Symmetric decompositions, triangulations and real-rootedness

Eleni Tzanaki

Department of Mathematics \& Applied Mathematics
University of Crete, Greece
joint work with Christos Athanasiadis

SLC 86, September 5-8 2021, Bad Boll

- Polynomials with nonnegative coefficients and only real roots arise frequently in combinatorics
- real rootedness of a polynomial $p(x)=c_{n} x^{n}+\cdots+c_{1} x+c_{0}$ with $c_{i} \geq 0$ implies:
men unimodality: $c_{0} \leq c_{1} \leq \cdots \leq c_{k} \geq c_{k+1} \geq \cdots \geq c_{n}$
nuld log-concavity: $c_{i-1} c_{i+1} \leq c_{i}^{2}$
"Int γ-positivity: if $p(x)$ is symmetric then $p(x)=\sum_{k=0}^{\left\lfloor\frac{d}{2}\right\rfloor} \gamma_{k} x^{k}(1+x)^{d-2 k}$, with $\gamma_{i} \geq 0$
- Find nonnegative, real rooted polynomials in geometric combinatorics

Brenti, Brändén, Borcea-Brändén, Jochemko, Mohammadi-Welker, Hlavacek-Solus,....
i.e. if P is a simplicial polytope, the h-polynomial $h(\operatorname{sd}(P), x)$ of the barycentric subdivision of P is nonnegative and real rooted

- Every $p(x) \in \mathbb{R}[x]$ with $\operatorname{deg}(p(x)) \leq d$ can be uniquely decomposed as

$$
p(x)=a(x)+x b(x)
$$

|ult $\operatorname{deg}(a(x)) \leq d, a(x)=x^{d} a\left(\frac{1}{x}\right)$ and $a(x)=\frac{p(x)-x^{d+1} p(1 / x)}{1-x}$
|ull $\operatorname{deg}(b(x)) \leq d-1, \quad b(x)=x^{d-1} b\left(\frac{1}{x}\right)$ and $b(x)=\frac{x^{d} p(1 / x)-p(x)}{1-x}$
nint the decomposition depends on $p(x)$ and d
example: if $p(x)=2 x^{3}-x^{2}+x-8$ then
for $d=3: \quad p(x)=\left(-8 x^{3}-9 x^{2}-9 x-8\right)+x\left(10 x^{2}+8 x+10\right)$
for $d=4: \quad p(x)=\left(-8 x^{4}-7 x^{3}-10 x^{2}-7 x-8\right)+x\left(8 x^{3}+9 x^{2}+9 x+8\right)$

- We say that $p(x)=a(x)+x b(x)$ has $\left.\begin{array}{l}\begin{array}{l}\text { nonnegative } \\ \text { unimodal } \\ \text { real rooted } \\ \text { interlacing }\end{array}\end{array}\right\}$ symmetric decomposition
if both $a(x)$ and $b(x)$ have the corresponding property
- Find polynomials in geometric combinatorics which have nonnegative, real rooted symmetric decompositions
i.e. if Δ is a triangulation of a ball, then

$$
h(\Delta, x)=h(\partial \Delta, x)+x \frac{(h(\Delta, x)-h(\partial \Delta, x))}{x}
$$

is a symmetric decomposition

Under what conditions this symmetric decomposition has nice properties?

- Let $f(x), g(x) \in \mathbb{R}[x]$ be real rooted polynomials

Let $a_{1} \geq a_{2} \geq \cdots \geq a_{n}$ be the roots of f
Let $b_{1} \geq b_{2} \geq \cdots \geq b_{m}$ be the roots of $g \quad(m=n$ or $n+1)$

- the polynomial f interlaces $g(f \prec g)$ if

$$
b_{n+1} \leq a_{n} \leq b_{n} \leq \cdots \leq a_{1} \leq b_{1}
$$

- A sequence $\left(p_{i}(x)\right)_{i=0}^{n}$ of real rooted polynomials in an interlacing sequence if

$$
p_{i}(x) \prec p_{j}(x) \text { for all } 1 \leq i \leq j \leq n
$$

[Wagner '92] If $\left(f_{i}\right)_{i=1}^{n}$ is an interlacing sequence and $\lambda_{i} \geq 0$, then

$$
\lambda_{1} f_{1}+\lambda_{2} f_{2}+\cdots+\lambda_{n} f_{n} \quad \text { is real rooted }
$$

[Brändén '15] If $\left(f_{i}\right)_{i=1}^{n}$ and $\left(g_{i}\right)_{i=1}^{n}$ are two interlacing sequences then

$$
f_{1} g_{n}+f_{2} g_{n-1}+\cdots+f_{n} g_{1} \text { is real rooted }
$$

[Savage,Visontai '15] If f, g be two polynomials with nonnegative coefficients.
Then $f \prec g$ iff $(\lambda x+\mu) f+g$ is real rooted for all $\lambda, \mu>0$

Starting point: face enumeration of simplicial complexes

- Let Δ be a simplicial complex with $\operatorname{dim}(\Delta)=n-1$
f-vector: $\quad f(\Delta)=\left(f_{-1}(\Delta), f_{0}(\Delta), \ldots, f_{n-1}(\Delta)\right)$ where $f_{i}(\Delta)=\#$ of i-dim faces of Δ

$$
f(\Delta, x)=\sum_{i=0}^{n} f_{i-1}(\Delta) x^{i}
$$

h-vector: $\quad h(\Delta)=\left(h_{0}(\Delta), h_{1}(\Delta), \ldots, h_{n}(\Delta)\right)$

$$
h(\Delta, x):=\sum_{i=0}^{n} h_{i}(\Delta) x^{i}=\sum_{i=0}^{n} f_{i-1}(\Delta) x^{i}(1-x)^{n-i}
$$

- They are related by $f(\Delta, x)=(1+x) h\left(\Delta, \frac{x}{1+x}\right)$

Question: Let Δ be a simplicial complex. Find triangulations Δ^{\prime} of Δ having nonnegative, real rooted $h\left(\Delta^{\prime}, x\right)$?

- [Brenti-Welker] Barycentric subdivisions
- [Jochemko] r-fold edgewise subdivisions
- [Anwar-Nazir,Mohammadi-Welker] Interval subdivisions (2-colored barycentric subdivisions)
- [Athanasiadis] r-colored barycentric subdivisions (for $r=1$ they reduce to barycentric subdivisions)

Let Δ be a "nice" simplicial complex (i.e., sphere, ball, Cohen-Macualay,...)

Find broad classes of triangulations Δ^{\prime} of Δ which have the property that $h\left(\Delta^{\prime}, x\right)$ is nonnegative and real rooted
[Athanasiadis '20] Uniform triangulations which have the strong interlacing property \checkmark

Find broad classes of triangulations Δ^{\prime} of Δ which have the property that $h\left(\Delta^{\prime}, x\right)$ nonnegative real rooted symmetric decomposition.
[Athanasiadis, T.'21] Again, uniform triangulations which have the strong interlacing property lead to an affirmative answer under certain conditions
nill we give conditions on $h(\Delta)$ under which the symmetric decomposition of $h\left(\Delta^{\prime}, x\right)$ is nonnegative and real rooted

Ime we give conditions on $h(\Delta)$ under which the above symmetric decomposition of $h\left(\Delta^{\prime}, x\right)$ is also interlacing

- Let Δ be a simplicial complex of $\operatorname{dim}(\Delta) \leq d$ and $\mathcal{F}=\left(f_{\mathcal{F}}(i, j)\right)_{-1 \leq i \leq j \leq d-1}$

A triangulation Δ^{\prime} of Δ is \mathcal{F}-uniform if, for all $0 \leq i \leq j \leq d$ each j-face of Δ contains the same number of i-faces of Δ^{\prime}

$$
f_{\mathcal{F}(i+1, j+1)}
$$

- We call $\mathcal{F}=\left(f_{\mathcal{F}}(i, j)\right)_{0 \leq i \leq j \leq d}$ an f-triangle of size d
- $\mathcal{F}=\left(f_{\mathcal{F}}(i, j)\right)$ is feasible if every simplex $\sigma_{j}, 1 \leq j \leq d$ has an \mathcal{F}-uniform triangulation

1	7	12	6
1	3	2	
1	1		
1			

1	37	90	54
1	7	6	
1	1		
1			

Uniform trangulations and feasible uniform triangulations

Theorem [Athanasiadis '20] If \mathcal{F} is a feasible f-triangle and Δ^{\prime} an \mathcal{F}-uniform triangulation of Δ, then

$$
h\left(\Delta^{\prime}, x\right)=\sum_{k=0}^{n} h_{k}(\Delta) p_{\mathcal{F}, n, k}(x)
$$

where $p_{\mathcal{F}, n, k}(x)$ are polynomials with nonnegative coefficients, depending only on \mathcal{F}.

- $\quad h_{\mathcal{F}}\left(\sigma_{n}, x\right)=p_{\mathcal{F}, n, 0}(x)=\sum_{k=0}^{n} p_{\mathcal{F}, n-1, k}(x)$
- $x^{n} p_{\mathcal{F}, n, k}\left(\frac{1}{x}\right)=p_{\mathcal{F}, n, n-k}(x)$
- $\quad p_{\mathcal{F}, n, k}(x)=p_{\mathcal{F}, n, k-1}(x)+(x-1) p_{\mathcal{F}, n-1, k-1}(x)$
- $p_{\mathcal{F}, n, k}$ is the h-polynomial of the relative simplicial complex obtained from the \mathcal{F}-triangulation of σ_{n} by removing all faces on k facets of $\partial \sigma_{n}$

Theorem [Brenti-Welker'08] For barycentric subdivisions we have $p_{\mathcal{F}, n, k}(x)=\sum_{j=0}^{n} p_{\mathcal{F}}(n, k, j) x^{j}$, where

$$
p_{\mathcal{F}}(n, k, j)=\# \text { permutations of }\{1, \ldots, n+1\} \text { with } k \text { descents and } \sigma(1)=j+1
$$

$$
\left.\begin{array}{l}
p_{3,0}(x)=x^{2}+4 x+1 \\
p_{3,1}(x)=2 x^{2}+4 x \\
p_{3,2}(x)=4 x^{2}+2 x \\
p_{3,3}(x)=x^{3}+4 x^{2}+x
\end{array}\right\}
$$

$$
\begin{aligned}
& h(\Delta)=(1,3,3,1) \\
& \begin{aligned}
h(s d(\Delta)) & =1 \cdot p_{3,0}(x)+3 \cdot p_{3,1}(x)+3 \cdot p_{3,2}(x)+1 \cdot p_{3,3}(x) \\
& =x^{3}+23 x^{2}+23 x+1
\end{aligned} \\
& \begin{aligned}
h(\Delta)= & (1,3,2,0) \\
h(s d(\Delta)) & =1 \cdot p_{3,0}(x)+3 \cdot p_{3,1}(x)+2 \cdot p_{3,2}(x)+0 \cdot p_{3,3}(x) \\
& =15 x^{2}+20 x+1
\end{aligned}
\end{aligned}
$$

- $\quad h_{\mathcal{F}}\left(\sigma_{n}, x\right)=p_{\mathcal{F}, n, 0}(x)=\sum_{k=0}^{n} p_{\mathcal{F}, n-1, k}(x)$
- $x^{n} p_{\mathcal{F}, n, k}\left(\frac{1}{x}\right)=p_{\mathcal{F}, n, n-k}(x)$
- $\quad p_{\mathcal{F}, n, k}(x)=p_{\mathcal{F}, n, k-1}(x)+(x-1) p_{\mathcal{F}, n-1, k-1}(x)$
- $p_{\mathcal{F}, n, n+1}(x):=h_{\mathcal{F}}\left(\sigma_{n+1}\right)-h_{\mathcal{F}}\left(\partial \sigma_{n+1}\right)$

$p_{2,0}(x)=3 x+1$
$p_{3,0}(x)=3 x^{2}+12 x+1$
$p_{2,1}(x)=4 x$
$p_{3,1}(x)=6 x^{2}+10 x$
$p_{3,2}(x)=10 x^{2}+6 x$
$p_{3,3}(x)=x^{3}+12 x^{2}+3 x$
$p_{3,4}(x)=0$
$p_{2,2}(x)=x^{2}+3 x$
$p_{2,3}(x)=2 x^{2}+2 x$

$p_{4,0}(x)=x^{3}+31 x^{2}+31 x+1$
- Let $\mathcal{F}=\left(f_{\mathcal{F}}(i, j)\right)_{0 \leq i \leq j \leq n}$ be a feasible f-triangle.

The triangle \mathcal{F} has the strong interlacing property with respect to n if,
(1) $h_{\mathcal{F}}\left(\sigma_{m}, x\right)$ is real rooted for all $m=2, \ldots, n-1$
(2) $h_{\mathcal{F}}\left(\sigma_{m}, x\right)-h_{\mathcal{F}}\left(\partial \sigma_{m}, x\right)$ is identically zero or
nta is real rooted of degree $m-1$ with nonnegative coefs interlaced by $h_{\mathcal{F}}\left(\sigma_{m-1}, x\right)$, for all $m=2, \ldots, n-1$

- useful property: If \mathcal{F} has the strong interlacing property, then $\left(p_{\mathcal{F}, n, 0}(x), p_{\mathcal{F}, n, 1}(x), \ldots, p_{\mathcal{F}, n, n}(x)\right)$ is an interlacing sequence

Theorem [Athanasiadis'20]
If $h(\Delta)=\left(h_{0}(\Delta), \ldots, h_{n}(\Delta)\right)$ is nonnegative, then $h\left(\Delta^{\prime}, x\right)=\sum_{k=0}^{n} h_{k}(\Delta) p_{\mathcal{F}, n, k}(x)$ is real rooted

Theorem [Athanasiadis'20]
Let $\mathcal{F}=\left(f_{\mathcal{F}}(i, j)\right)$ be a feasible triangle having the strong interlacing property w.r.t. n
Let $\mathcal{D}_{\mathcal{F}, n}: \mathbb{R}_{n}[x] \rightarrow \mathbb{R}_{n}[x]$ with $\mathcal{D}_{\mathcal{F}, n}\left(x^{k}\right)=p_{\mathcal{F}, n, k}(x)$
If $p(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n} \in \mathbb{R}_{n}[x]$ with $c_{i} \geq 0$ then $\mathcal{D}_{\mathcal{F}, n}(p(x))$ is nonnegative and real rooted

Theorem [Athanasiadis,T. '21]

Let $\mathcal{F}=\left(f_{\mathcal{F}}(i, j)\right)$ be a feasible triangle having the strong interlacing property w.r.t. n
Let $\mathcal{D}_{\mathcal{F}, n}: \mathbb{R}_{n}[x] \rightarrow \mathbb{R}_{n}[x]$ with $\mathcal{D}_{\mathcal{F}, n}\left(x^{k}\right)=p_{\mathcal{F}, n, k}(x)$
and $p(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n} \in \mathbb{R}_{n}[x]$ with $c_{i} \geq 0$ for all i
(1) If $c_{0}+c_{1}+\cdots+c_{i} \leq c_{n}+c_{n-1}+\cdots+c_{n-i}$ for all $0 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor$
then $\mathcal{D}_{\mathcal{F}, n}(p(x))$ has a nonnegative, real-rooted symmetric decomposition w.r.t. n
(2) If, in addition, $\quad c_{i} c_{n-i-1} \leq c_{i+1} c_{n-i}$ for all $0 \leq i \leq n-1$
then, the above decomposition is interlacing.

- Condition for $h\left(\Delta^{\prime}, x\right)$ having real rooted symmetric decomposition
(1) $h_{0}(\Delta)+h_{1}(\Delta)+\cdots+h_{i}(\Delta) \leq h_{n}(\Delta)+h_{n-1}(\Delta)+\cdots+h_{n-i}(\Delta)$ for $i=1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor$

Question: Find families of simplicial complexes having h-vector satisfying (1)
nult Doubly Cohen-Macaulay simplicial complexes [Stanley]

- Condition for $h\left(\Delta^{\prime}, x\right)$ having interlacing symmetric decomposition
(2) $\quad \frac{h_{0}(\Delta)}{h_{n}(\Delta)} \leq \frac{h_{1}(\Delta)}{h_{n-1}(\Delta)} \leq \cdots \leq \frac{h_{n-1}(\Delta)}{h_{1}(\Delta)} \leq \frac{h_{n}(\Delta)}{h_{0}(\Delta)}$

Question: Do all 2-Cohen-Macaulay simplicial compexes Δ satisfy (2)?

Theorem [Athanasiadis, T. '21]

Let $\mathcal{F}=\left(f_{\mathcal{F}}(i, j)\right)$ be a feasible triangle having the strong interlacing property w.r.t. $n+1$
Let Γ be an n-simplicial complex with nonnegative h-vector and Δ its $(n-1)$-skeleton

- $h_{\mathcal{F}}(\Delta, x)$ has a nonnegative, real rooted and interlacing symmetric decomposition w.r.t. n

Example: If Δ is the 1 -skeleton of the boundary of the cross-polytope:

$$
\begin{aligned}
h(\operatorname{sd}(\Delta)) & =7 x^{2}+16 x+1 \\
& =\left(x^{2}+10 x+1\right)+x(6 x+6) \begin{array}{l}
\text { real rooted and interlacing } \\
\text { symmetric decomposition }
\end{array}
\end{aligned}
$$

Proof: We use the fact that $h_{k}(\Delta)=h_{0}(\Gamma)+h_{1}(\Gamma)+\cdots+h_{k}(\Gamma)$

Theorem [Athanasiadis,T. '21]

Let $\mathcal{D}_{\mathcal{F}, n}: \mathbb{R}_{n}[x] \rightarrow \mathbb{R}_{n}[x]$ with $\mathcal{D}_{\mathcal{F}, n}\left(x^{k}\right)=p_{\mathcal{F}, n, k}(x)$
Let $\mathcal{F}=\left(f_{\mathcal{F}}(i, j)\right)$ be a feasible triangle having the strong interlacing property w.r.t. $n-1$
$p(x)=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1} \in \mathbb{R}_{n}[x]$ with $c_{i} \geq 0$ for all i
(1) If

$$
c_{0}+c_{1}+\cdots+c_{i} \geq c_{n-1}+\cdots+c_{n-i} \quad \text { for all } 1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor
$$

then $\mathcal{D}_{\mathcal{F}, n}(p(x))$ has a nonnegative, real-rooted symmetric decomposition w.r.t. $n-1$
(2) If, in addition, $\quad c_{i} c_{n-i-1} \geq c_{i+1} c_{n-i}$ for all $1 \leq i \leq n-1$
then, the above decomposition is interlacing
proof: apply Theorem(1) to $x^{n} p(1 / x)$

- Condition for $h\left(\Delta^{\prime}, x\right)$ having real rooted symmetric decomposition
(1) $h_{0}(\Delta)+h_{1}(\Delta)+\cdots+h_{i}(\Delta) \geq h_{n-1}(\Delta)+h_{n-2}(\Delta)+\cdots+h_{n-i}(\Delta)$ for $i=1, \ldots,\left\lfloor\frac{n}{2}\right\rfloor$

Question: Find families of simplicial complexes having h-vector satisfying (1)
mint every simplicial ($n-1$)-ball satisfies (1) [Stanley '93]

- Condition for $h\left(\Delta^{\prime}, x\right)$ having interlacing symmetric decomposition
(2) $\frac{h_{1}(\Delta)}{h_{n-1}(\Delta)} \geq \frac{h_{2}(\Delta)}{h_{n-2}(\Delta)} \geq \cdots \geq \frac{h_{n-2}(\Delta)}{h_{2}(\Delta)} \geq \frac{h_{n-1}(\Delta)}{h_{1}(\Delta)}$

Question: Find families of simplicial complexes having h-vector satisfying (1) and (2)

In Is there a class of triangulations of simplicial balls satisfying (2)?

Open problems

- Is it true that for any polytope P the h-polynomial $h(s d(P), x)$ is nonnegative and real rooted?
- Is it true that for any "nice" polytopal complex Δ the h-polynomial $h(\operatorname{sd}(\Delta), x)$ is nonnegative and real rooted?
- Is it true that for any "nice" polytopal complex Δ the h-polynomial $h(\operatorname{sd}(\Delta), x)$ has a nonnegative real rooted symmetric decomposition?

Thank you for your attention!

$$
\varepsilon v \chi \alpha \rho \iota \sigma \tau \omega^{\prime} \quad \gamma \iota \alpha \quad \tau \eta \nu \pi \rho \mathcal{O} \mathcal{O} \chi \dot{\eta} \sigma \alpha \varsigma
$$

Let $p(x)=c_{0}+c_{1} x+\cdots+c_{n} x^{n}$ with $c_{i} \geq 0$ for all i

- We find the symmetric decomposition of $\mathcal{D}_{\mathcal{F}, n}(p(x))$:

$$
\begin{aligned}
\mathcal{D}_{\mathcal{F}, n}(p(x))= & \sum_{k=0}^{n} c_{k} p_{\mathcal{F}, n, k}(x)=\sum_{k=0}^{n} c_{k}\left(x \sum_{i=0}^{k-1} p_{\mathcal{F}, n-1, i}(x)+\sum_{i=k}^{n} p_{\mathcal{F}, n-1, i}(x)\right) \\
= & \cdots= \\
= & \left(c_{0}+\cdots+c_{n}\right) p_{\mathcal{F}, n-1, n}(x)+\sum_{i=0}^{n-1}\left(c_{0}+\cdots+c_{i}+\left(c_{0}+\cdots+c_{n-1-i}\right) x\right) p_{\mathcal{F}, n-1, i} \\
& +x \sum_{i=0}^{n-1}\left(c_{n}+c_{n-1}+\cdots+c_{n-i}-c_{0}-c_{1}-\cdots-c_{i}\right) p_{\mathcal{F}, n-1, i}(x) \\
\mathcal{D}_{\mathcal{F}, n}(p(x))= & \sum_{k=0}^{n} c_{k} p_{\mathcal{F}, n, k}(x)=\sum_{k=0}^{n} c_{k}\left(x \sum_{i=0}^{k-1} p_{\mathcal{F}, n-1, i}(x)+\sum_{i=k}^{n} p_{\mathcal{F}, n-1, i}(x)\right)
\end{aligned}
$$

- $a(x)$ and $b(x)$ are real rooted
nint $b(x)$ is a nonnegative linear combination of the polynomials $p_{\mathcal{F}, n-1, i}(x)$
nint $a(x)$ is a sum of polynomials $\lambda_{i}(x) \cdot p_{\mathcal{F}, n-1, i}$ with $\operatorname{deg}\left(\lambda_{i}(x)\right) \leq 1$ and nonnegative coefficients
$p_{\mathcal{F}, n-1, i}(x), \quad i=0, \ldots, n$ is an interlacing sequence
- if $c_{i} c_{n-1-i} \leq c_{n+1} c_{n-i}$ then $a(x)$ and $b(x)$ are interlacing
${ }^{\text {nint }} p_{\mathcal{F}}(x):=\mathcal{D}_{\mathcal{F}, n}(p(x))$
In It suffices to show that $p_{\mathcal{F}}(x)$ is interlaced by $x^{n} p_{\mathcal{F}}\left(\frac{1}{x}\right)$
(IIN this is true if $\frac{c_{i}}{c_{i+1}} \leq \frac{c_{n-i}}{c_{n-i-1}}$

