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ON THE PROBLEM OF RANDOM FLIGHTS IN ODD DIMENSIONS

ALEXANDER KOVAČEC AND PEDRO BARATA DE TOVAR SÁ

Abstract. In the first part of this paper we give a procedure to compute the exact
probability for a particle starting from the origin of an odd-dimensional Euclidean space
to be encountered within a distance r from the start after n random jumps of unit length.
In the second part we use a combinatorial identity to deduce for integers m ≥ 0 and a
certain large family of integers l ≥ 0, detailed information concerning the primitives∫
xl−2m((−1 + x + s)(1 − x + s)(1 + x − s)(1 + x + s))mdx. This will imply that the

density function associated with this random flight problem is piecewise polynomial. The
approach is significantly different from the one chosen by Garćıa-Pelayo [J. Math. Phys.
53 (2012), 103504] who used advanced analytical tools.

0. Introduction

To motivate the investigation, we begin with a simple question.
Assume a particle, at instant 0 at the origin of three dimensional
Euclidean space jumps at each tick of the clock exactly one unit
from its current position into a random direction. (Here the direc-
tions are defined as position vectors to uniformly distributed points
of the origin-centred unit sphere.)
Question: What is — as a function of r — the probability to en-
counter the particle after exactly n random jumps within the 0-
centred ball B = B(0, r) of radius r?

Thus if Rn is the distance of the particle from the starting place after n steps viewed
as a random variable, we want to know the probability distribution r 7→ Prob(Rn ≤ r)
or, equivalently, the density function r 7→ fRn(r).

For this particular problem an elementary proof for an elementary result — piecewise
polynomiality of fRn — was given by Treloar in 1945 and solutions which use Fourier
transforms and discontinuous factors are also known; a further elementary proof was
added by the present authors in [SK] where some of the history and ideas of the other
solutions are also explained and many references cited. Later we had access to the 1995
book by B. D. Hughes [H] which has in Chapter 2 a very extensive history on these
problems (not completely coincident with the findings in [SK]). For a history up till 1985,
see [D]. The problem can of course be reasonably asked for Euclidean spaces of arbitrary
dimension and actually would make sense, suitably formulated, for many Riemannian
manifolds and even for a given Euclidean space interesting variants can be formulated,
but the possibility of elementary or even ‘closed form’ solutions will be the exception.

In 2012 Garćıa-Pelayo [G-P] showed that the direct generalisation of the problem to odd
dimensional Euclidean space also leads to piecewise polynomial solutions for the functions
fRn . For uniform random flights in odd dimensional spaces, it seems to have been the first
advance over Treloar’ s result. Curiously, the problem in even dimensional spaces does
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not seem to admit exact elementary solutions. Solutions using integrals over expressions
with Bessel functions and numerical approximations can be given; see [G-P], [H], or [D].

The article [G-P] uses the Fourier transform, a result of Kingman of 1963 on the be-
haviour of convolutions under projections; and a generalisation of the Abel transform
which is known as a tool to analyse radial (i.e., spherical symmetrical) functions. Garćıa-
Pelayo stopped short of giving an explicit formula. This was remedied by Borwein and
Sinnamon [BS] who based their arguments on Garćıa-Pelayo’s main result and who gave
a formula valid for all n and odd dimensions d.

In this paper we propose an elementary proof for the Garćıa-Pelayo result. We need
for our reasoning only standard formulas for the area of the spherical cap in dimension d,
formulas from elementary probability theory, and a combinatorial identity.

What concerns the organisation of the paper, it consists of eight sections, often short,
which we thought better to leave untitled. A short description follows below.

Section 1 (referred to as §1) expresses the distance after n + 1 jumps as a function in

the distance after n jumps; §2 determines the probability for a point ~Z randomly chosen
from the hypersphere Sd−1 to lie in a cap of height h centred at the north pole. A formula
for the density fZ of the random variable Z (being the last coordinate of ~Z) is written
down. In §3 we give a general formula for expressing the density function f(R,S) of a joint
distribution (R, S) where S = g(R,Z) in terms of fR, fZ , and a differentiable g satisfying
some mild conditions and work it out in detail in §4 for the case g(r, z) =

√
r2 + 2rz + 1

(which is indeed the prominent formula of §1). In §5 we give a recurrence expressing
fRn+1 via an integral over a function in which fRn occurs, and do the same for functions
bn which are related to fRn in a very simple way. It can in principle be used for a short
code that allows e.g. Mathematica c© to compute the fRn ; but in §6 we give a piecewise
representation for the functions bn leading to an idea for faster computations; and more
importantly we show in §8 that the pieces of the bn are polynomial functions hereby also
establishing the correctness of the algorithm. We prepare for this in §7 by reasoning that
needs a combinatorial identity. This is used to analyse the primitives

∫
xl−2m ((−1 + x+ s)(1− x+ s)(1 + x− s)(1 + x+ s))m dx

for many nonnegative integers l,m and associated definite integrals.
References like ‘Theorem 6’ will mean the (unique) theorem in §6.

1. We begin with the following lemma, which can be found already in [SK] formulated
for 3-space, but is valid in any Euclidean d-space (E, 〈 , 〉). The 2-norm associated to the
usual inner product 〈 , 〉 is denoted | · |. Positions p are identified with the vector ~op.

Lemma. Let p and p′ be two points at distance 1 in Euclidean d-dimensional space
(E, 〈 , 〉) with origin denoted o. Let ~z be the orthogonal projection of vector ~pp′ onto vector

~op. Then |~p′| =
√

1 + |~p|2 + 2〈~p, ~z〉.
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Proof. We may write p′ = p + ~pp′ = p + (~z + ~d) where ~d ⊥ ~z.It
follows that

|~p′|2 = 〈~p′, ~p′〉

= 〈~p+ ~z + ~d, ~p+ ~z + ~d〉

= |~p|2 + |~z|2 + |~d|2 + 2〈~p, ~z〉+ 2〈~p, ~d〉+ 2〈~z, ~d〉
= |~p|2 + 1 + 2〈~p, ~z〉+ 0 + 0

Here we used Pythagoras’ theorem, and the parallelism or an-

tiparallelism of ~p with ~z and the perpendicularity of ~d with re-
spect to the latter two vectors. �

We will use this later in the following way: given n, the particle is after n jumps at a
certain position p; its distance from the origin |p| is a random variable R = Rn. We can
write 〈~p, ~z〉 = |p|〈 ~p|p| , ~z〉. The n+ 1-st jump is also a random variable and hence the inner

product 〈 ~p|p| , ~z〉 is the random variable which expresses the length of the projection of the

jump onto the line op. We designate this random variable by Z. We will have to consider,
thus, the random variable

√
R2 + 2RZ + 1.

2. In this section we aim to find the density function of the random variable Z referred
to above.

If ~Z is a d-dimensional random vector with uniform distribution
over othe unit sphere Sd−1, its d-th component defines a real ran-
dom variable Z. It is clear that for reasons of symmetry, the random
variable Z so defined is the same (i.e., has the same distribution) as
the random variable Z defined in Section 1. We deduce the func-
tions fZ as the density functions associated with the distribution
function Prob(Z ≤ z).

h

ϕ

r sin ϕ

rh-r

Let Sd−1 ⊆ Rd be the unit sphere in Rd. A standard formula is that

Ad(r) := area(rSd−1) = 2πd/2

Γ(d/2)
rd−1. In [L] we find a simple proof for

the fact that the area of the hyperspherical cap defined by the colati-
tude angle φ can via the incomplete regularised beta function Iz(a, b) be
expressed by

Ad(r, φ) = 1
2
Ad(r)Isin2 φ(d−1

2
, 1

2
).

The figure at the left shows by an application of Pythagoras’ theorem,
that the height h of the cap and its colatitude are related by sin2 φ =
2hr−h2
r2

.

Claim. As a function of height h, the area A(h) of the hyperspherical cap in Sd−1 is given
via

Gd−2(1− h) =

1−h∫
0

(1− t2)
d−3
2 dt
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by

A(h) = Ad(1) · 1

2

(
1− Gd−2(1− h)

Gd−2(1)

)
.

d> Putting r = 1 in Ad(r, φ) and using the definition of the regularised incomplete beta
function we have to prove

I2h−h2(
n−1

2
, 1

2
) = 1− Gn−2(1− h)

Gn−2(1)
,

that is ∫ 2h−h2
0

t
n−3
2 (1− t)−1/2dt∫ 1

0
t
n−3
2 (1− t)−1/2dt

=

∫ 1

1−h(1− t
2)

n−3
2 dt∫ 1

0
(1− t2)

n−3
2 dt

.

To see this, use the substitution rule with u = 1− t2 on the right-hand side integrals. c<

Note: The formula for A(h) is attributed by Wikipedia [Wi] to a 1986 paper by Chud-
nov. But in fact it cannot be found there.

Since Ad(1) is the area of Sd−1 we see that the probability that ~Z falls into the spherical
cap of height h = 1− z is A(h)/Ad(1), so

Prob(Z ≤ z) = 1− Prob(Z ≥ z) = 1− A(h)

Ad(1)
=

1

2

(
1 +

Gd−2(z)

Gd−2(1)

)
,

and therefore, for −1 < z < 1, we have

fZ(z) =
d

dz
Prob(Z ≤ z) =

1

2Gd−2(1)

d

dz

z∫
0

(1− t2)
d−3
2 dt =

1

2Gd−2(1)
(1− z2)

d−3
2 .

For z 6∈ [−1, 1] it is clear that fZ(z) = 0. It follows that a globally valid formula for the
density fZ is given by

fZ(z) =
1

2Gd−2(1)
(1− z2)

d−3
2 1[−1,1[(z), z ∈ R.

Note: Here and in many other cases later the arguments are indifferent to whether we
take half open intervals like [−1, 1[ or closed ones like [−1, 1]. Sometimes however, like in
the representation theorem of Section 7, we have to choose half open ones. We will use
left closed, right open intervals wherever possible.

Thanks to an observation of C. Krattenthaler, we can give a formula for Gd(1). Recall
that for the double factorial one has n!! = n(n − 2) · · · (n − 2bn−1

2
c), provided n ∈ Z≥1,

and 0!! = 1.

Claim. Letting the odd d = 2k + 1, we have

Gd(1) =
4kk!2

(2k + 1)!
=

(2k)!!

(2k + 1)!!
.

d> Using in the following computation successively the definition of Gd, the substitution
t2 = u, the definition of the beta function and its well known relation with the gamma
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function, we have

Gd(1) =

∫ 1

0

(1− t2)
d−1
2 =

1

2

∫ 1

0

(1− u)
d−1
2 u−1/2du

=
1

2
B(1

2
, d+1

2
) =

1

2

Γ(1/2)Γ(d+1
2

)

Γ(d+2
2

)
=

1

2

Γ(1/2)Γ(k + 1)

Γ(2k+3
2

)
.

The numerator of this expression is
√
π k!, while by iterated use of Γ(x+ 1) = xΓ(x), we

find for the denominator, that

Γ(2k+3
2

) = 2k+1
2
· 2k−1

2
· · · 1

2
Γ(1

2
) =
√
π

(2k + 1)!

2k+12 · 4 · · · (2k)
=
√
π

(2k + 1)!

2 · k! 4k
.

The equality with the other formula given is easy to see. This yields the claim. c<

3. We explain in §5 how to find fRn(r) by repeated marginalisation. As a preparation
we deal here with the following question. Assume R,Z are real random variables with
known density functions and g is differentiable on an open set containing the range of the
random vector (R,Z). Then S = g(R,Z) is a further real random variable and by f(R,S)

is denoted the density function of the joint variable (R, S). How to find f(R,S) from fR?
We answer this under mild conditions for g and fR as implicit in the following reasoning.

The probability that r − h ≤ R < r + h holds is given by the definition of density

functions, by
∫ r+h
r−h fR(t)dt, and hence assuming continuity of fR, there is a t1 = t1(h) such

that Prob[r − h ≤ R < r + h] = 2hfR(t1).
Now take a ṙ ∈ [r−h, r+h[. Then gṙ(Z) := g(ṙ, Z) is a real valued random variable and

z 7→ gṙ(z) a differentiable function. We assume furthermore that gṙ is strictly monotone
in an interval containing the range of Z. By the discussion in [B, p. 264], the density of the
random variable Y = gṙ(Z) is then given by fgṙ(Z)(y) = fZ(g−1

ṙ (y))|(g−1
ṙ )′(y)|. So the prob-

ability that gṙ(Z) assumes values in [s−h, s+h[ is given by
∫ s+h
s−h fZ(g−1

ṙ (y))|(g−1
ṙ )′(y)| dy

which in turn is equal to 2hfZ(g−1
ṙ (y1))|(g−1

ṙ )′(y1)| for some y1 = y1(h, ṙ) ∈ [s− h, s+ h].
Thus we find for any h > 0 and ṙ ∈ [r − h, r + h[, reals t1(h) ∈ [r − h, r + h[ and
y1(h, ṙ) ∈ [s− h, s+ h[ such that

Prob[r − h ≤ R < r + h, s− h ≤ g(ṙ, Z) < s+ h] = 4h2

φ︷ ︸︸ ︷
fR(t1)fZ(g−1

ṙ (y1))|(g−1
ṙ )′(y1)| .

The over-braced expression φ is a function of

(t1, ṙ, y1) ∈ [r − h, r + h[× [r − h, r + h[× [s− h, s+ h[.

Supposing this function to be continuous, we shall have

lim
h↓0

φ(t1, ṙ, y1) = φ(r, r, s) = fR(r)fZ(g−1
r (s))|(g−1

r )′(s)|.

On the other hand, the density f(R,S) is a function which in the rectangle A = [r− h, r+
h[× [s− h, s+ h[ satisfies∫

A

f(R,S) d(r, s) = Prob[r − h ≤ R < r + h, s− h ≤ g(R,Z) < s+ h].
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So, assuming continuity of f(R,S), for every h > 0 sufficiently small there exist (ṙ, ṡ) ∈ A
such that the left-hand side is 4h2f(R,S)(ṙ, ṡ). Letting h shrink to 0 we find from comparison
of the expressions obtained that

f(R,S)(r, s) = fR(r)fZ(g−1
r (s))|(g−1

r )′(s)|.

4. The above set-up will serve in many problems as theoretical foundation for random
flights since g will in many cases have the properties necessary that make the above
arguments work. For Euclidean spaces we know from §2 that

fZ(z) =
1

2Gd−2(1)
(1− z2)

d−3
2 1[−1,1[(z),

and
g(r, z) =

√
r2 + 2rz + 1;

so
S = g(R,Z) =

√
R2 + 2RZ + 1.

It follows that g−1
r (s) = (s2−r2−1)

2r
and so (g−1

r )′(s) = s/r. We also compute 1[−1,1[(g
−1
r (s)).

Since −1 ≤ g−1
r (s) < 1 if and only if −2r ≤ s2 − r2 − 1 < 2r if and only if r2 − 2r + 1 ≤

s2 < r2 +2r+1 if and only if |−1+r| ≤ s ≤ 1+r, we get 1[−1,1[(g
−1
r (s)) = 1[|−1+r|,1+r[(s).

Note that [| − 1 + r|, 1 + r] 6= ∅ if and only if r ≥ 0 and that then s ∈ [| − 1 + r|, 1 + r] if
and only if r ∈ [| − 1 + s|, 1 + s]. Thus we find

f(R,S)(r, s) = fR(r)
|s/r|

2Gd−2(1)

(
1− (g−1

r (s))2
) d−3

2 1[|−1+r|,1+r](s)

= fR(r)
|s/r|

2Gd−2(1)

(
1− ( s

2−r2−1
2r

)2
) d−3

2
1[|−1+s|,1+s](r).

5. If one knows the density function f(R,S) of a joint distribution (R, S) one finds the
density of random variable S by marginalisation: fS(s) =

∫∞
−∞ f(R,S)(r, s) dr. We know

that the distribution of the random variable R1, that is, the distance of the particle after
one jump, is given, trivially, by FR1(r) = Prob(R1 < r) = 1[1,∞[(r); that is, it is given by
0 if r < 1 and 1 if r ≥ 1. Therefore the probability density fR1 is modelled by a shift of
the Dirac delta function: fR1(r) = δ(1−r). Thus by the previous section we know f(R1,R2)

and hence by marginalisation (in principle) fR2 . This then gives us f(R2,R3) and thus by
marginalisation fR3 , etc. The density fR2 is direct because if a function f satisfies some
mild conditions then ∫ ∞

−∞
δ(1− r)f(r) dr = f(1).

So

fR2(s) =
1

2d−2Gd−2(1)
sd−2(4− s2)

d−3
2 1[0,2[,

fRn+1(s) =

∫ ∞
−∞

fRn(r)
|s/r|

2Gd−2(1)

(
1− ( s

2−r2−1
2r

)2
) d−3

2
1[|−1+s|,1+s[(r) dr.

In order to strip this formula down to the essentials, note that in the inductive definition
of the fRn each integration will introduce one more multiplication with 1

/
(2d−2Gd−2(1)).

Furthermore |s/r| can be substituted by s/r since we are only interested in values s ≥ 0
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and since [| − 1 + s|, 1 + s[ ⊆ R≥0 implies that the integrations can be restricted to the
realm of the nonnegative real numbers. We can then put s to the left of the integral
sign, and divide both sides by s seeing that we can formulate a recursion for the function
fRn(s)/s. We introduce the functions e(r, s), e2(r, s), and, by induction, bn as follows:

e(r, s) = (−1 + r + s)(1− r + s)(1 + r − s)(1 + r + s)

= (−1 + 2r2 − r4 + 2s2 + 2r2s2 − s4),

e2(r, s) = e(r, s)/r2,

b2(s) =
(
s2(4− s2)

) d−3
2 1[0,2[(r),

bn+1(s) =

∞∫
−∞

bn(r)

(
e(r, s)

r2

) d−3
2

1[|−1+s|,1+s[(r) dr

=

∞∫
−∞

bn(r)(e2(r, s))
d−3
2 1[|−1+s|,1+s[(r) dr.

Then the functions fRn and bn are connected by the formula

fRn(s) = (1
/

(2d−2Gd−2(1)))n−1 · s · bn(s).

The inductive formulas just found for bn and fRncan be directly translated into a
short Mathematica code using e.g. the UnitBox command to take care of the functions
1[|−1+s|,1+s[(r) above. Experimenting a little with this code, one soon confirms that the
functions bn (and hence the fRn) are piecewise polynomial. Since the integration of poly-
nomials in Mathematica is in principle very fast it could come as a surprise, that Math-
ematica slows down notably if n or d become a little larger. The authors suspect that a
large part of the time is consumed treating the complicated codification and decodification
of piecewise polynomial functions. A better code can be written using the representation
theorem we prove in the next section.

6. The following representation theorem will be used foremost to show in §8 that the

functions below called poli(s) and p̃oli(s) are in fact polynomials.

Theorem. Assume d ≥ 3 is an odd integer. Then the functions bn(s), inductively defined
for n ≥ 2 by

b2(s) = (s2(4− s2))
d−3
2 1[0,2[(s), bn+1(s) =

∞∫
−∞

bn(r)e2(r, s)
d−3
2 1[|−1+s|,1+s[(r) dr,

admit piecewise representations

bn(s) =


ṅ−1∑
i=0

poli(s)1[2i,2i+2[(s), if n = 2ṅ,

ṅ∑
i=0

p̃oli(s)1[(2i−1)+,2i+1[(s), if n = 1 + 2ṅ,
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in which we can express the functions p̃oli(s) from the functions poli by

p̃oli(s) =



1+s∫
1−s

pol0(r)e2(r, s)
d−3
2 dr, if i = 0,

2i∫
−1+s

poli−1(r)e2(r, s)
d−3
2 dr +

1+s∫
2i

poli(r)e2(r, s)
d−3
2 dr, if i = 1, . . . , ṅ− 1,

2ṅ∫
−1+s

polṅ−1(r)e2(r, s)
d−3
2 dr, if i = ṅ,

and the functions poli pertaining to the case n = 2(ṅ + 1) from the functions p̃oli(s)
pertaining to the case n = 1 + 2ṅ by

poli(s) =



1∫
|−1+s|

p̃ol0(r)e2(r, s)
d−3
2 dr +

1+s∫
1

p̃ol1(r)e2(r, s)
d−3
2 dr, if i = 0,

2i+1∫
s−1

p̃oli(r)e2(r, s)
d−3
2 dr +

s+1∫
2i+1

p̃oli+1(r)e2(r, s)
d−3
2 dr, if i = 1, . . . , ṅ− 1,

2ṅ+1∫
s−1

p̃olṅ(r)e2(r, s)
d−3
2 dr, if i = ṅ.

(The index n on which poli and p̃oli depend of course is for lightness of notation here
suppressed.)

Proof. For the case n = 2, ṅ = 1, the representation given is evidently of the type claimed

since then
ṅ−1∑
i=0

poli(s)1[2i,2i+2[(s) collapses to pol0(s)1[0,2[, with pol0(s) = (s2(4 − s2))
d−3
2 .

Now fix n even, n = 2ṅ, say, and compute from bn the function bn+1 as defined above.
We get

bn+1(s) =

∞∫
−∞

ṅ−1∑
i=0

poli(r)1[2i,2i+2[(r) e2(r, s)
d−3
2 1[|−1+s|,1+s](r) dr

=
ṅ−1∑
i=0

∞∫
−∞

poli(r)e2(r, s)
d−3
2 1[2i,2i+2[∩[|−1+s|,1+s[(r) dr.

We show first the formula for p̃ol0(s), which, by its definition, is to describe bn+1 = b1+2ṅ

in the interval [0, 1[. So assume 0 ≤ s < 1. Then [| − 1 + s|, 1 + s[ = [1− s, 1 + s[⊆ [0, 2[
and so of the intervals {[2i, 2i + 2[}ṅ−1

i=0 only one intersects [| − 1 + s|, 1 + s[, namely the

one associated with i = 0. So we see for these s that bn+1(s) =
∫ 1+s

1−s pol0(r)e2(r, s)
d−3
2 dr

proving the formula for p̃ol0(s).

Now consider p̃oll, with l ∈ {1, 2, . . . , ṅ−1}. The range in which p̃oll is to describe bn+1

is [2l− 1, 2l+ 1[. So assume 2l− 1 ≤ s < 2l+ 1. Since 2l− 1 ≥ 1, we see | − 1 + s| = s− 1
and [s− 1, s+ 1[ ⊆ [2l− 2, 2l+ 2[ = [2l− 2, 2l[] [2l, 2l+ 2[, so that [s− 1, s+ 1[ intersects
typically only two adjacent of the intervals {[2i, 2i + 2[}ṅ−1

i=0 , which figure in the defining
formula for bn+1, namely those pertaining to i = l − 1 and i = l; the intersections yield
the intervals in [−1 + s, 2l[ and [2l, 1 + s[. So for all i 6= l − 1, l, 1[2i,2i+2[∩[|−1+s|,1+s[ = 0.

and we get the claim concerning p̃oll.
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Finally consider p̃olṅ, that is, s ∈ [2ṅ− 1, 2ṅ+ 1[. In this case, reasoning as before, but
taking into account that the interval [s− 1, s+ 1[ ⊆ [2ṅ− 2, 2ṅ+ 2[ intersects then only
the last of the intervals figuring in the formula for bn+1, leads to the last of the formulas
of the first part of the theorem.

The second part of the theorem follows largely the same pattern of reasoning. In this
case we start from the assumption that bn = b1+2ṅ is given as above and deduce via the
defining formula the representation of b2+2ṅ = b2(1+2ṅ). So now we have

bn+1(s) =

∞∫
−∞

ṅ∑
i=0

p̃oli(r)1[(2i−1)+,2i+1[(r)e2(r, s)
d−3
2 1[|−1+s|,1+s[(r) dr

=
ṅ∑
i=0

∞∫
−∞

p̃oli(r)e2(r, s)
d−3
2 1[(2i−1)+,2i+1[∩[|−1+s|,1+s[(r) dr.

Now pol0(s) is to represent bn+1(s) for s in the interval [0, 2[. Of all the intervals {[(2i−
1)+, 2i + 1[}ṅi=0 the only ones intersected by [| − 1 + s|, 1 + s[ ⊆ [0, 3[, are [0, 1[, [1, 3[
in [| − 1 + s|, 1[, [1, 1 + s[, respectively. This gives the formula for pol0(s). Now let l ∈
{1, . . . , ṅ− 1}. Then poll is to describe b1+n = b2(1+ṅ) for s ∈ [2l, 2l + 2]. Then

[| − 1 + s|, 1 + s[ = [s− 1, s+ 1[ ⊆ [2l − 1, 2l + 3[ = [2l − 1, 2l + 1[ ] [2l + 1, 2l + 3[,

so that [s − 1, s + 1[ intersects the two intervals [2l − 1, 2l + 1[, [2l + 1, 2l + 3[ in
[s − 1, 2l + 1[, [2l + 1, s + 1[, respectively. So from the defining formula above we get
the formula for poll.

Finally, if l = ṅ, we have to look at s ∈ [2ṅ, 2ṅ+2[. Then [|−1+s|, 1+s[ = [s−1, s+1[⊆
[2ṅ−1, 2ṅ+3[ intersects among the intervals referred to in bn only [2ṅ−1, 2ṅ+1[, namely
in [s− 1, 2ṅ+ 1[. This yields the last formula of the second part. �

This result suggests to represent the functions bn as lists; namely the functions b2ṅ as a
list {pol0, pol1, . . . , pol−1+ṅ} representing the function on {[0, 2[, [2, 4[, . . . , [2ṅ−2, 2ṅ[} re-

spectively; and b1+2ṅ as a list {p̃ol0, p̃ol1, . . . , p̃olṅ} representing the function on
{[0, 1[, [1, 3[, . . . , [2ṅ− 1, 2ṅ+ 1[} respectively.

Since these functions pol, p̃ol happen to be polynomials as we shall prove below, they
are symbolically easily integrable. Mathematica code based on the idea to represent the
functions bn as lists is indeed much faster than code using the direct approach at the end
of §5.

7. To prepare for the proof of polynomiality of the functions poli and p̃oli we need the
following lemma and theorem, respectively. The proof of the lemma below is based on an
idea suggested by C. Krattenthaler [K]; the authors’ original proof was more complicated.

Lemma. Assume nonnegative integers m, ṡ, s, s̈ satisfy i or ii:

i. m ≥ ṡ+ d1+s
2
e+ s̈. ii. s is odd and s̈ = 0.

Then we have ∑
a,b,c≥0

a+b+c=m

(−2)b

a !b! c!
bṡ(a− c)scs̈ = 0. (∗)
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Proof. First note the following chain of equations:∑
s,ṡ,s̈≥0

xs1x
ṡ
2x

s̈
3

s! ṡ! s̈!

∑
a,b,c≥0

ta+b+c (−2)b

a! b! c!
bṡ(a− c)scs̈

=
∑
a,b,c≥0

ta+b+c (−2)b

a! b! c!

∑
s,ṡ,s̈≥0

(x1(a− c))s

s!

(x2b)
ṡ

ṡ!

(x3c)
s̈

s̈!

=
∑
a,b,c≥0

ta+b+c (−2)b

a! b! c!
ex1(a−c)+x2b+x3c

=
∑
a,b,c≥0

(tex1)a

a!

(t(−2)ex2)b

b!

(te(x3−x1))c

c!

= exp(tex1) exp(−2tex2) exp(tex3−x1)

= exp(t(ex1 − 2ex2 + ex3−x1))

=
∑
m≥0

tm

m!
(ex1 − 2ex2 + ex3−x1)m.

Thus,

left-hand side of (∗) =
1

m!
· coefficient of

xs1x
ṡ
2x

s̈
3

s! ṡ! s̈!
in (ex1 − 2ex2 + ex3−x1)m.

If s̈ = 0 we get one of the coefficients occurring in the power series (ex1−2ex2 +e0−x1)m.
This is evidently invariant under the operation x1 7→ −x1, which means that there occur
only terms xs1x

ṡ
2 in which s is even. So we have proven that if s is odd and s̈ = 0 then the

coefficient is 0, showing that ii implies (∗).
What concerns i, use the series expansion of ex to see that

(ex1 − 2ex2 + ex3−x1)m = (−2x2 + x3 + higher order terms)m.

Allow to identify a monomial xα1x
β
2x

γ
3 also with the triple (α, β, γ). In this sense, the

monomials occurring in the parentheses (. . . ) of the right-hand side are all triples of
nonnegative integers from the list {(0, 1, 0), (0, 0, 1)} ∪ {triples of sum of entries ≥ 2}.
In order that a monomial xs1x

ṡ
2x

s̈
3 occurs in the right-hand side, it is necessary to find

monomials Mi in (. . . ) such that the a product M1M2 · · ·Mm = xs1x
ṡ
2x

s̈
3. This means to

choose m triples from the mentioned list whose vector-sum is (s, ṡ, s̈). Assume we have
chosen a triples (0, 1, 0) and b triples (0, 0, 1); then m−a−b of the chosen triples have sum
of entries≥ 2. The vector-sum has then sum of entries s+ ṡ+ s̈ ≥ a+ b+ 2(m− a− b) =
2m−a−b. From nonnegativity of the triples it also follows that a ≤ ṡ and b ≤ s̈. Therefore
we get s+ ṡ+ s̈ ≥ 2m− ṡ− s̈ or m ≤ s

2
+ ṡ+ s̈ as a necessary condition for the occurrence

of xs1x
ṡ
2x

s̈
3 in the m-th power (. . . )m. Thus the inequality m ≥ d1+s

2
e+ ṡ+ s̈ is a sufficient

condition for non-occurrence of xs1x
ṡ
2x

s̈
3, proving the lemma. �

The functions e(x, s) = (−1+x+s)(1−x+s)(1+x−s)(1+x+s) and e2(x, s) = e(x, s)/x2

were encountered in §5 in order to define the functions bn(s). The following theorem
provides detailed information about the primitives

∫
xl(−e2(x, s))mdx.

Theorem. For integers m ≥ 0 and l ∈ {0, 2, 4, . . . , 2m−2}∪Z≥2m there exists a primitive
Fl,m(x, s) ∈

∫
xl(−e2(x, s))mdx, so that:
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a. Fl,m(x, s) is element of R[x, x−1, s] with degs Fl,m ≤ 4m; and:
i. Fl,m(x, s) is even in s. So Fl,m(x, s) = Fl,m(x,−s).

ii. For odd l > 2m, Fl,m(x, s) is an even polynomial also in x.
iii. For even l, Fl,m(x, s) is odd in x.

b. Furthermore Fl,m(1 + s, s) has these properties:
i. It is a polynomial in s of degree ≤ 1 + l + 2m.

ii. It has (1 + s)1+l as a factor.
iii. It is reciprocal: writing

Fl,m(1 + s, s) =
1+l+2m∑
ν=0

aνs
ν ,

one finds aν = a1+l+2m−ν for ν = 0, 1, . . . , 1 + l + 2m.
iv. The coefficients aν with ν ∈ {1, 3, . . . , 2m− 1} ∪ {l+ 2, l+ 4, . . . , l+ 2m} are

zeros. In particular the exponents which occur in Fl,m(1 + s, s) again lie all
in {0, 2, 4, . . . , 2m− 2} ∪ Z≥2m.

Proof. Expansion of e2 gives −e2(x, s) = x2−2(1+s2)+(1−s2)2x−2, and the multinomial
theorem yields

xl(−e2(x, s))m =
∑
a,b,c≥0

(−2)b
(

m

a, b, c

)
(1 + s2)bxl+2(a−c)(1− s2)2c.

By definition of multinomial coefficients, in this sum occur only terms associated with
nonnegative integer triples (a, b, c) for which a + b + c = m. Therefore 2(a − c) is an
even integer in the interval [−2m, 2m], while, if l is an integer satisfying the hypothesis,
then l ∈ {even integers in [0, 2m− 2]} ∪Z≥2m. Thus l+ 2(a− c) 6= −1. Consequently the
indefinite integral

∫
xl(−e2(x, s))mdx has no logarithmic term and one of the primitive

functions of xl(−e2(x, s))m is given by

Fl,m(x, s) =
∑
a,b,c≥0

(−2)b
(
m
a,b,c

)
(1 + l + 2(a− c))

(1 + s2)bx1+l+2(a−c)(1− s2)2c.

This is evidently a polynomial in even powers of s (and coefficients that are Laurent
polynomials in x). Its degree in s is not larger than the maximal value which 2b + 4c
assumes when (a, b, c) range over nonnegative integers of sum m. This value is evidently
4m. Part a of the theorem is now evident. Replacing x by (1 + s) and again using the
definition of multinomial coefficients, we get

Fl,m(1 + s, s) = m!
∑
a,b,c≥0

a+b+c=m

(−2)b

a! b! c!(1 + l + 2(a− c))
(1 + s2)b(1 + s)1+l+2(a−c)(1− s2)2c︸ ︷︷ ︸

=:ϕ(s)

.

Writing (1− s2)2c = (1− s)2c(1 + s)2c, we find

ϕ(s) = (1 + s)1+l(1 + s2)b(1 + s)2a(1− s)2c,

which has leading term s1+l+2b+2a+2c = s1+l+2m. Also since (1 − s)2c = (1 − 2s + s2)c is
reciprocal, ϕ(s) is a product of reciprocal polynomials and therefore reciprocal. Indepen-
dent of a, b, c, ϕ(s) has constant term 1 and leading coefficient 1 and (as seen) degree
1 + l + 2m. Thus Fl,m(1 + s, s) as a linear combination of reciprocal polynomials ϕ(s) is
reciprocal in the sense of b.iii. Now b.ii is also clear.
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We still need to prove iv. From the original definition of ϕ(s) we find

ϕ(s) =
∑
k≥0

(
b

k

)
s2k
∑
i≥0

(
1 + l + 2(a− c)

i

)
si
∑
j≥0

(
2c

j

)
(−1)js2j.

By writing binomial coefficients via falling factorials (using the notation nk = n(n −
1) · · · (n− k + 1) of [GKP]), we see

(coefficient of st in ϕ(s))

=
∑

i+2(k+j)=t

(
b

k

)(
1 + l + 2(a− c)

i

)(
2c

j

)
(−1)j

if t odd
= (1 + l + 2(a− c))

∑
i+2(j+k)=t

(i! j! k!)−1(l + 2(a− c))i−1 bk (−1)j(2c)j.

Here the ‘if t is odd’ condition guarantees that i− 1 ≥ 0. Thus, if t is odd,

coefficient of st in Fl,m(1 + s, s)

= m!
∑

a, b, c ≥ 0
a + b + c = m

(−2)b

a! b! c!

∑
i+2(j+k)=t

(i! j! k!)−1(l + 2(a− c))i−1 bk (−1)j(2c)j

= m!
∑

i+2(j+k)=t

(i! j! k!)−1(−1)j
∑
a,b,c≥0

a+b+c=m

(−2)b

a! b! c!
(l + 2(a− c))i−1 bk (2c)j.

Now evidently (l + 2(a − c))i−1 bk (2c)j can be expanded into a linear combination of
products bṡ(a − c)scs̈ in each of which we will have (ṡ, s, s̈) ≤ (k, i − 1, j) in component-
wise order. Now assume additionally t ≤ 2m − 1. Since t, and hence i, are odd we then
get ṡ + d1+s

2
e + s̈ ≤ k + d i

2
e + j = (t + 1)/2 ≤ m. So the claim that the coefficient of

an st with t ∈ {1, 3, . . . , 2m− 1} in Fl,m(1 + s, s) is 0 follows from the preceding lemma.
That the monomials st with t ∈ {l + 2, l + 4, . . . , l + 2m} cannot occur either is then a
consequence of the fact that Fl,m(1 + s, s) is reciprocal. �
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We conclude this section with examples of the functions Fl,m(x, s).

F2,3(1 + s, s) = 1024
63
− 1024s2

35
− 1024s7

35
+ 1024s9

63

= 1024
315

(1 + s)3
(
5− 15s+ 21s2 − 23s3 + 21s4 − 15s5 + 5s6

)
,

F2,3(2, s) = 11491
504
− 8297s2

140
+ 459s4

8
− 141s6

2
+ 163s8

8
+ 13s10

4
− s12

24
,

F4,5(1 + s, s) = − 262144
2145

+ 524288s2

1287
− 262144s4

693
− 262144s11

693
+ 524288s13

1287
− 262144s15

2145
,

F2,3(x, s) =
(
x9

9
− 6x7

7
+ 3x5 − 20x3

3
− 1

3x3
+ 15x+ 6

x

)
s0

+
(
−6x7

7
+ 18x5

5
− 4x3 + 2

x3
− 12x− 18

x

)
s2

+
(
3x5 − 4x3 − 5

x3
− 6x+ 12

x

)
s4

+
(
−20x3

3
+ 20

3x3
− 12x+ 12

x

)
s6

+
(
− 5
x3

+ 15x− 18
x

)
s8 +

(
2
x3

+ 6
x

)
s10 +

(
− 1

3x3

)
s12.

8. We now show that the functions poli, p̃oli occurring in Theorem 6 are polynomials.
In view of the formula at the end of §5, this will complete the proof that the functions
fRn are piecewise polynomials. Partly for the convenience of the reader the following is a
slightly modified copy of the long statement of Theorem 6.

Theorem. Assume d ≥ 3 is an odd integer and let m = d−3
2
. Then the functions bn(s),

inductively defined for n ≥ 2 by

b2(s) = (s2(4− s2))m1[0,2[(r), bn+1(s) =

∞∫
−∞

bn(r)e2(r, s)m1[|−1+s|,1+s[(r) , dr;

admit, depending on the parity of index n, the piecewise representations

b2ṅ =
ṅ−1∑
i=0

poli(s)1[2i,2i+2[(s)

b1+2ṅ =
ṅ∑
i=0

p̃oli(s)1[(2i−1)+,2i+1[(s),

in which we can express the functions p̃oli(s) pertaining to indices 1+2ṅ from the functions
poli pertaining to index 2ṅ by

p̃oli(s) =



1+s∫
1−s

pol0(r)e2(r, s)m dr, if i = 0,

2i∫
−1+s

poli−1(r)e2(r, s)m dr +
1+s∫
2i

poli(r)e2(r, s)m dr, if i = 1, . . . , ṅ− 1,

2ṅ∫
−1+s

polṅ−1(r)e2(r, s)m dr, if i = ṅ,



14 ALEXANDER KOVAČEC AND PEDRO BARATA DE TOVAR SÁ

and the functions poli pertaining to the case n = 2(ṅ + 1) from the functions p̃oli(s)
pertaining to the case n = 1 + 2ṅ by

poli(s) =



1∫
|−1+s|

p̃ol0(r)e2(r, s)m dr +
1+s∫
1

p̃ol1(r)e2(r, s)m dr, if i = 0,

2i+1∫
s−1

p̃oli(r)e2(r, s)m dr +
s+1∫

2i+1

p̃oli+1(r)e2(r, s)m dr, if i = 1, . . . , ṅ− 1,

2ṅ+1∫
s−1

p̃olṅ(r)e2(r, s)m dr, if i = ṅ.

Proof. The proof will follow from observations 0, 1, 2, 3, 4 below, which rely heavily on
the fact that by part a of the theorem in §7, we have for positive reals a, b and l ∈
{2, 4, . . . , 2m − 2} ∪ Z≥2m, that the definite integral

∫ b
a
xl(−e2(x, s))mdx = Fl,m(b, s) −

Fl,m(a, s); hence if p(x) is a polynomial in which only monomials xl with exponents in

l ∈ {2, 4, . . . , 2m− 2} ∪ Z≥2m, occur, then
∫ b
a
p(x)e2(x, s)mdx is a real linear combination

of expressions Fl,m(b, s)− Fl,m(a, s) with such l.
Looking at the definition of b2(s), we find:

0. The expression pol0 associated with ṅ = 1 is the polynomial (s2(4−s2))m and hence
is even and has only monomials st with t ≥ 2m.

1. If pol0, associated with b2ṅ is a polynomial all whose exponents l are in {2, 4, . . . , 2m−
2} ∪ Z≥2m, then p̃ol0 associated with b1+2ṅ is an odd polynomial of order ≥ 2m.

d> For l in {2, 4, . . . , 2m−2}∪Z≥2m, by its definition, the polynomial p̃ol0(s) is a linear
combination of differences

Fl,m(1 + s, s)− Fl,m(1− s, s) = Fl,m(1 + s, s)− Fl,m(1− s,−s)

for different l. Here we used that, by Theorem 7 a.i, F (x, s) = F (x,−s). We see now
that these differences turn into their negatives as we replace s by −s, so they are odd
polynomials. By Theorem 7 b.iv, the exponents≤ 2m − 1 occurring in Fl,m(1 + s, s) are
even; so the same holds for Fl,m(1− s,−s). So the exponents occurring in the differences
all must be≥ 2m. This yields the claim. c<

2. If l ≥ 2m is odd, then
∫ 1

|−1+s| x
le2(x, s)mdx =

∫ 1

1−s x
le2(x, s)mdx.

d> Recall that e2(x, s) = −(1 − s2)2x−2 + 2(1 + s2) − x2. So in e2(x, s)m the powers of
x occurring are all even and≥ −2m. Hence xlem2 has only odd powers which are all ≥ 0.
Now if xo is such an odd power of x, then∫ 1

|−1+s|
xodx = (1 + o)−1(1− | − 1 + s|1+o) = (1 + o)−1(1− (1− s)1+o) =

∫ 1

1−s
xodx,

since 1 + o is even. The claim follows. c<

3. All the expressions Fl,m(a, s), with a being one of the s-independent lower or upper

bounds in the integrals occurring for the poli, p̃oli, are (for given l) even polynomials in
s.
d> This is immediate from Theorem 7 a.i. c<
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4. Concerning the integrals below at the left for the computation of the functions pol0
associated with b2, b4, b6, . . . , we have∫ 1

|−1+s|
p̃ol0(r)e2(r, s)m dr =

∫ 1

1−s
p̃ol0(r)e2(r, s)m dr.

d> The expression pol0(s) associated with b2 is by observation 0 even and has order ≥
2m. It satisfies hence the hypothesis of observation 1 for ṅ = 1 and that observation yields

that p̃ol0 associated with b3 is an odd polynomial of order ≥ 2m. Thus by observation 2,

we may replace the integral
∫ 1

|−1+s| . . . by
∫ 1

1−s . . . . If we do so we get that the expression

pol0 pertaining to b4 is given by pol0(s) =
∫ 1

1−s pol0(r)e2(r, s)m dr+
∫ 1+s

1
p̃ol1(r)e2(r, s)m dr.

This expression is hence a linear combination of differences Fl,m(1, s)− Fl,m(1− s, s) and
Fl,m(1 + s, s)−Fl,m(1, s) for various ls and so by 3 and Theorem 7 b.iv we see this pol0(s)

has only exponents in {2, 4, . . . , 2m− 2} ∪ Z≥2m. Then 1 gives us that p̃ol0(s) associated
with b5 = b1+2·2 is odd and has order ≥ 2m. This in turn, as above, by 2 allows us again

a replacement of
∫ 1

|−1+s| . . . by
∫ 1

1−s . . . and so for the calculation of pol0 associated with

b6 to write the same formula as before we did for the pol0 associated with b4. Repeating
this type of reasoning, we see by induction that indeed we can write the formulas for pol0
for all polynomials b2ṅ with integrals

∫ 1

1−s . . . instead of
∫ 1

|−1+s| . . . . c<

Conclusion of the proof: We realise that all the integrals figuring in the computations

of the poli(s) and p̃oli(s) can be written with upper and lower bounds which are reals
a > 0 (independent of s) or are of the forms s − 1, 1 − s, 1 + s. Due to the observations

done up till here, we find that indeed the expressions poli(s) and p̃oli(s) are polynomials
and we are done. �

Concluding this paper, we think that a closer analysis of the reasoning in Section 7
would allow to insert the results of that section into a more general framework and it is
also our hope that above analysis can serve as a basis to give more natural and somewhat
simpler explicit formulas than those presented in [BS]. Furthermore perhaps it is useful
to remark that integrals of the type we investigated are formally close to integrals that
occur in certain moment computations and that, provided its factors are positive, the
function e(r, s) is a sixteenth of the squared area of a triangle with side length 1, r, s.
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