Symmetric decompositions, triangulations and real-rootedness

Eleni Tzanaki

Department of Mathematics & Applied Mathematics University of Crete, Greece

joint work with Christos Athanasiadis

SLC 86, September 5-8 2021, Bad Boll

Introduction

- Polynomials with nonnegative coefficients and only real roots arise frequently in combinatorics
- real rootedness of a polynomial $p(x) = c_n x^n + \cdots + c_1 x + c_0$ with $c_i \ge 0$ implies:
 - unimodality: $c_0 \leq c_1 \leq \cdots \leq c_k \geq c_{k+1} \geq \cdots \geq c_n$
 - log-concavity: $c_{i-1}c_{i+1} \leq c_i^2$
 - $\Rightarrow \gamma \text{-positivity: if } p(x) \text{ is symmetric then } p(x) = \sum_{k=0}^{\lfloor \frac{d}{2} \rfloor} \gamma_k x^k (1+x)^{d-2k}, \text{ with } \gamma_i \ge 0$
- Find nonnegative, real rooted polynomials in geometric combinatorics

Brenti, Brändén, Borcea-Brändén, Jochemko, Mohammadi-Welker, Hlavacek-Solus,....

i.e. if P is a simplicial polytope, the h-polynomial h(sd(P), x) of the barycentric subdivision of P is nonnegative and real rooted

• Every $p(x) \in \mathbb{R}[x]$ with $\deg(p(x)) \leq d$ can be uniquely decomposed as

p(x) = a(x) + x b(x)

$$where \mathsf{deg}(a(x)) \leq d$$
, $a(x) = x^d a(rac{1}{x})$ and $a(x) = rac{p(x) - x^{d+1} p(1/x)}{1-x}$

⇒ deg(b(x)) ≤ d − 1,
$$b(x) = x^{d-1}b(\frac{1}{x})$$
 and $b(x) = \frac{x^d p(1/x) - p(x)}{1-x}$

• the decomposition depends on p(x) and d

example: if $p(x) = 2x^3 - x^2 + x - 8$ then

for
$$d = 3$$
: $p(x) = (-8x^3 - 9x^2 - 9x - 8) + x(10x^2 + 8x + 10)$

for d = 4: $p(x) = (-8x^4 - 7x^3 - 10x^2 - 7x - 8) + x(8x^3 + 9x^2 + 9x + 8)$

Symmetric Decompositions

• We say that p(x) = a(x) + x b(x) has

nonnegative unimodal real rooted interlacing

symmetric decomposition

if both a(x) and b(x) have the corresponding property

- Find polynomials in geometric combinatorics which have nonnegative, real rooted symmetric decompositions
- i.e. if Δ is a triangulation of a ball, then

$$h(\Delta, x) = h(\partial \Delta, x) + x \frac{(h(\Delta, x) - h(\partial \Delta, x))}{x}$$

is a symmetric decomposition

Under what conditions this symmetric decomposition has nice properties?

• Let $f(x), g(x) \in \mathbb{R}[x]$ be real rooted polynomials

Let $a_1 \ge a_2 \ge \cdots \ge a_n$ be the roots of fLet $b_1 \ge b_2 \ge \cdots \ge b_m$ be the roots of g (m = n or n + 1)

• the polynomial f interlaces g ($f \prec g$) if

 $b_{n+1} \leq a_n \leq b_n \leq \cdots \leq a_1 \leq b_1$

• A sequence $(p_i(x))_{i=0}^n$ of real rooted polynomials in an interlacing sequence if

 $p_i(x) \prec p_j(x)$ for all $1 \le i \le j \le n$

[Wagner '92] If $(f_i)_{i=1}^n$ is an interlacing sequence and $\lambda_i \ge 0$, then $\lambda_1 f_1 + \lambda_2 f_2 + \cdots + \lambda_n f_n$ is real rooted

[Brändén '15] If $(f_i)_{i=1}^n$ and $(g_i)_{i=1}^n$ are two interlacing sequences then

 $f_1g_n + f_2g_{n-1} + \cdots + f_ng_1$ is real rooted

[Savage,Visontai '15] If f, g be two polynomials with nonnegative coefficients. Then $f \prec g$ iff $(\lambda x + \mu)f + g$ is real rooted for all $\lambda, \mu > 0$ Starting point: face enumeration of simplicial complexes

• Let Δ be a simplicial complex with dim $(\Delta) = n - 1$

f-vector: $f(\Delta) = (f_{-1}(\Delta), f_0(\Delta), \dots, f_{n-1}(\Delta))$ where $f_i(\Delta) = \#$ of *i*-dim faces of Δ

$$f(\Delta, x) = \sum_{i=0}^{n} f_{i-1}(\Delta) x$$

h-vector: $h(\Delta) = (h_0(\Delta), h_1(\Delta), \dots, h_n(\Delta))$

$$h(\Delta, x) := \sum_{i=0}^{n} h_i(\Delta) x^i = \sum_{i=0}^{n} f_{i-1}(\Delta) x^i (1-x)^{n-i}$$

• They are related by $f(\Delta, x) = (1 + x) h(\Delta, \frac{x}{1+x})$

Question: Let Δ be a simplicial complex. Find triangulations Δ' of Δ having nonnegative, real rooted $h(\Delta', x)$?

- [Brenti-Welker] Barycentric subdivisions
- Jochemko] r-fold edgewise subdivisions
- [Anwar-Nazir,Mohammadi-Welker] Interval subdivisions (2-colored barycentric subdivisions)
- [Athanasiadis] r-colored barycentric subdivisions (for r = 1 they reduce to barycentric subdivisions)

Let Δ be a "nice" simplicial complex (i.e., sphere, ball, Cohen-Macualay,...)

Find broad classes of triangulations Δ' of Δ which have the property that $h(\Delta', x)$ is nonnegative and real rooted

[Athanasiadis '20] Uniform triangulations which have the strong interlacing property 🗸

Find broad classes of triangulations Δ' of Δ which have the property that $h(\Delta', x)$ nonnegative real rooted symmetric decomposition.

[Athanasiadis, T.'21] Again, uniform triangulations which have the strong interlacing property lead to an affirmative answer under certain conditions

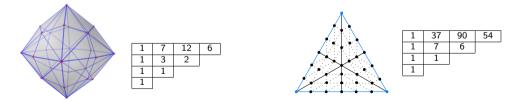
 \rightarrow we give conditions on $h(\Delta)$ under which the symmetric decomposition of $h(\Delta', x)$ is nonnegative and real rooted

 \Rightarrow we give conditions on $h(\Delta)$ under which the above symmetric decomposition of $h(\Delta', x)$ is also interlacing

Let ∆ be a simplicial complex of dim(∆) ≤ d and F = (f_F(i,j))_{-1≤i≤i≤d−1}

A triangulation Δ' of Δ is \mathcal{F} -uniform if, for all $0 \le i \le j \le d$ each *j*-face of Δ contains the same number of *i*-faces of Δ' $f_{\mathcal{F}}(i+1,j+1)$

- We call $\mathcal{F} = \left(f_{\mathcal{F}}(i,j)\right)_{0 \leq i \leq j \leq d}$ an f-triangle of size d
- $\mathcal{F} = (f_{\mathcal{F}}(i,j))$ is feasible if every simplex σ_j , $1 \le j \le d$ has an \mathcal{F} -uniform triangulation



<u>Theorem</u> [Athanasiadis '20] If \mathcal{F} is a feasible *f*-triangle and Δ' an \mathcal{F} -uniform triangulation of Δ , then

$$h(\Delta', x) = \sum_{k=0}^{n} h_k(\Delta) p_{\mathcal{F},n,k}(x)$$

where $p_{\mathcal{F},n,k}(x)$ are polynomials with nonnegative coefficients, depending only on \mathcal{F} .

•
$$h_{\mathcal{F}}(\sigma_n, x) = p_{\mathcal{F},n,0}(x) = \sum_{k=0}^n p_{\mathcal{F},n-1,k}(x)$$

• $x^n p_{\mathcal{F},n,k}(\frac{1}{x}) = p_{\mathcal{F},n,n-k}(x)$

•
$$p_{\mathcal{F},n,k}(x) = p_{\mathcal{F},n,k-1}(x) + (x-1)p_{\mathcal{F},n-1,k-1}(x)$$

• $p_{\mathcal{F},n,k}$ is the *h*-polynomial of the relative simplicial complex obtained from the \mathcal{F} -triangulation of σ_n by removing all faces on *k* facets of $\partial \sigma_n$

example

<u>Theorem</u> [Brenti-Welker'08] For barycentric subdivisions we have $p_{\mathcal{F},n,k}(x) = \sum_{j=0}^{n} p_{\mathcal{F}}(n,k,j)x^{j}$, where

 $p_{\mathcal{F}}(n,k,j) = \#$ permutations of $\{1,\ldots,n+1\}$ with k descents and $\sigma(1) = j+1$

 $\Big\}$ the polynomials $p_{\mathcal{F},3,i}(x)$ for the barycentric subdivision of the 2-dim simplex

 $\begin{array}{l} p_{3,0}(x) = x^2 + 4x + 1 \\ p_{3,1}(x) = 2x^2 + 4x \\ p_{3,2}(x) = 4x^2 + 2x \\ p_{3,3}(x) = x^3 + 4x^2 + x \end{array}$

 $h(\Delta) = (1, 3, 3, 1)$ $h(sd(\Delta)) = 1 \cdot p_{3,0}(x) + 3 \cdot p_{3,1}(x) + 3 \cdot p_{3,2}(x) + 1 \cdot p_{3,3}(x)$ $= x^3 + 23x^2 + 23x + 1$

 $h(\Delta) = (1, 3, 2, 0)$ $h(sd(\Delta)) = 1 \cdot p_{3,0}(x) + 3 \cdot p_{3,1}(x) + 2 \cdot p_{3,2}(x) + 0 \cdot p_{3,3}(x)$ $= 15x^2 + 20x + 1$ Properties of $p_{\mathcal{F},n,k}(x)$ [Athanasiadis '20]

•
$$h_{\mathcal{F}}(\sigma_n, x) = p_{\mathcal{F},n,0}(x) = \sum_{k=0}^n p_{\mathcal{F},n-1,k}(x)$$

•
$$x^n p_{\mathcal{F},n,k}(\frac{1}{x}) = p_{\mathcal{F},n,n-k}(x)$$

•
$$p_{\mathcal{F},n,k}(x) = p_{\mathcal{F},n,k-1}(x) + (x-1)p_{\mathcal{F},n-1,k-1}(x)$$

•
$$p_{\mathcal{F},n,n+1}(x) := h_{\mathcal{F}}(\sigma_{n+1}) - h_{\mathcal{F}}(\partial \sigma_{n+1})$$

 $p_{2,0}(x) = 3x + 1$ $p_{2,1}(x) = 4x$ $p_{2,2}(x) = x^2 + 3x$ $p_{2,3}(x) = 2x^2 + 2x$

$$\begin{array}{l} p_{3,0}(x) = 3x^2 + 12x + 1 \\ p_{3,1}(x) = 6x^2 + 10x \\ p_{3,2}(x) = 10x^2 + 6x \\ p_{3,3}(x) = x^3 + 12x^2 + 3x \\ p_{3,4}(x) = 0 \end{array}$$

$$\begin{array}{l} p_{4,0}(x) = x^3 + 31x^2 + 31x + 1 \\ p_{4,1}(x) = 4x^3 + 40x^2 + 20x \\ p_{4,2}(x) = 10x^3 + 44x^2 + 10x \\ p_{4,3}(x) = 20x^3 + 40x^2 + 4x \\ p_{4,4}(x) = x^4 + 31x^3 + 31x^2 + x \\ p_{4,5}(x) = 34x^3 + 124x^2 + 34 \end{array}$$

• Let $\mathcal{F} = (f_{\mathcal{F}}(i,j))_{0 \le i \le j \le n}$ be a feasible *f*-triangle.

The triangle \mathcal{F} has the strong interlacing property with respect to n if,

① $h_{\mathcal{F}}(\sigma_m, x)$ is real rooted for all $m = 2, \ldots, n-1$

(2) $h_{\mathcal{F}}(\sigma_m, x) - h_{\mathcal{F}}(\partial \sigma_m, x)$ is identically zero or

interlaced by $h_{\mathcal{F}}(\sigma_{m-1}, x)$, for all m = 2, ..., n-1

• useful property: If \mathcal{F} has the strong interlacing property, then $\left(p_{\mathcal{F},n,0}(x), p_{\mathcal{F},n,1}(x), \ldots, p_{\mathcal{F},n,n}(x)\right)$ is an interlacing sequence

Theorem [Athanasiadis'20]

If
$$h(\Delta) = (h_0(\Delta), \dots, h_n(\Delta))$$
 is nonnegative, then $h(\Delta', x) = \sum_{k=0}^n h_k(\Delta) p_{\mathcal{F},n,k}(x)$ is real rooted

Theorem [Athanasiadis'20]

Let $\mathcal{F} = (f_{\mathcal{F}}(i,j))$ be a feasible triangle having the strong interlacing property w.r.t. n

Let
$$\mathcal{D}_{\mathcal{F},n}: \mathbb{R}_n[x] \to \mathbb{R}_n[x]$$
 with $\mathcal{D}_{\mathcal{F},n}(x^k) = p_{\mathcal{F},n,k}(x)$

If $p(x) = c_0 + c_1x + \cdots + c_nx^n \in \mathbb{R}_n[x]$ with $c_i \ge 0$ then $\mathcal{D}_{\mathcal{F},n}(p(x))$ is nonnegative and real rooted

Theorem [Athanasiadis, T. '21]

Let $\mathcal{F} = (f_{\mathcal{F}}(i,j))$ be a feasible triangle having the strong interlacing property w.r.t. *n* Let $\mathcal{D}_{\mathcal{F},n} : \mathbb{R}_n[x] \to \mathbb{R}_n[x]$ with $\mathcal{D}_{\mathcal{F},n}(x^k) = p_{\mathcal{F},n,k}(x)$ and $p(x) = c_0 + c_1x + \dots + c_nx^n \in \mathbb{R}_n[x]$ with $c_i \ge 0$ for all *i*

① If $c_0 + c_1 + \dots + c_i \le c_n + c_{n-1} + \dots + c_{n-i}$ for all $0 \le i \le \lfloor \frac{n}{2} \rfloor$

then $\mathcal{D}_{\mathcal{F},n}(p(x))$ has a nonnegative, real-rooted symmetric decomposition w.r.t. n

(2) If, in addition, $c_i c_{n-i-1} \leq c_{i+1} c_{n-i}$ for all $0 \leq i \leq n-1$

then, the above decomposition is interlacing.

- Condition for $h(\Delta', x)$ having real rooted symmetric decomposition
- $(I h_0(\Delta) + h_1(\Delta) + \dots + h_i(\Delta) \le h_n(\Delta) + h_{n-1}(\Delta) + \dots + h_{n-i}(\Delta) \text{ for } i = 1, \dots, \left\lfloor \frac{n}{2} \right\rfloor$

Question: Find families of simplicial complexes having h-vector satisfying (1)

- Doubly Cohen-Macaulay simplicial complexes [Stanley]
- Condition for $h(\Delta', x)$ having interlacing symmetric decomposition

$$\textcircled{2} \qquad \frac{h_0(\Delta)}{h_n(\Delta)} \leq \frac{h_1(\Delta)}{h_{n-1}(\Delta)} \leq \cdots \leq \frac{h_{n-1}(\Delta)}{h_1(\Delta)} \leq \frac{h_n(\Delta)}{h_0(\Delta)}$$

Question: Do all 2-Cohen-Macaulay simplicial compexes Δ satisfy 2?

Theorem [Athanasiadis, T.'21]

Let $\mathcal{F} = (f_{\mathcal{F}}(i,j))$ be a feasible triangle having the strong interlacing property w.r.t. n+1

Let Γ be an *n*-simplicial complex with nonnegative *h*-vector and Δ its (n-1)-skeleton

• $h_{\mathcal{F}}(\Delta, x)$ has a nonnegative, real rooted and interlacing symmetric decomposition w.r.t. n

Example: If Δ is the 1-skeleton of the boundary of the cross-polytope:

$$h(sd(\Delta)) = 7x^2 + 16x + 1$$

 $= (x^2 + 10x + 1) + x(6x + 6)$ real rooted and interlacing symmetric decomposition

Proof: We use the fact that $h_k(\Delta) = h_0(\Gamma) + h_1(\Gamma) + \cdots + h_k(\Gamma)$

Theorem [Athanasiadis, T. '21]

Let
$$\mathcal{D}_{\mathcal{F},n}:\mathbb{R}_n[x] o\mathbb{R}_n[x]$$
 with $\mathcal{D}_{\mathcal{F},n}(x^k)=p_{\mathcal{F},n,k}(x)$

Let $\mathcal{F} = (f_{\mathcal{F}}(i,j))$ be a feasible triangle having the strong interlacing property w.r.t. n-1

$$p(x) = c_0 + c_1 x + \cdots + c_{n-1} x^{n-1} \in \mathbb{R}_n[x]$$
 with $c_i \ge 0$ for all i

① If
$$c_0 + c_1 + \dots + c_i \ge c_{n-1} + \dots + c_{n-i}$$
 for all $1 \le i \le \lfloor \frac{n}{2} \rfloor$

then $\mathcal{D}_{\mathcal{F},n}(p(x))$ has a nonnegative, real-rooted symmetric decomposition w.r.t. n-1

2 If, in addition, $c_i c_{n-i-1} \ge c_{i+1} c_{n-i}$ for all $1 \le i \le n-1$

then, the above decomposition is interlacing

proof: apply Theorem(1) to $x^n p(1/x)$

- Condition for $h(\Delta', x)$ having real rooted symmetric decomposition
- $(1) \quad h_0(\Delta) + h_1(\Delta) + \dots + h_i(\Delta) \ge h_{n-1}(\Delta) + h_{n-2}(\Delta) + \dots + h_{n-i}(\Delta) \text{ for } i = 1, \dots, \left\lfloor \frac{n}{2} \right\rfloor$

Question: Find families of simplicial complexes having h-vector satisfying (1)

- we every simplicial (n-1)-ball satisfies ① [Stanley '93]
- Condition for $h(\Delta', x)$ having interlacing symmetric decomposition
- $\textcircled{2} \quad \frac{h_1(\Delta)}{h_{n-1}(\Delta)} \geq \frac{h_2(\Delta)}{h_{n-2}(\Delta)} \geq \cdots \geq \frac{h_{n-2}(\Delta)}{h_2(\Delta)} \geq \frac{h_{n-1}(\Delta)}{h_1(\Delta)}$

Question: Find families of simplicial complexes having h-vector satisfying (1) and (2)

Is there a class of triangulations of simplicial balls satisfying 2?

- Is it true that for any polytope P the h-polynomial h(sd(P), x) is nonnegative and real rooted?
- Is it true that for any "nice" polytopal complex Δ the *h*-polynomial $h(sd(\Delta), x)$ is nonnegative and real rooted?
- Is it true that for any "nice" polytopal complex Δ the *h*-polynomial h(sd(Δ), x) has a nonnegative real rooted symmetric decomposition?

Thank you for your attention!

ευχαριστώ για την προσοχή σας

Let $p(x) = c_0 + c_1 x + \cdots + c_n x^n$ with $c_i \ge 0$ for all i

• We find the symmetric decomposition of $\mathcal{D}_{\mathcal{F},n}(p(x))$:

$$\mathcal{D}_{\mathcal{F},n}(p(x)) = \sum_{k=0}^{n} c_k \, p_{\mathcal{F},n,k}(x) = \sum_{k=0}^{n} c_k \left(x \sum_{i=0}^{k-1} p_{\mathcal{F},n-1,i}(x) + \sum_{i=k}^{n} p_{\mathcal{F},n-1,i}(x) \right)$$

 $= \cdots =$

$$= (c_0 + \cdots + c_n) p_{\mathcal{F}, n-1, n}(x) + \sum_{i=0}^{n-1} (c_0 + \cdots + c_i + (c_0 + \cdots + c_{n-1-i})x) p_{\mathcal{F}, n-1, i}(x)$$

$$+x\sum_{i=0}^{n-1}(c_n+c_{n-1}+\cdots+c_{n-i}-c_0-c_1-\cdots-c_i)p_{\mathcal{F},n-1,i}(x)$$

$$\mathcal{D}_{\mathcal{F},n}(p(x)) = \sum_{k=0}^{n} c_k \, p_{\mathcal{F},n,k}(x) = \sum_{k=0}^{n} c_k \left(x \sum_{i=0}^{k-1} p_{\mathcal{F},n-1,i}(x) + \sum_{i=k}^{n} p_{\mathcal{F},n-1,i}(x) \right)$$

- a(x) and b(x) are real rooted
 - b(x) is a nonnegative linear combination of the polynomials $p_{\mathcal{F},n-1,i}(x)$
 - → a(x) is a sum of polynomials λ_i(x) · p_{F,n-1,i} with deg(λ_i(x)) ≤ 1 and nonnegative coefficients
 - $\Rightarrow p_{\mathcal{F},n-1,i}(x), i = 0, \dots, n$ is an interlacing sequence
- if $c_i c_{n-1-i} \leq c_{n+1} c_{n-i}$ then a(x) and b(x) are interlacing
 - $\implies p_{\mathcal{F}}(x) := \mathcal{D}_{\mathcal{F},n}(p(x))$
 - It suffices to show that $p_{\mathcal{F}}(x)$ is interlaced by $x^n p_{\mathcal{F}}(\frac{1}{x})$

➡ this is true if
$$\frac{c_i}{c_{i+1}} \leq \frac{c_{n-i}}{c_{n-i-1}}$$