 q^{8}+6 q^{7}+2 q^{6}
\end{aligned}
$$

Proposition For any $\mathbf{c} \in W_{n}, A_{\mathbf{c}}(q)$ has coefficients in \mathbb{N}.
One can prove this by finding a recurrence relation from which it follows immediately.

Polynomial properties

$$
\begin{aligned}
\mathbf{c}= & (0,3,0,0,0,1,3) \in W_{7} \\
& A_{\mathbf{c}}(q)=2 q^{20}+6 q^{19}+11 q^{18}+18 q^{17}+27 q^{16}+35 q^{15}+40 q^{14}+ \\
& 42 q^{13}+40 q^{12}+35 q^{11}+27 q^{10}+18 q^{9}+11 q^{8}+6 q^{7}+2 q^{6}
\end{aligned}
$$

Proposition For any $\mathbf{c} \in W_{n}, A_{\mathbf{c}}(q)$ has coefficients in \mathbb{N}. One can prove this by finding a recurrence relation from which it follows immediately.

Proposition For any $\mathbf{c} \in W_{n}, A_{\mathbf{c}}(q)$ is palindromic.
This means $A_{c}(q)=q^{v_{\mathbf{c}}+d_{\mathbf{c}}} A_{c}\left(q^{-1}\right)$, where $v_{\mathbf{c}}$ is the valuation of $A_{\mathbf{c}}(q)$ and $d_{\mathbf{c}}$ its degree.

In the example, $v_{\mathbf{c}}=6, d_{\mathbf{c}}=20$.

Polynomial properties

For $\mathbf{c} \in W_{n}$, define $h(\mathbf{c})=\left(h_{1}, h_{2}, \ldots, h_{n}\right)$

$$
\text { by } h_{i}:=\left(c_{1}+c_{2}+\cdots+c_{i}\right)-i . \quad \text { for all } i
$$

Proposition For any $\mathbf{c} \in W_{n}$, there holds

$$
v_{\mathbf{c}}=\sum_{i, h_{i}<0}\left|h_{i}\right| \quad \text { and } \quad d_{\mathbf{c}}=\binom{n}{2}-\sum_{i, h_{i}>0} h_{i}
$$

Polynomial properties

For $\mathbf{c} \in W_{n}$, define $h(\mathbf{c})=\left(h_{1}, h_{2}, \ldots, h_{n}\right)$

$$
\text { by } h_{i}:=\left(c_{1}+c_{2}+\cdots+c_{i}\right)-i \text {. for all } i \text {. }
$$

Proposition For any $\mathbf{c} \in W_{n}$, there holds

$$
v_{\mathbf{c}}=\sum_{i, h_{i}<0}\left|h_{i}\right| \quad \text { and } \quad d_{\mathbf{c}}=\binom{n}{2}-\sum_{i, h_{i}>0} h_{i}
$$

$$
\begin{aligned}
\mathbf{c} & =(0,3,0,0,0,1,3) \\
h(\mathbf{c}) & =(-1,1,0,-1,-2,-2,0)
\end{aligned}
$$

successive heights

Combinatorial interpretation

$$
\begin{gathered}
\text { Given } \mathbf{c}=\left(c_{1}, \ldots, c_{n}\right) \text { define } l_{1}:=1, l_{2}, \ldots, l_{n+1} \text { by } \\
l_{i+1}-l_{i}=c_{i}+1 .
\end{gathered}
$$

Consider complete, plane binary trees with $n+1$ leaves (thus n internal nodes) labeled with $\{1,2, \ldots, 2 n+1\}$:
(1) Leaves are labeled l_{1}, \ldots, l_{n+1} from left to right.
(2) Each internal node has label larger than its left child and smaller than its right child.

Combinatorial interpretation

Theorem (Liu '16 (q=1), N.-Tewari ' $20+$)
$A_{\mathbf{c}}(1)$ is the number of pairs (T, ω) where :
(1) $T \in \mathcal{T}(\mathbf{c})$
(2) ω is a decreasing labeling on the nodes of \mathbf{c}.

Moreover, $A_{\mathbf{c}}(q)$ is obtained by counting each such (T, ω) with weight $q^{|\operatorname{Inv}(\omega)|}$.
ω viewed as permutation via projection.

FIN

How we got into this

A one-page summary

Let \mathcal{P}_{n} be the permutahedral variety over \mathbb{C}. It is a subvariety, of dimension n, inside the larger flag variety Flags $\left(\mathbb{C}^{\mathrm{n}+1}\right)$.
To get some information on it, we intersect it with some special subvarieties, the Schubert varieties X_{w} indexed by $w \in S_{n+1}$ with n inversions.

The intersection consists of a bunch of points: our leading question is how many?

$$
\longrightarrow a_{w}:=\#\left(\mathcal{P}_{n} \cap X_{w}\right) \in \mathbb{N}
$$

A one-page summary

Let \mathcal{P}_{n} be the permutahedral variety over \mathbb{C}. It is a subvariety, of dimension n, inside the larger flag variety Flags $\left(\mathbb{C}^{\mathrm{n}+1}\right)$.
To get some information on it, we intersect it with some special subvarieties, the Schubert varieties X_{w} indexed by $w \in S_{n+1}$ with n inversions.

The intersection consists of a bunch of points: our leading question is how many?

$$
\longrightarrow a_{w}:=\#\left(\mathcal{P}_{n} \cap X_{w}\right) \in \mathbb{N}
$$

Using a rather long and winding road, these can be decomposed as follows:
(N.-Tewari '20) $a_{w}=\frac{1}{n!} \sum_{\mathbf{i} \in \operatorname{Red}(w)} A_{c(\mathbf{i})}(1)$.

From 1 to q

$$
a_{w}=\frac{1}{n!} \sum_{\mathbf{i} \in \operatorname{Red}(w)} A_{c(\mathbf{i})}(1)
$$

It follows immediately $a_{w}>0$ and $a_{w}=a_{w^{-1}}$ from this formula. (No proof known yet using algebraic geometry)

From 1 to q

$$
a_{w}=\frac{1}{n!} \sum_{\mathbf{i} \in \operatorname{Red}(w)} A_{c(\mathbf{i})}(1)
$$

It follows immediately $a_{w}>0$ and $a_{w}=a_{w^{-1}}$ from this formula. (No proof known yet using algebraic geometry)

Why the q-deformation? Reasonably motivated a posteriori by probabilistic and combinatorial reasons...

From 1 to q

$$
a_{w}=\frac{1}{n!} \sum_{\mathbf{i} \in \operatorname{Red}(w)} A_{c(\mathbf{i})}(1)
$$

It follows immediately $a_{w}>0$ and $a_{w}=a_{w^{-1}}$ from this formula. (No proof known yet using algebraic geometry)

Why the q-deformation? Reasonably motivated a posteriori by probabilistic and combinatorial reasons...
... there's more:

$$
a_{w}(q):=\frac{1}{[n]_{q}!} \sum_{\mathbf{i} \in \operatorname{Red}(w)} A_{c(\mathbf{i})}(q)
$$

turns out to solve an analogous intersection problem in characteristic $p>0$ when $q=p^{f}$.
(\mathcal{P}_{n} replaced with a Deligne-Lusztig variety).

