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HAGLUND’S POSITIVITY CONJECTURE FOR MULTIPLICITY
ONE PAIRS

ARITRA BHATTACHARYA

Abstract. Haglund’s conjecture states that
〈Jλ(q, qk), sµ〉

(1− q)|λ|
∈ Z≥0[q] for all parti-

tions λ, µ and all non-negative integers k, where Jλ is the integral form Macdonald
symmetric function and sµ is the Schur function. This paper proves Haglund’s con-
jecture in the cases when the pair (λ, µ) satisfies Kλ,µ = 1 or Kµ′,λ′ = 1 where K
denotes the Kostka number. We also obtain some general results about the transition
matrix between Macdonald symmetric functions and Schur functions.

1. Introduction

The Macdonald symmetric functions Pλ(q, t), λ ∈ Par, are a remarkable family of
symmetric functions depending on two parameters q and t, indexed by the set of parti-
tions Par. They simultaneously generalize many known bases of symmetric functions.

We denote by K
(1)
λ,µ(q, t) the coefficient of the monomial symmetric function mµ in

the monomial expansion of Pλ(q, t). This is a rational function in q and t which has the
Kostka numberKλ,µ as its limit when q and t tend to 1. There are various expressions for

K
(1)
λ,µ(q, t) in the literature: in [Mac95] a tableaux formula is given, in [HHL04], [HHL06]

a formula in terms of nonattacking fillings is found, and in [RY08] a formula in terms of
alcove walks is given. A nice survey of some of the monomial expansions can be found
in [GR21] and [GR21supplement].

In contrast, very little is known about the Schur expansion of Pλ(q, t). Some partic-
ular Schur coefficients of the integral form Macdonald polynomials Jλ(q, t) were found
in [Yoo12] and [Yoo15]. The integral form Macdonald polynomial Jλ(q, t) is a certain
normalization of Pλ(q, t), whose monomial coefficients are in Z[q, t].

In [HHL04] it was shown that the coefficient 〈Jλ(q, t), hµ〉 of mµ in Jλ(q, t) has the
following positivity property:

〈Jλ(q, qk), hµ〉
(1− q)|λ|

∈ Z≥0[q] for all k ∈ Z≥0 and λ, µ ∈ Par. (1)

Haglund [Hag10] conjectured that the above equation holds true if hµ is replaced by sµ.

Conjecture A (Haglund). For partitions λ and µ,

〈Jλ(q, qk), sµ〉
(1− q)|λ|

∈ Z≥0[q] for all k ∈ Z≥0. (Hag(λ, µ))

Yoo showed this is true in some special cases in [Yoo12] and [Yoo15] by obtaining
explicit formulas for the coefficients. Among them, some particular cases are when λ
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has only one row, when λ is of hook shape with `(λ) ≥ λ1− 2, when λ has at most two
columns, when µ is of hook shape, or when λ and µ both have length at most 2.

This paper extends Yoo’s results in a different direction, showing Haglund’s conjec-
ture to be true for all ‘multiplicity one pairs’, i.e., for (λ, µ) such that Kλ,µ = 1 or
Kµ′,λ′ = 1.

The following is the main result of this paper.

Theorem 1.1. Hag(λ, µ) holds true for all pairs λ, µ such that either Kλ,µ = 1 or
Kµ′,λ′ = 1.

In fact, what we establish is a dual version of Haglund’s conjecture which can be
easily seen to be equivalent to the original. Namely, let kλ,µ(q, t) = 〈sλ, Jµ(q, t)〉q,t
where 〈 , 〉q,t is the (q, t)-deformation of the Hall scalar product (cf. [Mac95]). Then we
have the following.

Conjecture B (Dual Haglund’s Conjecture). For partitions λ, µ, we have

kλ,µ(tk, t)

(1− t)|λ|
∈ Z≥0[t] for all k ∈ Z≥0. (Hag′(λ, µ))

We also define another q, t-analogue K
(2)
λ,µ(q, t) of the Kostka numbers by

sλ =
∑
µ∈Par

K
(2)
λ,µ(q, t)Pµ(q, t)for all λ ∈ Par. (2)

K
(2)
λ,µ(q, t) coincides with kλ,µ(q, t) up to a constant. Analogous to K

(1)
λ,µ(q, t), this is a

rational function in q, t, and K
(2)
λ,µ(0, t) = Kλ,µ(t), the Kostka–Foulkes polynomial. The

matrix (K
(2)
λ,µ)λ,µ`n has the interesting property that (cf. [Mac95, Chapter VI, (5.1′′)])

K
(2)
λ,µ(q, t) = (K(2))−1µ′,λ′(t, q). (3)

Since the entries of (K(2))−1 are the Schur coefficients of the Pλ(q, t), finding K(2) is
roughly equivalent to finding these.

We use Macdonald’s description of K
(1)
λ,µ(q, t) and basic properties of Pλ(q, t) to find

some general reduction principles. In particular, we show that (see Lemma 4.2), if for
a pair of partitions (λ, µ) we have λ1 + · · · + λr = µ1 + · · · + µr for some r, then, for
i = 1, 2, we have

(K(i))±1λ,µ = (K(i))±1λ1,µ1 · (K
(i))±1λ2,µ2 ,

where λ1 = (λ1, . . . , λr), µ
1 = (µ1, . . . , µr), λ

2 = (λr+1, . . .), µ
2 = (µr+1, . . .).

A dual version of this is given in Lemma 4.3, where instead of breaking the Young
diagrams across a row, we break across a column.

Let λ, µ ∈ Par such that λ ≥ µ. We can always decompose λ = (λ1, . . . , λr) and
µ = (µ1, . . . , µr) where λ1, . . . λr, µ1, . . . , µr are partitions such that, for i ∈ {1, . . . r},
λi ≥ µi and, for i ∈ {1, . . . r − 1}, `(λi) = `(µi). Then, for i = 1, 2, we have

(K(i))±1λ,µ(q, t) =
r∏
j=1

(K(i))±1
λj ,µj

(q, t). (4)

For j ∈ {1, . . . , r−1} each pair (λj, µj) contains a common rectangle of row length at
least λj+1

1 . Proving the dual Haglund conjecture is equivalent to proving it for each pair
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(λj, µj) with these rectangles removed (see Corollary 4.1). We can repeat this process
for each pair until no further decomposition is possible.

This allows us to only look at pairs of partitions (λ, µ) which are irreducible, i.e.,
which satisfy λ ≥ µ and λ1 + · · ·+ λi > µ1 + · · ·+ µi for 1 ≤ i ≤ `(λ). Berenshtĕın and
Zelevinskĭı in [BZ90] gave a criterion for a pair of partitions (λ, µ) to satisfy Kλ,µ = 1.
This can be restated as follows.

Theorem 1.2. Let λ, µ be an irreducible pair. Then Kλ,µ = 1 if and only if either

(1) λ = (mn) for some m ∈ Z≥1, n ∈ Z≥0 and `(µ) = n+ 1,
or

(2) λ = (n) and µ ` n, µ 6= λ for some n ∈ Z≥1.

We find (see Corollary 5.1) that, if λ, µ are partitions contained in a rectangle (mn+1),
then, for i = 1, 2, we have

(K(i))±1λ,µ = (K(i))±1λc,µc , (5)

where λc, µc denote the complements of the partitions λ, µ inside the rectangle (mn+1).

Since the complement of the partition (mn) is (m), this reduces all computation of K
(2)
λ,µ

when Kλ,µ = 1 to the case where λ is a single row.

In this case we calculate K
(2)
λ,µ by the use of the Cauchy identity and Macdonald’s

principal specialization formula (see Proposition 3.2.)
Finally, in Section 6 we finish the proof of the dual version of Haglund’s conjecture

when Kλ,µ = 1 by analyzing the normalization factors for the integral form Macdonald
polynomials. By exploiting duality of Macdonald polynomials (see Lemma 2.1) we get
a proof when Kµ′,λ′ = 1.

Our reduction principles may also be applied to instances where the final reduction
is to pairs (λ, µ) of the form studied by Yoo. Therefore explicit formulas for kλ,µ(q, t)
can be obtained in a wider set of cases.

An interesting feature of our formulas and many of Yoo’s formulas is that K
(2)
λ,µ(q, t)

can be written as a sum of Kλ,µ many terms, where each term is a product with
factors of the form (ta − qbtc) in the numerator and (1− qdte) in the denominator with
a, b, c, d, e ∈ Z≥0. This is especially striking if Kµ′,λ′ = 1, where Kλ,µ could be larger
than 1.

Acknowledgments. We would like to thank R. Venkatesh for organizing the Work-
shop on Macdonald Polynomials 2021. We are very grateful to A. Ram for his inspiring
lectures and discussions. Finally, a lot of thanks to S. Viswanath for numerous discus-
sions, going through the whole paper and giving helpful suggestions.

2. Definitions

We first review some basic definitions in the theory of symmetric functions. The
main reference for this section is [Mac95].

2.1. Partitions. By a partition we mean a sequence λ = (λ1, λ2, . . . ) of non-negative
integers which is weakly decreasing and has a finite sum. By Par we denote the set
of all partitions. A partition λ may be realized as a set of boxes upper left justified
and arranged in rows so that there are λi boxes in row i. This is called the Young
diagram of λ. For a partition λ the conjugate partition λ′ is the partition obtained by
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interchanging the rows and columns in the diagram of λ. The length of a partition λ is
`(λ) = λ′1, and the size is |λ| =

∑
λi

The set of partitions is partially ordered by the dominance order defined by

λ ≥ µ ⇐⇒ λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi for all i ≥ 1, and |λ| = |µ|. (6)

For a box x = (r, c) in the diagram of λ, where r and c are the row and column
numbers of x with row numbering starting from 1 in the top row and column numbering
starting from 1 in the leftmost column, we write x ∈ λ and define the arm length aλ(x),
coarm length a′λ(x), leg length lλ(x) and the coleg length l′λ(x) of x, by

aλ(x) = λr − c, a′λ(x) = c− 1 , (7)

lλ(x) = λ′c − r, l′λ(x) = r − 1 . (8)

aa′

l′

l

x
aλ(x) = 3, a′λ(x) = 3

lλ(x) = 2, l′λ(x) = 1

Figure 1. Young diagram for λ = (8, 7, 4, 4, 1) and arm, coarm, leg,
coleg lengths of x = (2, 4)

When the partition is understood, we drop λ from the notation and simply write
a(x), a′(x), l(x), l′(x).

The content of a box x ∈ λ is c(x) = a′(x) − l′(x). The hook length of the box x is
h(x) = a(x) + 1 + l(x). For a partition λ, define n(λ) =

∑
x∈λ l

′(x).

2.2. Symmetric Functions. Let q and t be complex variables. We work in the ring
Λ of symmetric functions in infinitely many variables x1, x2, . . . with coefficients from
C(q, t).

The space of symmetric functions has a few known bases indexed by λ ∈ Par, such
as the monomial basis (mλ), the elementary basis (eλ), the homogeneous basis (hλ),
the power sum basis (pλ), and the Schur basis (sλ). Their definitions can be found
in [Mac95].

For a partition λ and for i ≥ 1, let mi(λ) be the number of parts of λ equal to i, and

let zλ =
∏`(λ)

i=1 i
mi(λ)mi(λ)!. The Hall scalar product on Λ, denoted by 〈 , 〉, is defined

by 〈pλ, pµ〉 = zλδλ,µ. We also have 〈sλ, sµ〉 = δλ,µ and 〈hλ,mµ〉 = δλ,µ.

2.3. Plethysm. The power sums pk(X) =
∑

i≥0 x
k
i , k ≥ 1, form an algebraically in-

dependent generating set for Λ over C(q, t). For a formal series of rational functions
E = E(z1, z2, . . .) we denote by pk[E] the plethystic substitution of E into pk, defined
to be E(zk1 , z

k
2 , . . .). In other words, pk[E] is the result of replacing each variable in E

by its k-th power, and the constant is kept as it is. Since any symmetric function f ∈ Λ
is a polynomial in the pk, we can define f [E] as the unique C-algebra homomorphism
extending pk 7→ pk[E]. Note that we are not extending as C(q, t)-algebra homomor-
phism, i.e., q, t are also treated as variables. When using plethysm, we write alphabets



HAGLUND’S POSITIVITY CONJECTURE FOR MULTIPLICITY ONE PAIRS 5

X = {x1, x2, . . . }, Y = {y1, y2, . . . } as X =
∑
xi, Y =

∑
yi. So pk[X] =

∑
xki = pk(X)

for all k, and by extension, f [X] = f(X) for any symmetric function f .
In particular,

pk

[
X

1− q
1− t

]
= pk(X)

1− qk

1− tk
, (9)

pk

[
1− q
1− t

]
=

1− qk

1− tk
. (10)

For more on plethysm see [Hai99] and [Hag06].

2.4. Tableaux. A semistandard Young tableau or a tableau T of shape λ is a filling
of the diagram λ with entries from 1, 2, . . . such that the entries are weakly increasing
left to right along the rows and strictly increasing top to bottom along columns. If for
each i ≥ 1 there are µi many i’s in T then T is said to have content µ = (µ1, µ2, . . . ).
We denote the set of tableaux of shape λ, content µ by SSY T (λ, µ). The cardinality
of this set is the Kostka number Kλ,µ.

We have

sλ =
∑
µ

Kλ,µmµ . (11)

By a matrix indexed by partitions we always mean that the rows and columns are
indexed by partitions, and the indexing is compatible with dominance ordering, i.e., the
partitions are listed in a sequence such that if λ ≥ µ in dominance order then λ precedes
µ in the sequence, and if |λ| < |µ| then λ precedes µ. These are infinite matrices. For
a matrix M indexed by partitions, we call it upper-unitriangular if Mλ,µ = 0 unless
µ ≤ λ, and if Mλ,λ = 1. The set of upper unitriangular matrices forms a group.

We denote by K the matrix indexed by partitions whose (λ, µ)-th entry is Kλ,µ. This
matrix K is upper-unitriangular.

2.5. Macdonald Symmetric Functions. The scalar product 〈 , 〉q,t on Λ is defined
by

〈f , g〉q,t =

〈
f [X], g

[
X

1− q
1− t

]〉
, (12)

where 〈 , 〉 on the right-hand side is the Hall scalar product.
The Macdonald P -functions (Pλ[X; q, t])λ∈Par are characterized by the following two

properties:

Pλ[X; q, t]−mλ[X] ∈
∑
µ<λ

C(q, t)mµ[X] , (13)

〈Pλ[X; q, t], Pµ[X; q, t]〉q,t = 0 if λ 6= µ , (14)

where ≤ is the dominance order on partitions.
When the variables are understood, we may drop X from the notation and just write

Pλ(q, t).
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Let (Qλ(q, t)) denote the dual basis to (Pλ(q, t)) under the q, t scalar product 〈 , 〉q,t.
For a partition µ, let

cµ(q, t) =
∏
x∈µ

(1− qa(x) tl(x)+1) , (15)

c′µ(q, t) =
∏
x∈µ

(1− qa(x)+1 tl(x)) , (16)

bµ(q, t) =
cµ(q, t)

c′µ(q, t)
. (17)

Then we have the following relation.

Theorem 2.1 ([Mac95, Chapter VI, (6.19)]).

Qµ(q, t) = bµ(q, t)Pµ(q, t) .

The integral form Macdonald polynomials are

Jµ(q, t) = cµ(q, t)Pµ(q, t) = c′µ(q, t)Qµ(q, t) . (18)

The monomial coefficients of Jµ(q, t) are in Z[q, t].

2.6. q, t-Kostka Functions. We define two q, t-analogues of the Kostka numbers.

Definition 2.1. For λ, µ ∈ Par, let K
(1)
λ,µ(q, t) and K

(2)
λ,µ(q, t) be defined as the following

change of basis coefficients:

Pλ(q, t) =
∑
µ

K
(1)
λ,µ(q, t) mµ , (19)

sλ =
∑
µ

K
(2)
λ,µ(q, t) Pµ(q, t) . (20)

In other words, K
(1)
λ,µ(q, t) = 〈Pλ(q, t), hµ〉 and K

(2)
λ,µ(q, t) = 〈sλ, Qµ〉q,t . Note that

both the change of basis matrices are upper- unitriangular, i.e., for i ∈ {1, 2}, we have

K
(i)
λ,µ(q, t) = 0 unless µ ≤ λ and, for all λ ∈ Par, we have K

(i)
λ,λ(q, t) = 1. For K(1) this

follows from the definition of Macdonald polynomials, and for K(2) this is because

K = K(2)K(1) , (21)

where K is the matrix of Kostka numbers, which is known to be upper-unitriangular.

2.7. Macdonald’s Formula for K
(1)
λ,µ(q, t). Macdonald gave a formula for K

(1)
λ,µ(q, t)

in [Mac95], which we now describe. For two partitions λ, µ with µi ≤ λi for all i, λ/µ is
called a horizontal strip if λ′j − µ′j ∈ {0, 1} for all j ∈ Z>0. If λ/µ is a horizontal strip,
then define

ψλ/µ(q, t) =
∏

x=(r,c)∈µ
λr 6=µr
λ′c=µ

′
c

(1− qaµ(x) t lµ(x)+1)

(1− qaµ(x)+1 t lµ(x))

(1− qaλ(x)+1 t lλ(x))

(1− qaλ(x) t lλ(x)+1)
. (22)
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Given a tableau T , let T≤i denote the shape obtained by the boxes with content
1, . . . , i. In a tableau T , T≤i/T≤(i−1) is by definition a horizontal strip for each i. For a
tableau T , define

ψT =
∏
i≥1

ψT≤i/T≤(i−1)
. (23)

Then we have the following formula.

Theorem 2.2 ([Mac95, Chapter VI, (7.13′)]). For partitions λ, µ,

K
(1)
λ,µ(q, t) =

∑
T∈SSY T (λ,µ)

ψT (q, t) . (24)

2.8. Specializations.

(1) At q = 0, K
(2)
λ,µ(0, t) is the Kostka–Foulkes polynomial Kλ,µ(t). It is a polynomial

in t with non-negative integer coefficients. A combinatorial formula for the
Kostka–Foulkes polynomial was given by Lascoux and Schützenberger. There
is a function ch : SSY T (λ, µ)→ Z≥0 called charge, such that

Kλ,µ(t) =
∑

T∈SSY T (λ,µ)

tch(T ) . (25)

(2) At t = 1, K
(2)
λ,µ(q, 1) = Kλ,µ for arbitrary q.

(3) At q = 1, the matrix K(2)(1, t) = J(K−1)trJ , where J is the matrix indexed by
partitions with Jλ,µ = δλ,µ′ . So the matrix K(2) contains information on both
the matrix K and its inverse. A general version is Lemma 2.1 below.

2.9. Duality. By (K(i))−1λ,µ we mean taking the (λ, µ)-entry of the inverse matrix.
The following lemma says that expanding the Macdonald functions in the Schur basis

is roughly equivalent to its inverse problem, namely expanding the Schur functions in
the Macdonald basis.

Lemma 2.1 ([Mac95, Chapter VI, (5.1′′)]).

K
(2)
λ,µ(q, t) = (K(2))−1µ′,λ′(t, q) . (26)

Since cλ(q, t) = c′λ′(t, q) (cf. [Mac95, Chapter VI, (8.2)]) from (18),(26) and
Definition 2.1 we get

〈Jλ(t, q), sµ〉 = 〈Jλ′(q, t), sµ′〉q,t . (27)

2.10. Haglund’s Conjecture. In [HHL06] it was shown that the monomial coefficients
〈Jλ(q, t), hµ〉 of Jλ(q, t) have the following positivity property:

〈Jλ(q, qk), hµ〉
(1− q)|λ|

∈ Z≥0[q] for all k ∈ Z≥0 . (28)

Haglund made the following conjecture in [Hag10] about the Schur coefficients
〈Jλ(q, t), sµ〉 of Jλ(q, t).

Conjecture 1 (Haglund). For partitions λ and µ,

〈Jλ(q, qk), sµ〉
(1− q)|λ|

∈ Z≥0[q] for all k ∈ Z≥0 . (Hag(λ, µ))
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Yoo [Yoo12,Yoo15] showed that this is true in some special cases.
Let

kλ,µ(q, t) = 〈sλ, Jµ(q, t)〉q,t . (29)

Then

kλ,µ(q, t) = K
(2)
λ,µ(q, t)c′µ(q, t) = (K(2))−1µ′,λ′(t, q)c

′
µ(q, t) . (30)

Note that c′µ(0, t) = 1, so

kλ,µ(0, t) = Kλ,µ(t) , (31)

where the right-hand side is the Kostka–Foulkes polynomial as in Subsection 2.8. By
(27), we have the following dual version of Haglund’s conjecture.

Conjecture 2. For partitions λ, µ,

kλ,µ(tk, t)

(1− t)|λ|
∈ Z≥0[t] for all k ∈ Z≥0 . (Hag′(λ, µ))

3. The Case Where λ Is a Single Row or µ Is a Single Column

In this section we derive formulas for K
(2)
(n),µ(q, t) and K

(2)
λ,1n(q, t), and use them to

show Hag′(λ, µ) is true in these cases.
We begin by reviewing Cauchy formulas and principal specializations.

3.1. Cauchy Identity. For a series of rational functions E we let Ω[E] =
∑

n≥0 hn[E].
Let (uλ)λ∈Par, (vλ)λ∈Par be Hall-dual bases. Then the Cauchy identity says that

Ω[XY ] =
∑
λ∈Par

uλ[X]vλ[Y ] . (32)

If (uλ)λ∈Par, (vλ)λ∈Par are q, t-dual bases, then by definition of 〈, 〉q,t, the bases(
uλ

[
X

1− q
1− t

])
λ∈Par

and (vλ[X])λ∈Par are Hall-dual, hence,

Ω[XY ] =
∑
λ∈Par

uλ

[
X

1− q
1− t

]
vλ[Y ] . (33)

Equivalently, by replacing X by X
1− t
1− q

,

we get the (q, t)-Cauchy identity

Ω

[
XY

1− t
1− q

]
=
∑
λ∈Par

uλ[X]vλ[Y ] . (34)

Since (hλ)λ∈Par and (mλ)λ∈Par are Hall-dual,

(
hλ

[
X

1− t
1− q

])
λ∈Par

is q, t-dual to

(mλ[X])λ∈Par.
We give a quick proof of the following well-known result (cf. [Mac95, Chapter VI,

(5.5)]) to illustrate the power of plethystic methods.
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Proposition 3.1. We have

Q(n)[X; q, t] = hn

[
X

1− t
1− q

]
. (35)

Proof. The Cauchy identity gives∑
λ∈Par

hλ

[
X

1− t
1− q

]
mλ[Y ] =

∑
λ∈Par

Qλ[X; q, t]Pλ[Y ; q, t] , (36)

Substitute Y = y, where y is a variable. Since

mλ[y] = mλ(y, 0, 0, . . . ) =

{
yn, if λ = (n) for some n ≥ 0,

0, otherwise,
(37)

and by unitriangularity for Pλ, we get

Pλ[y] =

{
yn, if λ = (n) for some n ≥ 0,

0, otherwise.
(38)

Hence, by (36) above,∑
n≥0

h(n)

[
X

1− t
1− q

]
yn =

∑
n≥0

Q(n)[X; q, t]yn . (39)

Comparing coefficient of yn we get the result. �

3.2. Principal Specializations. We can use the Cauchy identity and plethystic sub-
stitution to calculate the first row of various transition matrices. The next lemma and
the corollaries illustrate that. We will need Macdonald’s evaluation identity stated
below.

Theorem 3.1 ([Mac95, Chapter VI, (6.17)]). Let z be a complex variable. Then

Pλ

[
1− z
1− t

; q, t

]
=
∏
s∈λ

tl
′(s) − qa′(s)z

1− qa(s)tl(s)+1
, (40)

Qλ

[
1− z
1− t

; q, t

]
=
∏
s∈λ

tl
′(s) − qa′(s)z

1− qa(s)+1tl(s)
. (41)

3.3. The Case Where λ Is a Row or µ Is a Column. We now calculate kλ,µ(q, t)

in these special cases. Replacing Y by
1− z
1− t

in the Cauchy identity (34) and using

Theorem 3.1 we get the following lemma.

Lemma 3.1. Let z be a complex variable. For a pair (uλ)λ∈Par and (vλ)λ∈Par of q, t-dual
bases of Λ we have

hn

[
X

1− z
1− q

]
=
∑
λ`n

vλ

[
1− z
1− t

]
uλ[X] . (42)

In particular,

hn

[
X

1− z
1− q

]
=
∑
λ`n

∏
x∈λ

tl
′(x) − qa′(x)z

1− qa(x)+1tl(x)
Pλ[X; q, t] . (43)
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At t = q,

hn

[
X

1− z
1− q

]
=
∑
λ`n

qn(λ)
∏
x∈λ

1− qc(x)z
1− qh(x)

sλ[X] . (44)

Proposition 3.2. We have

k(n),µ(q, t) = tn(µ)
∏
x∈µ

(1− qa′(x)+1t−l
′(x)) . (45)

Proof. We substitute z = q in (43), use (18), (29) and the fact that s(n) = hn. �

We can use Lemma 3.1 to get another proof of the following result of [Yoo12] in the
dual formalism.

Proposition 3.3. We have

kλ,1n(q, t) =
tn(λ

′)[n]t!∏
x∈λ[h(x)]t

∏
x∈λ

(1− t−c(x)q) (46)

= Kλ,1n(t)
∏
x∈λ

(1− t−c(x)q) , (47)

where [j]t =
1− tj

1− t
for j ∈ Z≥1 and [n]t! = [n]t[n− 1]t . . . [1]t .

Proof. Substituting z = t in (44), we get

hn

[
X

1− t
1− q

]
=
∑
λ`n

∏
x∈λ

ql
′(x) − qa′(x)t
1− qh(x)

sλ[X] . (48)

By Proposition 3.1, the left-hand side is Qn(q, t), and so the product in front of sλ[X]
on the right-hand side is 〈Qn(q, t), sλ〉. Observe that c′(n)(q, t) = (q; q)n, where by (a;x)n

we mean the product
∏n−1

i=0 (1− axi). Since c′(n)Qn = Jn, Equation (27) gives

kλ′,1n(q, t) = (t; t)n
∏
x∈λ

tl
′(x) − ta′(x)q
1− th(x)

. (49)

Since conjugation interchanges coleg lengths and coarm lengths, and the set of hook
lengths remains unchanged, we have

kλ,1n(q, t) = (t; t)n
∏
x∈λ

ta
′(x) − tl′(x)q
1− th(x)

(50)

=
tn(λ

′)(t; t)n∏
x∈λ(1− th(x))

∏
x∈λ

(1− t−c(x)q) . (51)

Since kλ,µ(0, t) = Kλ,µ(t), the result follows. �

Corollary 3.1. Hag′(λ, µ) holds when λ is a row or when µ is a column.

Proof. When λ = (n) and µ is arbitrary, from (45) we have

k(n),µ(tk, t) = tn(µ)
∏
x∈µ

(1− tk(a′(x)+1)−l′(x)) for all k ∈ Z≥0 . (52)
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Since the quantity k(a′(x) + 1) − l′(x) decreases by 1 down a column and it is non-
negative in the top row, if it is negative for some x ∈ µ then it must also attain the
value 0 above x in the same column. Hence

k(n),µ(tk, t)

(1− t)n
=

{
tn(µ)

∏
x∈µ[k(a′(x) + 1)− l′(x)]t, if `(µ) ≤ k,

0, otherwise,
(53)

where [m]t = 1 + t+ · · ·+ tm−1. In both cases
k(n),µ(tk, t)

(1− t)n
∈ Z≥0[t].

Next, when µ = 1n and λ is arbitrary, we get

kλ,1n(tk, t) = Kλ,1n(t)
∏
x∈λ

(1− tk−c(x)) . (54)

Along a row the quantity k − c(x) decreases by 1 as one moves from left to right, and
for the first box in the row (in the first column) k−c(x) ≥ 0. So if k−c(x) < 0 for some
x ∈ λ then in that row there is a box y such that k− c(y) = 0, implying kλ,1n(tk, t) = 0.
Otherwise k − c(x) ≥ 0 for all x ∈ λ, and hence

kλ,1n(tk, t)

(1− t)n
=

{
Kλ,1n(t)

∏
x∈λ[k − c(x)]t, if λ1 ≤ k,

0, otherwise.
(55)

Since Kλ,µ(t) ∈ Z≥0[t], we obtain
kλ,1n(tk, t)

(1− t)n
∈ Z≥0[t]. �

4. Multiplication

We state a general lemma on posets that will be useful in this section.

Lemma 4.1. Let M be an upper unitriangular matrix indexed by a partially ordered
set P , i.e., for all a ∈ P , Ma,a = 1 and Ma,b = 0 unless b ≤ a. For an interval I in
P let M |I = (Ma,b)a,b∈I denote the matrix restricted to the interval I. Then, for any
interval J containing a, b, we have (M−1)a,b = (M |J)−1a,b.

Proof. Let N = M−1. The lemma follows since one can simply write down the solution
to the equations

δa,b =
∑
a≤c≤b

Na,cMc,b (56)

recursively, starting from b = a. �

Let λ1, λ2 be two partitions such that the least non-zero part of λ1 is at least the
largest part of λ2. In this case by (λ1, λ2) we mean the partition (λ11, . . . , λ

1
`(λ1), λ

2
1, . . . ).

Lemma 4.2. Let λ = (λ1, λ2) and µ = (µ1, µ2) where λj ≥ µj (in particular, |λj| = |µj|)
for j = 1, 2 and `(λ1) = `(µ1).

Then for i = 1, 2,

(K(i))±1λ,µ = (K(i))±1λ1,µ1(K
(i))±1λ2,µ2 . (57)
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Proof. Let T ∈ SSY T (λ, µ). Since `(λ1) = `(µ1) and |λ1| = |µ1|, in the first `(λ1)
rows of T the content must be µ1. We can break the tableau T into two pieces; let T 1

comprise the first `(λ1) rows, and T 2 be the tableau formed by the remaining rows of
T in which we subtract `(λ1) from each entry. It is clear that we get a bijection

SSY T (λ, µ)→ SSY T (λ1, µ1)× SSY T (λ2, µ2),

T 7→ (T 1, T 2).

In particular, Kλ,µ = Kλ1,µ1Kλ2,µ2 .
For 1 ≤ i ≤ `(λ1) the horizontal strips T≤i/T≤i−1 and T 1

≤i/T
1
≤i−1 are the same, so

ψT≤i/T≤i−1
= ψT 1

≤i/T
1
≤i−1

.

For i > `(λ1) the horizontal strips T≤i/T≤i−1 differ from T 2
≤i−`(λ1)/T

2
≤i−`(λ1)−1 in the

first `(λ1) rows, but none of those boxes contribute to ψT≤i/T≤i−1
, and the contribu-

tion from the remaining boxes is the same since the arms and legs are the same. So
ψT≤i/T≤i−1

= ψT 2
≤i−`(λ1)

/T 2
≤i−`(λ1)−1

.

Therefore the above bijection preserves ψ, that is,

ψT = ψT 1ψT 2 . (58)

By (24), we get

K
(1)
λ,µ = K

(1)

λ1,µ1K
(1)

λ2,µ2 . (59)

Let λ ≥ ν ≥ µ. Setting ν1 = (ν1, . . . , ν`(λ1)) and ν2 = (ν`(λ1)+1, . . . ), we have
λi ≥ νi ≥ µi for i = 1, 2 and `(λ1) = `(ν1) = `(µ1). So the interval [λ, µ] in the
dominance order becomes [λ, µ] = [λ1, µ1] × [λ2, µ2]. The matrix K(1) restricted to
[λ, µ] is then the tensor product

K(1)|[λ,µ] = K(1)|[λ1,µ1] ⊗K(1)|[λ2,µ2] . (60)

In particular, K|[λ,µ] = K|[λ1,µ1] ⊗K|[λ2,µ2].
Since the inverse of the tensor product of two matrices is the tensor product of their

inverses, we get

(K(1))−1|[λ,µ] = (K(1))−1|[λ1,µ1] ⊗ (K(1))−1|[λ2,µ2] . (61)

By (21), we have

K(2)|[λ,µ] = K(2)|[λ1,µ1] ⊗K(2)|[λ2,µ2] . (62)

Once again, taking inverses we get

(K(2))−1|[λ,µ] = (K(2))−1|[λ1,µ1] ⊗ (K(2))−1|[λ2,µ2] . (63)

By Lemma 4.1, we conclude that, for i = 1, 2,

(K(i))±1λ,µ = (K(i))±1λ1,µ1(K
(i))±1λ2,µ2 . �

Let λ1, λ2 be two partitions such that the last non-zero column length of λ1 is greater
than or equal to the first column length of λ2. Then by λ1 +λ2 we denote the partition
(λ11 + λ21, λ

1
2 + λ22, . . .). Note that, if λ = λ1 + λ2, then λ′ = (λ1

′
, λ2

′
) in the notation of

Lemma 4.2. By λ− λ1 we mean the partition λ2.
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λ1 λ2
λ1 = (3, 3, 3, 2, 1)

λ2 = (4, 3, 2)

λ1 + λ2 = (7, 6, 5, 2, 1)

Figure 2. Example of λ1 + λ2

Lemma 4.3. Let λ, µ ∈ Par such that λ = λ1 + λ2 and µ = µ1 + µ2 with λ1 ≥ µ1,
λ2 ≥ µ2, and λ11 = µ1

1. Then, for i = 1, 2, we have

(K(i))±1λ,µ = (K(i))±1λ1,µ1(K
(i))±1λ2,µ2 . (64)

Proof. Note that λ′ = (λ1
′
, λ2

′
) and µ′ = (µ1′ , µ2′), µ1′ ≥ λ1

′
and `(µ1′) = µ1

1 = λ11 =
`(λ1

′
). Therefore we can apply Lemma 4.2 to µ′, λ′. By Lemma 2.1,

K
(2)
λ,µ(q, t) = (K(2))−1µ′,λ′(t, q) (65)

= (K(2))−1
µ1′ ,λ1′

(t, q)(K(2))−1
µ2′ ,λ2′

(t, q) (66)

= K
(2)

λ1,µ1(q, t)K
(2)

λ2,µ2(q, t) . (67)

In particular,

Kλ,µ = Kλ1,µ1Kλ2,µ2 . (68)

If a partition γ satisfies λ ≥ γ ≥ µ then µ′ ≥ γ′ ≥ λ′. By our earlier argument,
[µ′, λ′] = [µ1′ , λ1

′
] × [µ2′ , λ2

′
]. Then [λ, µ] = [λ1, µ1] + [λ2, µ2], and any γ1 ∈ [λ1, µ1]

satisfies λ11 = γ11 = µ1
1. Thus,

K(2)|[λ,µ] = K(2)|[λ1,µ1] ⊗K(2)|[λ2,µ2] . (69)

As before, we take inverses and use (21) to prove the statement. �

Let λ1, λ2, µ1, µ2 be as in Lemma 4.2. Note that, since `(λ1) = `(µ1) and λ1 ≥ µ1, we
have µ1

`(λ1) ≥ λ1`(λ1). Thus both λ1 and µ1 contain the rectangle R of row length λ1`(λ1)
and column length `(λ1).

Corollary 4.1. Let λ1, λ2, µ1, µ2 be as in Lemma 4.2, and let R be the rectangular
partition of row length λ1`(λ1) and column length `(λ1). If Hag′(λ, µ) is true for λ1 −
R, µ1 −R and for λ2, µ2 then it is true for λ, µ.

Proof. By applying Lemma 4.3 to λ1 = R+(λ1−R) and µ1 = R+(µ1−R), for i = 1, 2
we get

K
(i)

λ1,µ1 = K
(i)
R,RK

(i)

λ1−R,µ1−R = K
(i)

λ1−R,µ1−R . (70)

So, by Lemma 4.2,

K
(i)
λ,µ = K

(i)

λ1,µ1K
(i)

λ2,µ2 = K
(i)

λ1−R,µ1−RK
(i)

λ2,µ2 . (71)
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Since the arms and legs of boxes in µ1 − R have no intersection with those of µ2, it
follows that

c′µ
c′µ1−Rc

′
µ2

=
∏
x∈R

(1− qaµ(x)+1tlµ(x)) . (72)

From (30), we get

kλ,µ(q, t) = kλ1−R,µ1−R(q, t) kλ2,µ2(q, t)
∏
x∈R

(1− qaµ(x)+1tlµ(x)) . (73)

So,

kλ,µ(tk, t)

(1− t)|λ|
=
kλ1−R,µ1−R(tk, t)

(1− t)|λ1|−|R|
kλ2,µ2(t

k, t)

(1− t)|λ2|

∏
x∈R(1− tk(aµ(x)+1)+lµ(x))

(1− t)|R|
. (74)

The last term on the right-hand side is a product of t-numbers and hence in Z≥0[t]. �

As particular cases we get the next corollary.

Corollary 4.2. If Hag′(λ, µ) is true for λ, µ then it is true for (R, λ), (R, µ), and for
(S + λ), (S + µ), where R, S are rectangular partitions, with row-length of R at least as
big as λ1 and column length of S at least as big as `(µ).

Remark 4.1. We deduce [Yoo12, Theorem 3.1.1] in the dual setup by (73) and using
Proposition 3.2. In particular this proves that Hag′(λ, µ) holds for λ = (a+k, b−k) and
µ = (a, b). Similarly, we obtain [Yoo15, Proposition 3.4] in the dual setup by applying
(73) and using Proposition 3.3.

Example 4.1. We demonstrate the two principles of Lemma 4.2 and Lemma 4.3 in the
following example (see (71)):

K
(2)
533,44111(q, t) = K

(2)
53,44(q, t)K

(2)
3,111(q, t) = K

(2)
2,11(q, t)K

(2)
3,111(q, t) .

5. Complementation

In this section we switch to type GLn Macdonald polynomials and then come back to
symmetric functions. The reference for this section is [Mac95, Chapter VI, Section 9].

Let n ∈ Z>0 be fixed, and let q and t be two complex numbers with t = qk for some
fixed k ∈ Z≥0.

Let P = Zn, and P+ = {α ∈ P : α1 ≥ α2 ≥ · · · ≥ αn}. For α = (α, . . . , αn) ∈ Zn let
xα = (xα1

1 , . . . , x
αn
n ). Let W = Sn. By C[P ] we denote the ring of Laurent polynomials

C[x±11 , x±12 , . . . , x±1n ]. There is a ring homomorphism Λ → C[P ]W defined by sending
xn+i 7→ 0 for i ≥ 1. We denote the image of a symmetric function f by f(Xn). For
any λ ∈ P+ (not necessarily with non-negative coordinates) we can define Pλ(x; q, t) ∈
C[P ]W by the relations

Pλ(x; q, t) = Pλ(Xn; q, t), if λn ≥ 0, (75)

Pλ+(1n)(x; q, t) = (x1 · · ·xn)Pλ(x; q, t), for all λ ∈ P+. (76)

We also define, for all λ ∈ P+, mλ(x) = Pλ(x; q, 1) and sλ(x) = Pλ(x; q, q).
Furthermore, P+ carries the dominance partial order ≥ defined by

λ ≥ µ if and only if λ− µ ∈ Z≥0{ei − ej : 1 ≤ i < j ≤ n}, (77)
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where ei denotes the standard basis vector (0, . . . , 1, . . . , 0) with 1 in the i-th position
and 0 everywhere else.

Let ¯ : C[P ] → C[P ] be the C-algebra involution defined by xi 7→ x−1i for i ∈
{1, . . . , n}. Then there is a scalar product on C[P ] defined by

〈f, g〉′ = 1

n!
ct(fg∆) , (78)

where ct denotes the constant term map on the Laurent polynomial ring, i.e., ct(f) =
coefficient of x0 in f , and

∆ =
∏
i 6=j

k−1∏
r=0

(1− qr xi
xj

) . (79)

The next theorem characterizes the Pλ(x; q, t) : λ ∈ P+.

Theorem 5.1. The set {Pλ(x; q, t) : λ ∈ P+} is the unique family of elements in C[P ]W

satisfying

Pλ(x; q, t) = mλ(x; q, t) +
∑
µ<λ

aλ,µ(q, t)mµ(x) , (80)

〈Pλ(x; q, t), Pµ(x; q, t)〉′ = 0 for λ 6= µ , (81)

for some aλ,µ(q, t) ∈ C(q, t) ⊂ C .

Proof. If λ ∈ Par with `(λ) ≤ n, then Pλ(x; q, t) is a homogeneous polynomial of degree
|λ|. By (75), Pλ(Xn; q, t) is a homogeneous Laurent polynomial with degree λ1+· · ·+λn
for all λ ∈ P+ . By comparing degrees, it is clear that, if λ1 + · · ·+ λn 6= µ1 + · · ·+ µn,
then 〈Pλ(x; q, t), Pµ(x; q, t)〉′ = 0. By (75) and the definition of 〈 , 〉′ it is enough to
check orthogonality of the set {Pλ(Xn; q, t) : λ ∈ P+ with λn ≥ 0}. This is shown
in [Mac95, Chapter VI, (9.5)]. Since {mλ(x) : λ ∈ P+} is a basis of C[P ]W , so is
{Pλ(x; q, t) : λ ∈ P+}.

Any two bases of C[P ]W satisfying the above conditions will be related by a triangular
orthogonal matrix and any such matrix is necessarily diagonal, so the uniqueness follows.

�

Let w0 ∈ Sn be the permutation that sends i to n + 1 − i for i ∈ {1, . . . , n}. Let
φ : C[P ] → C[P ] be the C-algebra homomorphism defined by φ(xα) = x−w0α. So
φ(f)(x) = w0f(x).

Proposition 5.1. For λ ∈ P+, we have φ(Pλ(x; q, t)) = P−w0λ(x; q, t). In particular,
φ(sλ(x)) = s−w0λ(x).

Proof. Since φ(mµ(x)) = m−w0µ(x) for all µ ∈ P+, we have

φ(Pλ(x; q, t)) = m−w0λ(x) +
∑
µ<λ

aλ,µ(q, t)m−w0µ(x) . (82)

Note that µ ≤ λ if and only if −w0µ ≤ −w0λ, so φ(Pλ) satisfies the unitriangularity
property. To prove φ(Pλ(x; q, t)) = P−w0λ(x; q, t), we only need to prove that, for λ 6= µ,
we have 〈φ(Pλ(x; q, t)), φ(Pµ(x; q, t))〉′ = 0. This follows from the fact that the constant
term of a Laurent polynomial is Sn-invariant, w0 is a homomorphism, and that ∆ is
Sn-invariant. �
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Corollary 5.1. Let λ, µ ⊂ (mn) be partitions. Let λc = (m−λn,m−λn−1, . . . ,m−λ1)
and µc = (m− µn,m− µn−1, . . . ,m− µ1). Then, for i = 1, 2, we have

(K(i))±1λ,µ = (K(i))±1λc,µc . (83)

λ

λc

m = 9

n = 5
λ = (8, 7, 4, 4, 1)

λc = (8, 5, 5, 2, 1)

Figure 3. Example of λ, λc when m = 9, n = 5

Proof. Let w0 ∈ Sn be as before. First note that, if λ ⊂ (mn) is a partition, then

λc = (m−λn, . . . ,m−λ1) is also a partition. So it makes sense to talk about K
(i)
λc,µc(q, t)

in this situation.
In the ring Λ, we have

Pλ(q, t) =
∑
ν≤λ

K
(1)
λ,ν(q, t) mν . (84)

Specializing to n variables, we have

Pλ(Xn; q, t) =
∑
ν≤λ

K
(1)
λ,ν(q, t) mν(Xn) . (85)

On the right-hand side, if `(ν) > n, then the corresponding term vanishes. Now applying
the map φ to this equation, we get

P−w0λ(Xn; q, t) =
∑
ν≤λ

K
(1)
λ,ν(q, t)m−w0ν(Xn) . (86)

Multiplying by (x1 · · ·xn)m and using (75), we get

P(mn)−w0λ(Xn; q, t) =
∑
ν≤λ

K
(1)
λ,ν(q, t)m(mn)−w0ν(Xn) . (87)

Again, consider the equation in Λ

Pλc(q, t) =
∑
γ≤λc

K
(1)
λc,γ(q, t)mγ , (88)

and specialize to n variables. We see that the coefficient of mµc(Xn) is K
(1)
λc,µc(q, t). Here

we have used the fact that mµc(Xn) 6= 0 since µ ⊂ (mn). Comparing with (87), we get
the desired statement for K(1). By considering

mλ =
∑
ν≤λ

(K(1))−1λ,ν(q, t)Pν(q, t) , (89)

we get the inverse statement for K(1). The proof for (K(2))±1 is obtained by replacing
the mµ’s in the above argument by sµ’s everywhere. �
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6. Multiplicity-one pairs

In this section we finish the proof that Hag′(λ, µ) holds for all pairs (λ, µ) such that
eitherKλ,µ = 1 orKµ′,λ′ = 1. We recall the reduction principle given in the introduction.

Let λ, µ ∈ Par such that λ ≥ µ. We can always decompose λ = (λ1, . . . , λr) and
µ = (µ1, . . . , µr) where λ1, . . . λr, µ1, . . . , µr are partitions such that, for i ∈ {1, . . . r},
λi ≥ µi and, for i ∈ {1, . . . r − 1}, `(λi) = `(µi). Then, for i = 1, 2, by Lemma 4.2 we
have

(K(i))±1λ,µ(q, t) =
r∏
j=1

(K(i))±1
λj ,µj

(q, t) . (90)

For j ∈ {1, . . . , r − 1}, each pair (λj, µj) contains a common rectangle of row length
at least λj+1

1 . By Corollary 4.1, proving the dual Haglund conjecture is equivalent to
proving it for each pair (λj, µj) with these rectangles removed. We can repeat this
process for each pair until no further decomposition is possible.

Therefore, to prove the dual Haglund’s conjecture we only need to prove Hag′(λ, µ) for
pairs of partitions (λ, µ) which are irreducible, i.e., which satisfy λ ≥ µ and λ1+· · ·+λi >
µ1 + · · ·+ µi for 1 ≤ i ≤ `(λ).

6.1. The case where Kλ,µ = 1. Recall the characterization of irreducible pairs (λ, µ)
with Kλ,µ = 1 given in Theorem 1.2. Case 2 of Theorem 1.2 is already done by
Corollary 3.1. Now consider Case 1 of Theorem 1.2. Let λ = (mn) ≥ µ and `(µ) = n+1.
Since λ and µ are both contained in (mn+1), by Corollary 5.1 we have

(K(i))±1λ,µ(q, t) = (K(i))±1(m),µc(q, t), for i = 1, 2. (91)

Here µc = (m−µn+1, · · ·−µ1) is the complement of µ in the rectangle (mn+1), and (m)
is the complement of λ.

In particular, K
(2)
λ,µ = K

(2)
(m),µc implies

kλ,µ(q, t) = k(m),µc(q, t)
c′µ(q, t)

c′µc(q, t)
. (92)

Note that c′µ is a product of |µ| = mn many terms, c′µc is a product of m(n + 1) −
|µ| = m many terms. If all terms in the denominator cancel off with terms in c′µ then
c′µ(q, t)

c′µc(q, t)
will be a product of mn−m terms each of the form (1− qαtβ) for α, β ∈ Z≥0.

Substituting q = tk and dividing by (1− t), we get
1− tkα+β

1− t
∈ Z≥0[t]. Since we know

k(m),µc(t
k, t)

(1− t)m
∈ Z≥0 by Corollary 3.1, this would imply that

kλ,µ(tk, t)

(1− t)mn
∈ Z≥0[t]. To prove

that
c′µ(q, t)

c′µc(q, t)
is a product of mn−m terms, each of the form (1− qαtβ) for α, β ∈ Z≥0,

we consider fµ(q, t) =
∑

x∈µ q
a(x)tl(x) and show that fµ(q, t) − fµc(q, t) ∈ Z≥0[q, t].

Since each monomial qαtβ (counted with multiplicity) that occurs in fµ(q, t)− fµc(q, t)

corresponds to a term (1− qα+1tβ) in
c′µ
c′µc

, this is clearly sufficient.
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Lemma 6.1. Let µ ∈ Par. Then

fµ(q, t) =

`(µ)−1∑
j=0

tj
( `(µ)−j∑

i=1

qµi−µi+j [µi+j − µi+j+1]q

)
. (93)

Proof. For i ∈ {1, . . . `(µ)}, in the i-th row of µ the rightmost µi − µi+1 many boxes
have leg length 0 and arm lengths 0, . . . , µi−µi+1−1. The next µi+1−µi+2 many boxes
from the right have leg length 1 and arm lengths µi−µi+1, . . . , µi−µi+2− 1 and so on.
Hence the contribution of the i-th row to fµ(q, t) is

`(µ)−i∑
j=0

tjqµi−µi+j [µi+j − µi+j+1]q . (94)

So,

fµ(q, t) =

`(µ)∑
i=1

`(µ)−i∑
j=0

tjqµi−µi+j [µi+j − µi+j+1]q (95)

=

`(µ)−1∑
j=0

tj
( `(µ)−j∑

i=1

qµi−µi+j [µi+j − µi+j+1]q

)
. �

Corollary 6.1. Let µ ⊂ (mn+1), with µ1 < m and `(µ) = n + 1. Let µc denote the
complement of µ in (mn+1). Then

fµ(q, t)− fµc(q, t) =
1

1− q

n∑
j=0

tj(qµ
c
n+1−j − qµn+1−j) . (96)

Proof. We have

fµ(q, t) =
n∑
j=0

tj
( n−j∑

i=1

qµi−µi+j [µi+j − µi+j+1]q + qµn+1−j−µn+1 [µn+1]q

)
. (97)

Since (µc)i = m− µn+2−i, we have `(µc) = n+ 1 since µ1 < m. Thus

fµc(q, t) =
n+1∑
j=0

tj
( n−j∑

i=1

qµn+2−i−j−µn+2−i [µn+1−i−j − µn+2−i−j]q

+ qµ1−µn+2−n−1+j [m− µ1]q

)
=

n+1∑
j=0

tj
( n−j∑

i′=1

qµi′+1−µi′+j+1 [µi′ − µi′+1]q + qµ1−µj+1 [m− µ1]q

)
.
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Therefore the coefficient of tj in fµ(q, t)− fµc(q, t) is

1

1− q

( n−j∑
i=1

(qµi−µi+j − qµi−µi+j+1)−
n−j∑
i′=1

(qµi′+1−µi′+j+1 − qµi′−µi′+j+1)

kern3cm+ qµn+1−j−µn+1 − qµn+1−j − qµ1−µj+1 + qm−µj+1

)
=

1

1− q

(
qµ1−µ1+j − qµn+1−j−µn+1 + qµn+1−j−µn+1 − qµn+1−j − qµ1−µj+1 + qm−µj+1

)
=

1

1− q
(qm−µj+1 − qµn+1−j) =

1

1− q
(qµ

c
n+1−j − qµn+1−j) . �

Lemma 6.2. Suppose µ ` mn, `(µ) = n + 1, and µ ⊂ (mn+1). Then, for all i ∈
{1, . . . , n+ 1}, we have µci ≤ µi.

Proof. Suppose µci = m− µn+2−i > µi for some i ∈ {1, . . . , n+ 1}.
If i 6= n+ 2− i, then

(n− 1)µ1 ≥
∑

j /∈{i,n+2−i}

µj = |µ| − (µi + µn+2−i) > (n− 1)m, (98)

which implies µ1 > m, a contradiction.
If i = n+ 2− i, then m− µn+2−i > µi implies 2µi < m. Consequently,

2(n− 1)µ1 ≥ 2
∑
j 6=i

µj = 2|µ| − 2µi > m(2n− 1). (99)

Since m ≥ µ1, we get 2(n− 1) > 2n− 1, a contradiction. �

With the assumptions of Corollary 6.1, by Lemma 6.2 we have

fµ(q, t)− fµc(q, t) ∈ Z≥0[q, t]. (100)

Corollary 6.2. Hag′(λ, µ) is true whenever Kλ,µ = 1.

Proof. We showed that, if λ, µ is an irreducible pair with Kλ,µ = 1, then Hag′(λ, µ) is
true. Corollary 4.1 shows that Hag′(λ, µ) remains true when patching together irre-
ducible pairs. �

6.2. The case where Kµ′,λ′ = 1.

Proposition 6.1. Hag′(λ, µ) is true whenever Kµ′,λ′ = 1.

Proof. Suppose λ, µ ∈ Par such that Kµ′,λ′ = 1. To compute kλ,µ(q, t), in the earlier

case we used K
(2)
λ,µ(q, t). Here we use (K(2))−1µ′,λ′(t, q). This amounts to applying the

equality between the far left-hand side and the far right-hand side in (30). As before,
by use of Lemma 4.2 and Lemma 4.3, we reduce the calculation of (K(2))−1µ′,λ′(t, q) to
the case where µ′, λ′ is an irreducible pair. The case where µ′ = (m) for some m is done
by Corollary 3.1. Let µ′ = (mn) and `(λ′) = n+ 1. By Corollary 5.1, we have

(K(2))−1µ′,λ′(t, q) = (K(2))−1(m),λ′c(t, q). (101)
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Hence, by (30),

kλ,µ(q, t) = kλc,(1m)(q, t)
c(mn)(q, t)

c(m)(q, t)
. (102)

In
c(mn)(q, t)

c(m)(q, t)
, the contribution from the last row of (mn) cancels with the contribution

from (m), so it is a product of mn − 1 terms each of the form 1 − qαtβ for some

α, β ∈ Z≥0. Since, by Corollary 3.1,
kλc,1m(tk, t)

(1− t)m
∈ Z≥0[t], this implies Hag′(λ, µ) for

λ, µ, and hence for all pairs λ, µ with Kµ′,λ′ = 1 when µ′, λ′ is irreducible. Applying
Corollary 4.1, we conclude the statement for general λ, µ with Kµ′,λ′ = 1. �
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