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REVISITING GENERALIZATIONS OF THE DEHN–SOMMERVILLE
RELATIONS

CESAR CEBALLOS AND HENRI MÜHLE

ABSTRACT. In this survey-like article, we revisit several known versions of the
Dehn–Sommerville relations in the context of:
• homology manifolds;
• semi-Eulerian complexes;
• general simplicial complexes;
• balanced semi-Eulerian complexes; and
• general completely balanced complexes.

In addition, we present Dehn–Sommerville relations for
• reciprocal complexes; and
• general balanced simplicial complexes;

which slightly generalize some of the previous results.
Our proofs are uniform, and are based on two simple evaluations of the h̃-poly-

nomial: one that recovers the f̃ -polynomial, and one that counts faces according to
certain multiplicities.

1. INTRODUCTION

The Dehn–Sommerville relations are historically one of the key stones in the study
of f -vectors of polytopes, simplicial complexes and manifolds in general. They con-
stitute a system of linear relations that the f -numbers satisfy, which generalize the
well-known Euler-Poincaré formula for simplicial polytopes (or spheres):

f0 − f1 + f2 − f3 + · · ·+ (−1)d−1 fd−1 = (−1)d−1 + 1

In their simpler form, for instance for simplicial polytopes or simplicial spheres, the
Dehn–Sommerville relations can be stated as:

fk−1 =
d

∑
i=k

(−1)d−i
(

i
k

)
fi−1,

where f j counts the number of j-dimensional faces of the complex. Equivalently,

hd−i = hi

where h0, h1, . . . , hd are the so called h-numbers.
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In his seminal work from 1964, Klee proved a version of the Dehn–Sommerville
relations for a more general class of simplicial complexes called semi-Eulerian com-
plexes [8]. Since then, several other versions have been rediscovered by many au-
thors over and over again. The following list includes some generalizations of the
Dehn–Sommerville relations for:

• semi-Eulerian complexes; Klee [8].
• homology manifolds; Macdonald [9] (see Remark 3.4 and Appendix A),

Gräbe [5], Chen and Yan [4], Novik and Swartz [12].
• completely balanced spheres (or more generally, completely balanced Euler-

ian complexes); Bayer and Billera [2].
• balanced semi-Eulerian complexes; Swartz [17].
• general simplicial complexes; Sawaske and Xue [13].
• general completely balanced complexes; Sawaske and Xue [13].

In this paper, we present uniform proofs for all these results. Our key ingredi-
ents are two elementary evaluations of the h̃-polynomial h̃(x) = ∑d

i=0 hixi, which
are stated in Theorem 2.1 and Theorem 2.2. The first recovers the f̃ -polynomial
f̃ (x) = ∑d

i=0 fi−1xi, while the second counts faces of the complex with certain mul-
tiplicities that depend on the reduced Euler characteristic of their links. From these
two theorems one deduces a single polynomial relation; comparing the coefficients
on both sides of this relation determines the Dehn–Sommerville relations.

This allows us to extend the previous results for (1) a new family of simplicial
complexes that we call reciprocal complexes, and for (2) general balanced simplicial
complexes, extending results by Swartz [17] and Sawaske-Xue [13]. For us, reciprocal
complexes are a very natural generalization of homology manifolds, which provide
the right context (with necessary and sufficient conditions) where the analog Dehn-
Sommerville relations hold.

Finally, we relate Theorem 2.2, which we call “the f = h reciprocity”, with a reci-
procity result of Stanley about the Hilbert series of the Stanley–Reisner ring (Ap-
pendix C). This last result is a common tool in several of the existing proofs of the
Dehn–Sommerville relations. We highlight that our proofs do no require any back-
ground about Stanley–Reisner rings.

We would also like to mention that there are further generalizations of the Dehn–
Sommerville relations which are not discussed in this manuscript. For instance, the
Dehn–Sommerville relations for Eulerian posets by Bayer and Billera [2], completely
balanced semi-Eulerian posets by Stanley [15], or relative simplicial complexes in the
weakly Eulerian case by Adiprasito and Sanyal [1]. We expect that the techniques
presented in this paper can be used to prove these results as well.

2. THE f=h RECIPROCITY FOR SIMPLICIAL COMPLEXES

A simplicial complex ∆ is a collection of sets (called faces) that is closed under taking
subsets. The union of all these sets is called the vertex set of the complex. The dimen-
sion dim(F) of F ∈ ∆ is |F| − 1, and the dimension dim(∆) is the largest dimension of a
face F in ∆. The link of a face F ∈ ∆ is the set lk∆F of faces G ∈ ∆ such that G ∩ F = ∅
and G ∪ F ∈ ∆.
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From now on we consider a finite simplicial complex ∆ of dimension d− 1 whose
vertex set is {1, 2, . . . , n}. The f -vector of ∆ is defined as

f (∆) def
= ( f−1, f0, . . . , fd−1),

where fi is equal to the number of i-dimensional faces in ∆ for 0 ≤ i ≤ d− 1, and

f−1
def
= 1 represents the empty face. The reduced Euler characteristic and Euler char-

acteristic of ∆ are defined respectively by:

χ̃(∆) def
=

d

∑
i=0

(−1)i−1 fi−1, χ(∆) def
=

d

∑
i=1

(−1)i−1 fi−1.

In particular, χ̃(∆) = χ(∆)− 1, where the term −1 accounts for the empty face. The
h-vector of ∆ is the vector

h(∆) def
= (h0, h1, . . . , hd),

which is defined in terms of the f -vector via the relation

(1)
d

∑
i=0

hixi =
d

∑
i=0

fi−1xi(1− x)d−i.

The study of h-vectors has historically proven to be a powerful tool in the study
of f -vectors of polytopes, simplicial complexes and manifolds in general. Impor-
tant results about their face numbers (e.g. the Dehn–Sommerville relations) can be
elegantly formulated and/or proven using h-vectors instead.

We define the f̃ -polynomial and the h̃-polynomial of ∆ as:

f̃ (x) def
=

d

∑
i=0

fi−1xi, h̃(x) def
=

d

∑
i=0

hixi.(2)

The reason why we use a tilde in our notation is because there are commonly used
notions of f -polynomials and h-polynomials in the literature, which are defined by

f (x) def
=

d

∑
i=0

fi−1xd−i, h(x) def
=

d

∑
i=0

hixd−i.(3)

The relation (1) between the f - and the h-vector is equivalent to the simpler formu-
lation

f (x) = h(x + 1).(4)

Our definitions of the f̃ - and h̃-polynomial reverse the coefficients of the f - and h-
polynomial. These choices are more convenient for our purposes.

In particular, the various generalizations of the Dehn–Sommerville relations pre-
sented in this paper are simple consequences of the following two basic results. The
first is an evaluation of the h̃-polynomial that recovers the f̃ -polynomial, while the
second is another evaluation that counts faces with certain multiplicities.
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Theorem 2.1. Let ∆ be an abstract simplicial complex of dimension d− 1 with f̃ -polynomial
f̃ (x) and h̃-polynomial h̃(x). The following relation holds:

(x + 1)dh̃
(

x
x + 1

)
= f̃ (x).(5)

Proof. Replacing x by x
x+1 in (1), and multiplying the result by (x + 1)d yields

(x + 1)dh̃
(

x
x + 1

)
= (x + 1)d

d

∑
i=0

fi−1

(
x

x + 1

)i ( 1
x + 1

)d−i
=

d

∑
i=0

fi−1xi = f̃ (x),

as desired. �

Theorem 2.2 (THE f=h RECIPROCITY FOR SIMPLICIAL COMPLEXES). Let ∆ be an ab-
stract simplicial complex of dimension d− 1 with h̃-polynomial h̃(x). Then,

(6) xdh̃
(

x + 1
x

)
= ∑

F∈∆
mFx|F|,

where

(7) mF
def
= ∑

F⊆G∈∆
(−1)d−|G| = (−1)d−1−|F|χ̃

(
lk∆F

)
.

That is, the evaluation xdh̃( x+1
x ) enumerates the faces of the complex with multiplicity mF,

which is given by a signed reduced Euler characteristic of their links. In particular, the
multiplicity of the empty face is

(8) m∅ = (−1)d−1χ̃
(
∆
)
.

Proof. From a direct substitution in (1) we get:

xdh̃
(

x + 1
x

)
=

d

∑
i=0

fi−1(x + 1)i(−1)d−i.

Let xF = ∏i∈F xi, and define the auxiliary multivariate function

f̃(x1, . . . , xn)
def
= ∑

G∈∆

(
∑

F⊆G
xF

)
(−1)d−|G|

= ∑
F∈∆

xF

(
∑

F⊆G∈∆
(−1)d−|G|

)

Equation (2) can then be expressed as

xdh̃
(

x + 1
x

)
= f̃(x, . . . , x) = ∑

F∈∆
mFx|F|,

for mF = ∑F⊆G∈∆(−1)d−|G| as desired. Moreover,

d− |G| =
(
|G| − |F| − 1

)
+
(
d− 1− |F|

)
+ 2
(
|F| − |G|+ 1

)

and so, we have:

mF = ∑
F⊆G∈∆

(−1)d−|G|
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= ∑
F⊆G∈∆

(−1)|G|−|F|−1(−1)d−1−|F|

= (−1)d−1−|F|χ̃
(
lk∆F

)
.

This proves (7).
Finally, for F = ∅ we have lk∆∅ = ∆ and m∅ = (−1)d−1χ̃

(
∆
)
. This proves (8). �

Examples of Theorem 2.2 are presented in Section 7 and Figure 2.

Remark 2.3. So far, we were not able to find an explicit reference for Theorem 2.2 in
the literature, at least in this basic form. However, we will show in Appendix C that
Theorem 2.2 (and its multi-variate generalization in Theorem 6.2) is equivalent to a
specialization of a reciprocity result by Stanley [16, Theorem 7.1] about the Hilbert
series of the Stanley–Reisner ring.

3. HOMOLOGY MANIFOLDS

Theorem 2.2 has nice implications in the case of homology manifolds. As we will
see shortly, the multiplicity mF of a non-empty face in a homology manifold is equal
to zero when F is a boundary face and to one otherwise. The face enumeration of ho-
mology manifolds is studied comprehensively by Swartz in [17], and the definitions
presented here follow his conventions, see [17, Section 2].

Fix a field k. A simplicial complex ∆ is called a homology manifold if for every
non-empty face F ∈ ∆, the reduced simplicial homology H̃i

(
lk∆F;k

)
vanishes if i <

d − 1 − |F| and is isomorphic to k or 0 if i = d − 1 − |F|. In other words, the k-
homology H?

(
lk∆F;k

)
is isomorphic to either the k-homology of a sphere Sd−1−|F|

or a ball Bd−1−|F| (the exponent here denotes the dimension). A non-empty face
F ∈ ∆ is called a boundary face if Hd−1−|F|

(
lk∆F;k

)
= 0, that is, if its link has the

homology of a ball. The boundary ∂∆ is defined as the sub-complex consisting of the
empty face and all non-empty boundary faces. The faces that are not contained in
the boundary are called interior, that is the non-empty faces whose links have the
homology of a sphere.

Proposition 3.1. Let ∆ be a homology manifold. For a non-empty face F ∈ ∆,

mF =

{
0, if F ∈ ∂∆,
1, otherwise.

Proof. Recall that the reduced Euler characteristic of a ball (regardless of its dimen-
sion) is equal to zero, and that the reduced Euler characteristic of an `-dimensional
sphere is equal to (−1)`. Since the reduced Euler characteristic is a homology invari-
ant, we deduce that for a non-empty face F,

mF = (−1)d−1−|F|χ̃
(
lk∆F

)

is equal to zero if lk∆F has the homology of a ball, and is equal to one if it has the
homology of a sphere. These are precisely the definitions of boundary and interior
faces, respectively. �
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We denote by f inti the number of i-dimensional interior faces of ∆ for i ∈ {0, 1,
. . . , d}, and define the f̃ int-polynomial by

f̃ int(x) def
=

d

∑
i=1

f inti−1xi.(9)

Note that the sum starts at i = 1 and does not include the empty face.

Corollary 3.2. Let ∆ be a homology manifold of dimension d− 1. Then

(10) xdh̃
(

x + 1
x

)
= f̃ int(x) + m∅.

Proof. Applying Theorem 2.2, we see that the terms in the sum of Equation (6) that
correspond to (non-empty) boundary faces vanish (mF = 0), while the ones corre-
sponding to interior faces are counted with multiplicity one (mF = 1). Therefore,

xdh̃
(

x + 1
x

)
= ∑

∅ 6=F∈∆
mFx|F| + m∅ =

d

∑
i=1

f inti−1xi + m∅. �

Theorem 3.3 (POLYNOMIAL DEHN–SOMMERVILLE RELATION FOR HOMOLOGY
MANIFOLDS). Let ∆ be a homology manifold of dimension d− 1. Then,

(−1)d f̃ (x) = f̃ int(−x− 1) + m∅.(11)

Proof. Replacing x by −x− 1 in Equation (10) yields

(−1)d(x + 1)dh̃
(

x
x + 1

)
= f̃ int(−x− 1) + m∅.

The left hand side is equal to (−1)d f̃ (x) by Theorem 2.1. �

Remark 3.4. In 1971, Macdonald proved a polynomial relation satisfied for finite
simplicial complexes whose underlying topological space is a manifold [9, Theo-
rem 2.1]. In Appendix A, we will show that Equation (11) implies Macdonald’s rela-
tion, and explain why Macdonald’s relation is less general. As far as we know, Mac-
donald’s polynomial relation is the first appearance of a weaker instance1 of Dehn–
Sommerville relations for manifolds. As we will see in Corollary 3.5, the polynomial
relation (11) implies a system of linear relations satisfied by the face and interior face
numbers of the complex. Such linear relations were found independently by Gräbe
in 1987 [5, Theorem 2.1] and by Chen and Yan in 1997 [4, Lemma 8] (both in the form
of Equation (16) further below). An h-version of the relations was proven by Novik
and Swartz in 2009 [12, Theorem 3.1].

Corollary 3.5 ([4, 5, 9, 12] DEHN–SOMMERVILLE RELATIONS FOR HOMOLOGY MAN-
IFOLDS, f -VERSION). Let ∆ be a homology manifold of dimension d − 1. The following
relations hold:

for k ≥ 1, fk−1 =
d

∑
i=k

(−1)d−i
(

i
k

)
f inti−1.(12)

1Not all relations in (12) follow from Macdonald’s polynomial relation; see Appendix A for details.
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for k = 0, f−1 =
d

∑
i=1

(−1)d−i f inti−1 + (−1)dm∅.(13)

The second relation is equivalent to the perhaps more elegant formulation:

χ(∆) = (−1)d−1χ(∆int),(14)

where χ(∆int)
def
= ∑d

i=1(−1)i−1 f inti−1.

Proof. This result is essentially a reformulation of the polynomial Dehn–Sommerville
relation in Equation (11), which states that

(−1)d f̃ (x) = f̃ int
(
−(x + 1)

)
+ m∅.

In order to prove the corollary, we just need to compare the coefficients of the polyno-
mials on both sides of this equation. Since m∅ = (−1)d−1χ̃(∆) is a constant number,
we split the analysis into two cases: the coefficient of xk for k ≥ 1, and the coefficient
of x0 (constant term, k = 0).

For k ≥ 1, we have

(−1)d fk−1 =
d

∑
i=k

(−1)i
(

i
k

)
f inti−1.

Equation (12) follows by multiplying by (−1)d and using (−1)d+i = (−1)d−i.
For k = 0, we proceed similarly using the extra constant term m∅:

(−1)d f−1 =
d

∑
i=1

(−1)i f inti−1 + m∅.

Equation (13) follows by multiplying again by (−1)d and using (−1)d+i = (−1)d−i.
Finally, we need to argue that Equation (13) is equivalent to Equation (14). For this

we just need to simplify Equation (13). We obtain

1 = f−1 = (−1)d−1
d

∑
i=1

(−1)i−1 f inti−1 + (−1)dm∅ = (−1)d−1χ(∆int) + (−1)dm∅.

By (8), we have that 1− (−1)dm∅ = 1 + χ̃(∆) = χ(∆). Thus,

χ(∆) = (−1)d−1χ(∆int)

as desired. �

Example 3.6. Consider the simplicial complex ∆ of dimension d− 1 = 2 illustrated in
Figure 1. It is obtained by subdividing a rectangle into four triangles and identify-
ing the top and bottom edges of the rectangle as shown. The result is a triangulated
cylinder. This is a triangulated manifold with boundary, and in particular a homol-
ogy manifold.

This triangulated manifold consists of 4 vertices, 8 edges and 4 triangles. The f -
vector is then ( f−1, f0, f1, f2) = (1, 4, 8, 4). There are no interior vertices, only 4 of
the edges are interior (the diagonal edges, and the top and bottom edge), and the 4
triangles are interior. Thus, the f int-vector is ( f int0 , f int1 , f int2 ) = (0, 4, 4).
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a b

c d

a b

c d

a b

Figure 1. Example of a homology manifold: a triangulated cylinder
with boundary. The bottom and top edges of the rectangle on the left
are identified giving rise to the cylinder on the right.

The Dehn–Sommerville relations in Corollary 3.5 give the following linear rela-
tions for k ≥ 1:

for k = 1, f0 = f int0 − 2 f int1 + 3 f int2 ,

for k = 2, f1 = − f int1 + 3 f int2 ,

for k = 3, f2 = f int2 ,

which can be easily verified by plugging in the numbers. For k = 0, we obtain
χ(∆) = (−1)2χ(∆int), which is verified by

f0 − f1 + f2 = f int0 − f int1 + f int2

4− 8 + 4 = 0− 4 + 4.

Note that this last relation is just a linear combination of the first three.

Remark 3.7. In general, Equation (14) (or equivalently, Equation (13)) is a linear com-
bination of the equations in (12). Thus, (12) alone may be regarded as the Dehn–
Sommerville relations.

4. RECIPROCAL COMPLEXES AND SEMI-EULERIAN COMPLEXES

Motivated by homology manifolds, we introduce a more general family of simpli-
cial complexes which we call reciprocal complexes. A simplicial complex ∆ is called
reciprocal if mF ∈ {0, 1} for every non-empty face F ∈ ∆. A non-empty face F ∈ ∆ is
called a boundary face if mF = 0, and it is called interior if mF = 1. The empty face is
considered to be a boundary face by definition. We say that ∆ is a complex without
boundary if the only boundary face is the empty face. As above, we denote by f inti the
number of i-dimensional interior faces of ∆ for i ∈ {0, 1, . . . , d− 1}, and by f̃ int(x) its
f̃ int-polynomial.

One interesting sub-class of examples is the collection of reciprocal complexes
without boundary. These simplicial complexes are well studied in the literature and
are called semi-Eulerian. They were introduced in the seminal work [8] by Klee,
where he proves that semi-Eulerian complexes satisfy a general version of the Dehn–
Sommerville relations that was previously known for boundary complexes of sim-
plicial polytopes.

A simplicial complex ∆ is called semi-Eulerian if every non-empty face F ∈ ∆ has
multiplicity mF = 1, or equivalently

χ̃
(
lk∆F

)
= (−1)d−1−|F|.(15)
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That is, the link of a non-empty face has the same reduced Euler characteristic as a
sphere of dimension d− 1− |F|. If in addition, χ̃

(
∆
)
= χ̃

(
Sd−1) = (−1)d−1 where

Sd−1 denotes a (d− 1)-sphere, then ∆ is called an Eulerian complex (this is equivalent
to m∅ = 1).2 For instance, every simplicial sphere is Eulerian.

The next lemma follows by definition.

Lemma 4.1. A simplicial complex ∆ is semi-Eulerian if and only if ∆ is a reciprocal complex
without boundary. In this case, f inti = fi for 0 ≤ i ≤ d− 1.

Note that the proofs of the Dehn–Sommerville relations for homology manifolds
in Section 3 only rely on the fact that mF ∈ {0, 1} for every non-empty face F ∈ ∆.
So, the same proofs apply for reciprocal complexes and semi-Eulerian complexes.
Part (2) of the following theorem, restricted to the case of semi-Eulerian complexes,
is equivalent to [8, Theorem 3.2].

Theorem 4.2 (DEHN–SOMMERVILLE RELATIONS FOR RECIPROCAL COMPLEXES,
f -VERSION). Let ∆ be a reciprocal complex of dimension d − 1 (for example a homology
manifold or a semi-Eulerian complex). The following hold:

(1) the polynomial Dehn–Sommerville relation (11) in Theorem 3.3;
(2) the Dehn–Sommerville relations (12) and (13)-(14) in Corollary 3.5.

Equation (14) has a nice implication for semi-Eulerian complexes. Let ∆ be an odd-
dimensional semi-Eulerian complex (a reciprocal complex without boundary). Then,
f inti = fi for 0 ≤ i ≤ d− 1, and so χ(∆) = χ(∆int). Combining this with Equation (14)
and the assumption that d − 1 is odd yields χ(∆) = −χ(∆). Therefore, χ(∆) = 0,
which is equal to the Euler characteristic of an odd-dimensional sphere. From this
we deduce that every odd-dimensional semi-Eulerian complex is Eulerian, a known
result.

Equation (12) expresses the face numbers of reciprocal complexes as linear com-
binations of the interior face numbers. Conversely, we can also express the interior
face numbers as (the same) linear combinations of the face numbers.

Corollary 4.3. Let ∆ be a reciprocal complex of dimension d− 1 (for example a homology
manifold or a semi-Eulerian complex). For k ≥ 1, the following relations hold:

f intk−1 =
d

∑
i=k

(−1)d−i
(

i
k

)
fi−1.(16)

Proof. The proof of this result is the same as the proof of (12) in Corollary 3.5. The
only difference is that in this case we compare the coefficients of xk for k ≥ 1 in the
polynomial relation

(−1)d f̃ int(x) = f̃ (−x− 1)− (−1)dm∅,(17)

which is equivalent to the polynomial Dehn–Sommerville relation (11) used in the
proof of (12). �

We invite the reader to check that these relations hold for our Example 3.6.

2Semi-Eulerian complexes as stated here are called Eulerian complexes in [8]. We follow the con-
vention used in [17].
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4.1. Two questions. Reciprocal complexes are interesting objects on their own. They
have similarities with the SB-lattices of P. Hersh and K. Mészáros in [7] (via their face
posets), whose Möbius function takes values from the set {−1, 0, 1}.

We highlight two (topological) questions about reciprocal complexes. The first
question is about their relation to homology manifolds. As we pointed out already,
homology manifolds are particular cases of reciprocal complexes, but one may won-
der if the opposite statement holds.

Question 4.4. Are there reciprocal complexes that are not homology manifolds?

Isabella Novik [11] pointed out to us an affirmative answer to this question:
“ There are plenty reciprocal complexes that are not homology mani-
folds as there are plenty of semi-Eulerian complexes that are not ho-
mology manifolds. For instance, consider the “double banana” space,
i.e.,two 2-dimensional spheres that are glued along two points. (As an
example, take two copies of the boundary complex of octahedron and
attach them by identifying two opposite vertices of the first copy with
two opposite vertices of the second.) This space is even Eulerian, but
it is definitely not a homology manifold as the link of each of the two
special points is the union of two circles.

Most importantly, while all homology spheres, all odd-dimensional
closed homology manifolds3 as well as all even-dimensional closed ho-
mology manifolds of characteristic two are Eulerian, there are plenty of
other Eulerian complexes. Similarly, while all closed homology man-
ifolds are semi-Eulerian, there are plenty of other semi-Eulerian com-
plexes.”

In the same spirit, we remark that there are plenty of reciprocal complexes which
are not semi-Eulerian. As an explicit example, remove a triangle from the “double
banana” described above. In this case, the multiplicity mF of any vertex or edge of
this removed triangle is equal to zero, while the multiplicity of all other non-empty
faces is equal to one.

The second question is related to the structure of boundary faces of reciprocal
complexes. Recall that a non-empty face F ∈ ∆ is called a boundary face if m∅ = 0.
It is not clear from this definition whether the collection of boundary faces gives a
sub-complex.

Question 4.5. Is the collection of boundary faces of a reciprocal complex ∆ a sub-
complex? In other words, is the face of a boundary face also a boundary face? If so,
is the boundary ∂∆ a codimension 1 sub-complex? Is it reciprocal?

The subtle study of the boundary complex of homology manifolds is investigated
in [6] (see also [5]) and [10]. Quoting [5]:

“ . . . nothing can be said about the behavior of this boundary if ∆ is
a non-orientable homology N-manifold. Thus let us call Bd ∆ a good
boundary if it is a homology (N − 1)-manifold without boundary. All
finite triangulations of topological manifolds are so. ”

3A closed homology manifold refers to a homology manifold without boundary.
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5. GENERAL SIMPLICIAL COMPLEXES

In this section, we present the h-version of the Dehn–Sommerville relations for ar-
bitrary abstract simplicial complexes as recently shown by Sawaske and Xue in [13].
As a corollary, one obtains the h-version of Klee’s Dehn–Sommerville relations for
semi-Eulerian complexes [8].

As before, these results are straightforward consequences of the two evalua-
tions (5) and (6) of the h̃-polynomial in Theorem 2.1 and Theorem 2.2, respectively.
We highlight that these two theorems are the essence of the Dehn–Sommerville rela-
tions.

Following [13], we define the error εF of a face F ∈ ∆ as

εF
def
= χ̃

(
lk∆F

)
− (−1)d−1−|F|,(18)

or equivalently,

εF = (−1)d−1−|F|(mF − 1).(19)

Note that lk∆F has dimension d − 1 − |F|, and (−1)d−1−|F| is the reduced Euler
characteristic of a sphere of this dimension.

Theorem 5.1 (POLYNOMIAL DEHN–SOMMERVILLE RELATION FOR SIMPLICIAL COM-
PLEXES, h-VERSION). Let ∆ be a simplicial complex of dimension d − 1. The following
relation holds:

d

∑
i=0

(hi − hd−i)(x + 1)ixd−i = ∑
F∈∆

(mF − 1)x|F|.(20)

Proof. The left hand side of (20) is equal to the difference between two evaluations of
the h̃-polynomial:

xdh̃
(x + 1

x
)
− (x + 1)dh̃

( x
x + 1

)
.

The result then follows from Equations (6) and (5). �

The following corollary was proven in [13, Theorem 3.1]4.

Corollary 5.2 ([13] DEHN–SOMMERVILLE RELATIONS FOR SIMPLICIAL COMPLEXES,
h-VERSION). Let ∆ be a simplicial complex of dimension d − 1. For i = 0, 1, . . . , d, the
following relations hold:

hd−i − hi = (−1)i ∑
F∈∆

(
d− |F|

i

)
εF.(21)

Proof. This result is a reformulation of the polynomial Dehn–Sommerville rela-
tion (20). As pointed out in Appendix B (Proposition B.1), the collection

{
(x + 1)ixd−i : 0 ≤ i ≤ d

}

4In [13, Theorem 3.1], the result is stated only for pure simplicial complexes. The same result holds
for non-pure complexes as stated in Corollary 5.2.
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forms a basis for the vector space of polynomials of degree less than or equal to d.
Thus, we just need to expand x|F| in this basis, and extract the coefficient of
(x + 1)ixd−i. By (58), this coefficient is equal to

(−1)d−|F|−i
(

d− |F|
i

)
.

Multiplying by (mF − 1) and taking the sum over all F ∈ ∆ we get

hi − hd−i = ∑
F∈∆

(mF − 1)(−1)d−|F|−i
(

d− |F|
i

)

= − ∑
F∈∆

(−1)i
(

d− |F|
i

)
εF. (by (19))

This is equivalent to (21) as desired. �

Corollary 5.3 ([8] DEHN–SOMMERVILLE RELATIONS FOR SEMI-EULERIAN COM-
PLEXES, h-VERSION). Let ∆ be a semi-Eulerian complex of dimension d − 1. For i =
0, 1, . . . , d, the following relations hold:

hd−i − hi = (−1)i
(

d
i

)(
χ̃(∆)− (−1)d−1).(22)

In particular, if ∆ is Eulerian then hd−i = hi.

Proof. If ∆ is semi-Eulerian then εF = 0 for every non-empty face. So, the only term
that survives in the sum (21) corresponds to F = ∅, and

hd−i − hi = (−1)i
(

d
i

)
ε∅ = (−1)i

(
d
i

)(
χ̃
(
∆
)
− (−1)d−1).

In addition, if ∆ is Eulerian then χ̃
(
∆
)
− (−1)d−1 = 0 and hd−i = hi. �

6. BALANCED SIMPLICIAL COMPLEXES

In this section we revisit several versions of the Dehn–Sommerville relations for
balanced simplicial complexes, a concept introduced by Stanley in [14]. We present
a new version in Theorem 6.4, which

• recovers the Dehn–Sommerville relations for balanced semi-Eulerian com-
plexes by Swartz [17] (Corollary 6.5), as well as the specialization for com-
pletely balanced Eulerian complexes by Bayer and Billera in [2]; and
• generalizes the recent Dehn–Sommerville relations for completely balanced

simplicial complexes by Sawaske and Xue [13] (Corollary 6.6).
Let N = {0, 1, 2, . . . } be the set of non-negative integers, m be a positive integer

and a = (a1, . . . , am) ∈ Nm. A simplicial complex ∆ of dimension d− 1 with vertex
set V is called balanced of type a, if it is equipped with a vertex coloring κ : V → [m]
such that for every maximal face F ∈ ∆ the number of vertices in F with color i is

equal to ai. Hence, |a| def= a1 + · · ·+ am = d and ∆ is pure. Balanced complexes of
type (1, 1, . . . , 1) are called completely balanced.
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For F ∈ ∆ we denote by b(F) = (b1, . . . , bm) the vector whose entries count the
number of vertices in F with color i, that is

bi =
∣∣{v ∈ F : κ(v) = i}

∣∣.
The flag f -vector of ∆ is the collection

(
fb
)

b≤a where b ∈ Nm and fb counts the
number of faces F in ∆ such that b(F) = b. The numbers fb are called the flag f -
numbers. The flag f̃ -polynomial f̃ (x) ∈ Z[x1, . . . , xm] is a polynomial in m variables

x def
= (x1, . . . , xm) defined by

f̃ (x) def
= ∑

F∈∆
xb(F) = ∑

b≤a
fbxb,(23)

where xb def
= ∏m

i=1 xbi
i for any b ∈ Nm. In general and for simplicity, given any

univariate function p(x) we will denote by p(x) the multivariate function

p(x)b =
m

∏
i=1

p(xi)
bi .(24)

Similarly as in (1), we define the flag h̃-polynomial by

(25) h̃(x) def
= ∑

F∈∆
xb(F)(1− x)a−b(F).

This is a multivariate polynomial of degree less than or equal to a. Thus, it can be
written uniquely as a linear combination of the form

h̃(x) def
= ∑

b≤a
hbxb.(26)

The numbers hb are called the flag h-numbers. It is not hard to check that they can
be computed by

hb = ∑
c≤b

(−1)|b|−|c| fc.(27)

The following two theorems are direct multivariate generalizations of Theorem 2.1
and Theorem 2.2. Their proofs are essentially the same, we include them here for
completeness.

Theorem 6.1. Let ∆ be a balanced simplicial complex of type a with flag f̃ -polynomial f̃ (x)
and flag h̃-polynomial h̃(x). The following relation holds:

(x + 1)ah̃
(

x
x + 1

)
= f̃ (x),(28)

where x
x+1

def
=
(

x1
x1+1 , . . . , xd

xd+1

)
.

Proof. Replacing x by x
x+1 in (25), and multiplying the result by (x + 1)a we get

(x + 1)ah̃
(

x
x + 1

)
= (x + 1)a ∑

F∈∆

(
x

x + 1

)b(F) ( 1
x + 1

)a−b(F)
= ∑

F∈∆
xb(F) = f̃ (x),

as desired. �
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Theorem 6.2 (THE f=h RECIPROCITY FOR BALANCED SIMPLICIAL COMPLEXES). Let
∆ be a balanced simplicial complex of type a with flag h̃-polynomial h̃(x) and d = |a|. Then

(29) xah̃
(

x + 1
x

)
= ∑

F∈∆
mFxb(F),

where x+1
x

def
=
(

x1+1
x1

, . . . , xd+1
xd

)
and mF = ∑F⊆G∈∆(−1)d−|G| = (−1)d−1−|F|χ̃

(
lk∆F

)
.

Note that the multiplicity mF here is the same as the one used in Theorem 2.2.

Proof. From a direct substitution in (25) we get:

xah̃
(

x + 1
x

)
= ∑

G∈∆
(x + 1)b(G)(−1)|a|−|b(G)|

= ∑
G∈∆

(
∑

F⊆G
xb(F)

)
(−1)d−|G|

= ∑
F∈∆

xb(F)

(
∑

F⊆G∈∆
(−1)d−|G|

)

= ∑
F∈∆

mFxb(F).

This finishes our proof. �

Similarly as before, Theorem 6.1 and Theorem 6.2 lie at the heart of the Dehn–
Sommerville relations for balanced simplicial complexes. The key stone is the fol-
lowing polynomial relation.

Theorem 6.3 (POLYNOMIAL DEHN–SOMMERVILLE RELATION FOR BALANCED SIM-
PLICIAL COMPLEXES, h-VERSION). Let ∆ be a balanced simplicial complex of type a. The
following relation holds:

∑
b≤a

(hb − ha−b)xb(x + 1)a−b = ∑
F∈∆

(1−mF)xb(F).(30)

Proof. The left hand side of (30) is equal to the difference between two evaluations of
the flag h̃-polynomial5:

(x + 1)ah̃
( x

x + 1
)
− xah̃

(x + 1
x
)
.

The result then follows from Equations (28) and (29). �

Recall that the error of a face is defined as εF = (−1)d−1−|F|(mF− 1), where d = |a|
for a balanced simplicial complex of type a. As a consequence of the previous the-
orem, we have the following result which is new in this general form. Here we use

the multi-binomial coefficient notation (b
c)

def
= ∏m

i=1 (
bi
ci
) for b, c ∈Nm.

5Note that we are reversing the order of the two evaluations compared to the proof of Theorem 5.1
for convenience.



DEHN–SOMMERVILLE RELATIONS 15

Theorem 6.4 (DEHN–SOMMERVILLE RELATIONS FOR BALANCED SIMPLICIAL COM-
PLEXES, h-VERSION). Let ∆ be a balanced simplicial complex of type a. For b ≤ a, the
following relations hold:

hb − ha−b = (−1)|a|−|b| ∑
F∈∆b

(
a− b(F)

a− b

)
εF,(31)

where ∆b
def
= {F ∈ ∆ : b(F) ≤ b} denotes the set of faces with at most bi vertices with color

i for all i.

Proof. This result is a reformulation of the polynomial Dehn–Sommerville rela-
tion (30). As pointed out in Appendix B (Proposition B.2), the collection

{xb(x + 1)a−b : b ≤ a}
forms a basis for the vector space of polynomials of degree less than or equal to a
in Z[x1, . . . , xm]. Thus, we just need to expand xb(F) in this basis, and extract the
coefficient of xb(x + 1)a−b.

By (63), this coefficient is equal to zero if b(F) � b. If b(F) ≤ b , or equivalently
F ∈ ∆b, this coefficient is equal to

(−1)|b|−|b(F)|
(

a− b(F)
a− b

)
= (−1)|b|−|F|

(
a− b(F)

a− b

)
.

Multiplying by (1−mF) and taking the sum over F ∈ ∆b we get by (30) that

hb − ha−b = ∑
F∈∆b

(1−mF)(−1)|b|−|F|
(

a− b(F)
a− b

)

= ∑
F∈∆b

(−1)d+|b|−2|F|εF

(
a− b(F)

a− b

)

= (−1)d−|b| ∑
F∈∆b

(
a− b(F)

a− b

)
εF.

Since d = |a|, this finishes our proof. �

The specialization stated in Corollary 6.5 below, recovers the Dehn–Sommer-
ville relations for balanced semi-Eulerian complexes proven by Swartz in
[17, Theorem 3.8]. The sub-case of completely balanced spheres (or in general, com-
pletely balanced Eulerian complexes) was presented earlier by Bayer and Billera
in [2, Section 3]. The result for completely balanced semi-Eulerian posets appears
in the work of Stanley in [15, Proposition 2.2]. We refer to [2] for more details on the
history of these relations.

Corollary 6.5 ([17] DEHN–SOMMERVILLE RELATIONS FOR BALANCED SEMI-EULE-
RIAN COMPLEXES, h-VERSION). Let ∆ be a balanced semi-Eulerian complex of type a. For
b ≤ a, the following relations hold:

ha−b − hb = (−1)|b|
(
χ̃(∆)− (−1)d−1)

(
a
b

)
.(32)

In particular:
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• if ∆ is Eulerian then ha−b = hb;
• if ∆ is completely balanced (a = (1, 1, . . . , 1)), then (a

b) = 1.

Proof. As in the proof of Corollary 5.3, the result follows from (31) and the fact that
εF = 0 for every non-empty face F ∈ ∆ and ε∅ = χ̃(∆)− (−1)d−1. We get

hb − ha−b = (−1)|a|−|b|
(

a
a− b

)
(χ̃(∆)− (−1)d−1),

In order to obtain (32) we evaluate the previous equation at b = a− b. The remain-
ing two items are straight forward from (32). �

Theorem 6.4 is a generalization of a recent result of Sawaske and Xue [13, The-
orem 4.1]. Their result holds for completely balanced simplicial complexes and is
stated without using the multi-binomial coefficient6.

Corollary 6.6 ([13]). Let ∆ be a balanced simplicial complex of type a = (1, 1, . . . , 1) (i.e.,a
completely balanced complex). For b ≤ a, the following relations hold:

hb − ha−b = (−1)|a|−|b| ∑
F∈∆b

εF.(33)

Proof. Note that if c ∈ Nm consists of only zeros and ones and c′ ≤ c then ( c
c′) = 1.

Now, let a = (1, 1, . . . , 1) (completely balanced condition). For every F ∈ ∆b we
have b(F) ≤ b, and so taking c = a− b(F) and c′ = a− b we have ( c

c′) = 1. The
result then follows directly from Theorem 6.4. �

7. EXAMPLES OF THE f = h RECIPROCITY

All instances of the Dehn–Sommerville relations presented in this paper are conse-
quences of the f=h reciprocity described in Theorem 2.2 (and its multivariate version
in Theorem 6.2). Figure 2 illustrates four examples of this result:

(1) The first example is the simplicial complex of a triangle which is subdivided in
three smaller triangles. This is a 2-dimensional ball, and the evaluation xdh̃

(
x+1

x

)
=

3x3 + 3x2 + 1x enumerates its interior faces (those with multiplicity mF = 1): 3 tri-
angles, 3 interior edges, and 1 interior vertex.

(2) The second example is the boundary complex of an octahedron. This is a 2-
dimensional sphere and therefore also an Eulerian complex. The evaluation

xdh̃
(

x + 1
x

)
= 8x3 + 12x2 + 6x + 1

enumerates all its faces (all of them are interior and have multiplicity mF = 1): 8
triangles, 12 edges, 6 vertices, and 1 empty face.

(3) The third example is the complex of three triangles glued along an edge. The
evaluation xdh̃

(
x+1

x

)
= 3x3 + 2x2 enumerates the faces F with multiplicity mF: 3 tri-

angles with multiplicity 1, and 1 edge with multiplicity 2. This last multiplicity
comes from the common edge of the three triangles, whose link consists of three

6In [13], the result is stated for balanced simplicial complexes. However, the definition used by the
authors is that of completely balanced simplicial complexes.
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f = (1, 4, 6, 3)

h = (1, 1, 1, 0)

h̃(x) = 1 + x + x2

x3h̃
(

x+1
x

)
= 3x3 + 3x2 + x

A subdivided triangle
(a 2-ball)

f = (1, 6, 12, 8)

h = (1, 3, 3, 1)

h̃(x) = 1 + 3x + 3x2 + x3

x3h̃
(

x+1
x

)
= 8x3 + 12x2 + 6x + 1

The boundary of
an octahedron

(a 2-sphere)

f = (1, 5, 7, 3)

h = (1, 2, 0, 0)

h̃(x) = 1 + 2x

x3h̃
(

x+1
x

)
= 3x3 + 2x2

Three triangles glued
along an edge

f = (1, 8, 16, 12, 3)

h = (1, 4,−2, 0, 0)

h̃(x) = 1 + 4x− 2x2

x4h̃
(

x+1
x

)
= 3x4 − 2x2

Three tetrahedra glued
along an edge

Figure 2. Four examples of the f=h reciprocity.

disconnected vertices and has reduced Euler characteristic 2. All other faces have
multiplicity zero.

(4) The fourth example is the complex of three tetrahedra glued along an edge.
The evaluation xdh̃

(
x+1

x

)
= 3x4− 2x2 enumerates the faces F with multiplicity mF: 3

tetrahedra with multiplicity 1, and 1 edge with multiplicity−2. This last multiplicity
comes from the common edge of the three tetrahedra, whose link consists of three
disconnected segments and has reduced Euler characteristic 2. The multiplicity of
this edge is then (−1)3−2 × 2 = −2. This is an interesting case because we have a
negative multiplicity. All other faces have multiplicity zero.

APPENDIX A. MACDONALD’S POLYNOMIAL DEHN–SOMMERVILLE RELATION

In his 1971 paper [9], Macdonald proved a polynomial Dehn–Sommerville re-
lation for a finite simplicial complex ∆ whose underlying topological space is a
(d − 1)-dimensional manifold. As far as we know, this is the first appearance of
a Dehn–Sommerville type relation for manifolds (possibly with boundary), after
Klee’s Dehn–Sommerville relations for semi-Eulerian complexes from 1964 [8].
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In this appendix, we recall Macdonald’s polynomial relation, and show that it
follows from the polynomial Dehn–Sommerville relation (11) in Theorem 3.3. We
also explain why Macdonald’s relation is slightly weaker.

Throughout this appendix, we fix a simplicial complex ∆ whose underlying topo-
logical space is a (d − 1)-dimensional manifold, and denote by fi, f inti , and f ∂

i the
number of i-dimensional faces, interior faces, and boundary faces, respectively. Mac-
donald considered the polynomial

P̃(∆, x) def
= 1− f0x + f1x2 − · · ·+ (−1)d fd−1xd,(34)

and proved the following result.7

Theorem A.1 ([9, Theorem 2.1] MACDONALD POLYNOMIAL DEHN–SOMMERVILLE

RELATION FOR MANIFOLDS). The polynomial Q(x) def
= P̃(∆, x)− 1

2 P̃(∂∆, x) satisfies

Q(1− x) + (−1)d−1Q(x) =

{
0, if d− 1 is odd,
−χ̃(∆), if d− 1 is even.

(35)

In order to compare this with the polynomial relation (11) in Theorem 3.3, it is
convenient to replace x by −x and rewrite (35) as:

(−1)dQ(−x) = Q(1 + x) + cte,(36)

where the constant term is

cte =

{
0, if d− 1 is odd,
χ̃(∆), if d− 1 is even.

(37)

Now note that

P̃(∆,−x) = 1 + f0x + f1x2 + · · ·+ (−1)d fd−1xd = f̃ (x),(38)

P̃(∂∆,−x) = 1 + f ∂
0 x + f ∂

1 x2 + · · ·+ (−1)d f ∂
d−1xd.(39)

Therefore, we have P̃(∆,−x)− P̃(∂∆,−x) = f̃ int(x), and so

Q(−x) =
1
2

(
f̃ (x) + f̃ int(x)

)
,(40)

Q(1 + x) =
1
2

(
f̃ (−x− 1) + f̃ int(−x− 1)

)
.(41)

Now recall the polynomial Dehn–Sommerville relation (11) in Theorem 3.3:

(−1)d f̃ (x) = f̃ int(−x− 1) + m∅.

Here, the multiplicity is m∅ = (−1)d−1χ̃(∆). Replacing x by −x− 1 in the previous
equation gives an alternative version of the polynomial Dehn–Sommerville relation,
which was already stated in Equation (17):

(−1)d f̃ int(x) = f̃ (−x− 1)− (−1)dm∅.

7The term −χ̃(∆) on the right hand side of (35) differs from χ̃(∆) in [9, Theorem 2.1] in a minus
sign. This is not a mistake, because in [9, Page 182] the value of χ̃(∆) is defined as the “augmented
Euler characteristic” which is equal to −χ̃(∆) as defined here.
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By adding Equations (11) and (17), and multiplying the result by 1
2 , we get exactly

Macdonald’s polynomial relation (36). We have just proved:

Lemma A.2. The polynomial Dehn–Sommerville relation (11) implies Macdonald’s polyno-
mial relation (36).

On the other hand, since (36) is (half of) the sum of (11) and (17) (which is equiva-
lent to (11)), Equation (11) can not be deduced from (36).

Lemma A.3. Macdonald’s polynomial relation (36) does not imply the polynomial Dehn–
Sommerville relation (11).

Proof. For a fixed d and fixed reduced Euler characteristic χ̃(∆), the polynomial
Dehn–Sommerville relation (11) completely determines the face numbers from the
interior face numbers (see (12)) and vice versa (see (16)). We claim that this is not
true for Macdonald’s polynomial relation (36). For this, it suffices to look at a small
example.

Fix d = 3 and χ̃(∆) = −1. Consider the f -vector f = (1, 4, 8, 4) of the triangu-
lated cylinder in Example 3.6. Comparing the coefficients of the polynomial rela-
tion (11) completely determines the interior face numbers f int = (·, 0, 4, 4), as well as
the boundary face numbers f ∂ = (1, 4, 4, 0).

On the other hand, f ∂ = (1, 5, 7, 2) is also a solution to Macdonald’s polynomial
relation (36). Thus, Equation (36) can not imply (11). �

We highlight that the alternative solution f ∂ = (1, 5, 7, 2) in the previous proof is
not realistic, because one can not have more boundary vertices ( f ∂

0 = 5) than vertices
itself ( f0 = 4). But the linear relations obtained by comparing the coefficients in
Macdonald’s relation (36) allow such examples, while (11) does not.

Building a bit more on this example, for d = 3 we have

f̃ (x) = 1 + f0x + f1x2 + f2x3,

f̃ int(x) = f int0 x + f int1 x2 + f int2 x3.

Comparing the coefficient of xk, for k > 0, in the polynomial relation (11), gives the
following system of linear relations:

f0 = f int0 − 2 f int1 + 3 f int2 ,(42)

f1 = − f int1 + 3 f int2 ,(43)

f2 = f int2 ,(44)

while for k = 0, we obtain

f0 − f1 + f2 = f int0 − f int1 + f int2 .(45)

We can do the same game with the polynomial relation (17), which is equivalent
to (11). We obtain:

f int0 = f0 − 2 f1 + 3 f2,(46)

f int1 = − f1 + 3 f2,(47)

f int2 = f2.(48)
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Comparing the constant term (coefficient of x0) in (17) just leads to the irrelevant
equation

0 = 0.(49)

In summary, the systems of linear relations (42)–(45) and (46)–(49) follow from the
polynomial Dehn–Sommerville relation (17). Macdonald’s polynomial relation (36)
only implies the following linear relations:

f0 + f int0 = ( f int0 − 2 f int1 + 3 f int2 ) + ( f0 − 2 f1 + 3 f2),(50)

f1 + f int1 = (− f int1 + 3 f int2 ) + (− f1 + 3 f2),(51)

f2 + f int2 = ( f int2 ) + ( f2),(52)

f0 − f1 + f2 = f int0 − f int1 + f int2 .(53)

Equation (52) becomes 0 = 0 and vanishes, while Equations (50) and (51) are
equivalent. This system gets reduced to only two linear relations:

2 f1 + 2 f int1 = 3 f int2 + 3 f2,(54)

f0 − f1 + f2 = f int0 − f int1 + f int2 .(55)

For f = (1, 4, 8, 4) we have several possible solutions for the interior face numbers.
In particular, f int = (·,−1, 1, 2) works (where f2 = f int2 is not satisfied, a necessary
relation which is forgotten by Macdonald’s relation). This is how we found the solu-
tion f ∂ = (1, 5, 7, 2). For bigger values of d, more interesting solutions can be found.

APPENDIX B. POLYNOMIAL BASES

From our point of view, the various generalizations of the Dehn–Sommerville rela-
tions are not just several linear relations, but the consequence of a single polynomial
relation; see (11) for the f -version and (20) for the h-version. For the h-version, (20)
is an equality between two polynomials which are written in different bases. The
Dehn–Sommerville relations follow by transforming one basis in terms of the other
and comparing the coefficients. In this appendix, we recall the bases we use.

Let Z[x] be the ring of polynomials with integer coefficients in one variable x.
Consider the following sets:

M def
=
{

xi : 0 ≤ i ≤ d
}

,(56)

δ
def
=
{
(x + 1)ixd−i : 0 ≤ i ≤ d

}
.(57)

The collection M is the typical monomial basis. The collection δ is the second basis
which is essential in this paper.

Proposition B.1. The collections M and δ are bases for the vector space of polynomials of
degree less than or equal to d in Z[x]. For 0 ≤ k ≤ d, the transformation from the monomial
basis M to the δ-basis is given by:

xk =
d

∑
i=0

(−1)d−k−i
(

d− k
i

)
(x + 1)ixd−i.(58)
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Proof. The collection M is clearly a basis. Furthermore, M and δ have the same car-
dinality. So, in order to show that δ is a basis it suffices to show that every element in
M can be written as a linear combination of elements in δ. In other words, it suffices
to show (58). This relation follows from expanding the following expression using
the binomial theorem:

xk = xk ((x + 1)− x)d−k

= xk
d−k

∑
i=0

(
d− k

i

)
(x + 1)i(−x)d−k−i

=
d−k

∑
i=0

(−1)d−k−i
(

d− k
i

)
(x + 1)ixd−i.

This is equal to (58), noting that (d−k
i ) = 0 whenever i > d− k. �

The generalization of the Dehn–Sommerville relations for balanced simplicial
complexes also follows from a single polynomial relation (30). In this case, two mul-
tivariate polynomials in Z[x1, . . . , xm] (the polynomial ring in m variables) are equal
to each other, and two analogous bases to M and δ are used.

Let N
def
= {0, 1, 2, . . . } be the set of non-negative integers, fix a sequence a =

(a1, . . . , am) ∈ Nm and let b = (b1, . . . , bm) ∈ Nm with b ≤ a. We denote |b| def
=

b1 + · · · + bm. For simplicity, given a polynomial p(x) ∈ Z[x] in one variable x,
we denote by x = (x1, . . . , xm) a tuple of m variables and define the multivariate
polynomial p(x)b ∈ Z[x1, . . . , xm] by

p(x)b def
=

m

∏
i=1

p(xi)
bi .(59)

With this notation, the binomial theorem becomes:

(p(x) + q(x))b = ∑
b′≤b

(
b
b′

)
p(x)b′q(x)b−b′ ,(60)

where (b
b′)

def
= ∏m

i=1 (
bi
b′i
). In particular, (b

b′) = ( b
b−b′).

Now consider the following collections of polynomials of degree less than or equal
to a in Z[x1, . . . , xm]:

M def
=
{

xb : b ≤ a
}

,(61)

δ
def
=
{

xb(x + 1)a−b : b ≤ a
}

.(62)

Proposition B.2. The collections M and δ are bases for the vector space of polynomials of
degree less than or equal to a in Z[x1, . . . , xm]. For b ≤ a, the transformation from the
monomial basis M to the δ-basis is given by:

xb = ∑
b≤b′≤a

(−1)|b
′|−|b|

(
a− b
a− b′

)
xb′(x + 1)a−b′ .(63)
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Proof. Every polynomial of degree less than or equal to a in Z[x1, . . . , xm] can be
written as a linear combination of elements in M, and these elements are linearly
independent. Thus, M is a basis. Furthermore, M and δ have the same cardinality.
So, in order to show that δ is a basis it suffices to show that every element in M can
be written as a linear combination of elements in δ. In other words, it suffices to
show (63).

From (60) we get

xb = xb ((x + 1)− x)a−b

= xb ∑
b′′≤a−b

(
a− b

b′′

)
(−x)b′′(x + 1)(a−b)−b′′ .

Taking b′ = b + b′′ and using (a−b
b′′ ) = ( a−b

a−b′) we get

xb = ∑
b≤b′≤a

(−1)|b
′|−|b|

(
a− b
a− b′

)
xb′(x + 1)a−b′ .�

APPENDIX C. CONNECTION TO STANLEY–REISNER RINGS

Our proofs of the various generalizations of the Dehn–Sommerville relations are
based in the f = h-reciprocity result in Theorem 2.2 and its multi-variate generaliza-
tion in Theorem 6.2. These two theorems are the essence of the Dehn–Sommerville
relations. In this appendix, we connect these results to a combinatorial reciprocity
result of Stanley [16, Theorem 7.1] about the Hilbert series of Stanley–Reisner rings.

Let ∆ be a finite simplicial complex of dimension d − 1 on the vertex set [n] =
{1, . . . , n}. Given any field k, the Stanley–Reisner ring k[∆] of the complex ∆ is de-
fined as

k[∆] def= k[x1, . . . , xn]/I∆,

where

I∆
def
= (xi1 · · · xir : i1 < · · · < ir, {i1, . . . , ir} /∈ ∆)

is the ideal generated by the non-faces of the complex. For λ def
= (λ1, . . . , λn), we

denote by F(k[∆],λ) the multi-graded Hilbert series of k[∆]. By counting the mono-
mials of k[∆] according to their support F ∈ ∆, Stanley [16, Chapter II.1] provided
the following nice expression for this Hilbert series:

F(k[∆],λ) = ∑
F∈∆

∏
i∈F

λi

1− λi
.(64)

Stanley also showed the following reciprocity result.

Theorem C.1 ([16, Theorem 7.1]). The evaluation at 1/λ of the Hilbert series of k[∆]
satisfies

(−1)dF(k[∆], 1/λ) = ∑
F∈∆

mF ∏
i∈F

λi

1− λi
.(65)

where mF = (−1)d−1−|F|χ̃
(
lk∆F

)
.
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We highlight that the multiplicity mF here is the same multiplicity used in The-
orem 2.2 and Theorem 6.2. In fact, we will show now that these two theorems are
equivalent to specializations of Theorem C.1.

Proposition C.2. Theorem 2.2 is equivalent to Theorem C.1 when replacing λi by λ for all i.

Proof. Replacing λi by λ in (64) we get

F(k[∆], λ) = ∑
F∈∆

λ|F|

(1− λ)|F|

=
d

∑
i=0

fi−1λi

(1− λ)i =
∑d

i=0 fi−1λi(1− λ)d−i

(1− λ)d

=
∑d

i=0 hiλ
i

(1− λ)d (by (1))

=
h̃(λ)

(1− λ)d .

Replacing λi by λ in Theorem C.1 we get

(−1)dF(k[∆], 1/λ) = ∑
F∈∆

mF
λ|F|

(1− λ)|F|
.

Combining the previous two equations, with the evaluation λ = x
x+1 in the second,

we get λ
1−λ = x and

∑
F∈∆

mFx|F| = (−1)dF(k[∆], (x + 1)/x)

= xdh̃
(

x + 1
x

)
,

which is the statement of Theorem 2.2. Vice versa, taking x = λ
1−λ we recover the

evaluation λi = λ of Theorem C.1 from Theorem 2.2. �

In the following proposition, we consider a balanced simplicial complex ∆ of type
a = (a1, . . . , am) with vertex coloring κ : [n] → [m]. We also use extra variables
ω = (ω1, . . . , ωm) for convenience.

Proposition C.3. Theorem 6.2 is equivalent to Theorem C.1 when replacing λi by ωκ(i) for
all i.

Proof. The proof is essentially the same as the proof of Proposition C.2.
Replacing λi by ωκ(i) in (64) we get

F(k[∆],ω) = ∑
F∈∆

∏
i∈F

ωκ(i)

1−ωκ(i)

= ∑
F∈∆

(
ω

1−ω

)b(F)
=

∑F∈∆ ω
b(F)(1−ω)a−b(F)

(1−ω)a
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=
h̃(ω)

(1−ω)a (by (25)).

Replacing λi by ωκ(i) in Theorem C.1 we get

(−1)dF(k[∆], 1/ω) = ∑
F∈∆

mF

(
ω

1−ω

)b(F)
.

Combining the previous two equations, with the evaluation ω = x
x+1 in the sec-

ond, we get ω
1−ω = x and

∑
F∈∆

mFxb(F) = (−1)dF(k[∆], (x + 1)/x)

= xah̃
(

x + 1
x

)
,

which is the statement of Theorem 6.2. Vice versa, taking x = ω
1−ω we recover the

evaluation λi = ωκ(i) of Theorem C.1 from Theorem 6.2. �
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