Crystal graph theory and some of its generalizations I: basics on crystals

Cédric Lecouvey
University of Tours

Saint-Paul en Jarez 2022

Plan of the mini-course

(1) Basics on crystals
(2) Crystals and Kostka polynomials
(3) Crystals and random processes

Some classical problems in representation theory

Let \mathfrak{g} be a simple Lie algebra of rank n over \mathbb{C}.
The following questions are classical.
(1) How to compute the character of a representation?
(2) How to decompose the tensor product of two representations into irreducible components ?
(3) How to define and compute a "canonical" basis of representations?

Problem

Find a general frame to answer problems 1,2,3

The prototype of a Lie algebra

We have

$$
\mathfrak{s l}_{2}=\mathbb{C}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \oplus \mathbb{C}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \oplus \mathbb{C}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)=\mathbb{C} e \oplus \mathbb{C} h \oplus \mathbb{C} f .
$$

It can be embedded in its universal envelopping algebra $U\left(\mathfrak{s l}_{2}\right)$, the associative \mathbb{C}-algebra generated by $\mathbf{e}, \mathbf{f}, \mathbf{h}$ with the relations

$$
\begin{gathered}
{[\mathbf{h}, \mathbf{e}]=\mathbf{h e}-\mathbf{e h}=2 \mathbf{e}} \\
{[\mathbf{h}, \mathbf{f}]=\mathbf{h f}-\mathbf{f h}=-2 \mathbf{f}} \\
{[\mathbf{e}, \mathbf{f}]=\mathbf{e f}-\mathbf{f e}=\mathbf{h}}
\end{gathered}
$$

Linear algebras and their root systems

Example

$\mathfrak{s l}_{n+1}=\left\{M \in \mathfrak{g l}_{n+1} \mid \operatorname{tr}(M)=0\right\}$ satifies

$$
\mathfrak{s l}_{n+1}=\mathfrak{t}_{+} \oplus \mathfrak{h} \oplus \mathfrak{t}_{-}
$$

with root system in

$$
E=\mathfrak{h}_{\mathbb{R}}^{*}=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1} \mid x_{1}+\cdots+x_{n+1}=0\right\}
$$

such that

$$
\begin{gathered}
S=\left\{\varepsilon_{i}-\varepsilon_{i+1} \mid i=1, \ldots, n\right\} \quad R_{+}=\left\{\varepsilon_{i}-\varepsilon_{j} \mid 1 \leq i<j \leq n+1\right\} \\
\left.W \simeq \mathfrak{S}_{n+1}=\left\langle s_{\varepsilon_{i}-\varepsilon_{i+1}}\right| 1, \ldots, n\right\}
\end{gathered}
$$

Its Chevalley generators are

$$
e_{i}=E_{i, i+1}, \quad h_{i}=E_{i, i}-E_{i+1, i+1}, \quad f_{i}=E_{i+1, i}
$$

Root system

Each simple Lie algebra over \mathbb{C} has a triangular decomposition

$$
\mathfrak{g}=\mathfrak{g}_{+} \oplus \mathfrak{h} \oplus \mathfrak{g}_{-}
$$

where \mathfrak{h} is the cartan subalgebra of \mathfrak{g}.
Its root system (S, R, Q, P, W) is realized in the Euclidean space $E=\mathfrak{h}_{\mathbb{R}}^{*}$:

- $S=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is the set of simple roots
- $R=R_{+} \sqcup-R_{+}$is the set of positive roots of \mathfrak{g}
- $Q=\oplus_{i=1}^{n} \mathbb{Z} \alpha_{i}$ is the root lattice
- $P=\oplus_{i=1}^{n} \mathbb{Z} \omega_{i}$ is the weight lattice such that $\left(\omega_{i}, \alpha_{j}^{\vee}\right)=\delta_{i, j}$ where $\alpha_{j}^{\vee}=\frac{2 \alpha_{j}}{\left(\alpha_{j}, \alpha_{j}\right)}$.
- $\left.W=\left\langle s_{i}=s_{\alpha_{i}^{\perp}}\right| i=1, \ldots, n\right\}$ is the Weyl group

To each $\alpha \in R_{+}$corresponds a triple $\left(e_{\alpha}, h_{\alpha}, f_{\alpha}\right)$ in \mathfrak{g} such that

$$
\mathbb{C} e_{\alpha} \oplus \mathbb{C} h_{\alpha} \oplus \mathbb{C} f_{\alpha} \simeq \mathfrak{s l}_{2}(\mathbb{C})
$$

We have

$$
\mathfrak{g}_{+}=\underset{\alpha \in R_{+}}{\bigoplus} \mathbb{C} e_{\alpha} \quad \mathfrak{h}=\underset{\alpha \in R_{+}}{\bigoplus} \mathbb{C} h_{\alpha} \quad \mathfrak{g}_{-}=\underset{\alpha \in R_{+}}{\bigoplus} \mathbb{C} f_{\alpha}
$$

\mathfrak{g} has a presentation in terms of its Chevalley generators

$$
\left\{e_{i}=e_{\alpha_{i}}, f_{i}=f_{\alpha_{i}}, h_{i}=h_{\alpha_{i}} \mid i \in I\right\}
$$

and relations depending of the Cartan matrix

$$
A=\left(a_{i, j}\right)_{(1 \leq i, j \leq n} \text { where } a_{i, j}=\frac{2\left(\alpha_{i}, \alpha_{j}\right)}{\left(\alpha_{i}, \alpha_{i}\right)} .
$$

Also $\left\{\omega_{i}, i=1, \ldots, n\right\} \subset \mathfrak{h}_{\mathbb{R}}^{*}$ is the dual basis of $\left\{h_{i}, i=1, \ldots, n\right\} \subset \mathfrak{h}_{\mathbb{R}}$.

Representation theory

Since $\left(\omega_{i}, \alpha_{j}^{\vee}\right)=\delta_{i, j}$ for any $(i, j) \in\{1, \ldots, n\}^{2}$, we have

$$
P_{+}=\left\{\lambda \in P \mid\left(\lambda, \alpha_{i}^{\vee}\right) \geq 0, i=1, \ldots, n\right\}=\oplus_{i=1}^{n} \mathbb{Z}_{\geq 0} \omega_{i}
$$

This is the cone of dominant weights.
The $f . d$. irreducible representations of \mathfrak{g} are parametrized by P_{+}.
Let $V(\lambda)$ be the f.d. irr. rep associated to $\lambda \in P_{+}$. Then for any $\beta \in P$

$$
V(\lambda)_{\beta}=\{v \in V(\lambda) \mid h(v)=\beta(h) v \text { for any } h \in \mathfrak{h}\}
$$

is the subspace of weight β in $V(\lambda)$. We have

$$
V(\lambda)=\underset{\beta \in P}{\bigoplus} V(\lambda)_{\beta}
$$

By writing $\mathbb{Z}[P]=\left\{e^{\beta} \mid \beta \in P\right\}$ and setting $\operatorname{dim} V(\lambda)_{\beta}=K_{\lambda, \beta}$, we get the character of $V(\lambda)$

$$
s_{\lambda}=\sum_{\beta \in P} K_{\lambda, \beta} e^{\beta} \in \mathbb{Z}[P]
$$

In fact, $K_{\lambda, w(\beta)}=K_{\lambda, \beta}$ for any $w \in W$ so that $s_{\lambda} \in \mathbb{Z}^{W}[P]$.
The Weyl character formula gives

$$
s_{\lambda}=\frac{\sum_{w \in W} \varepsilon(w) e^{w(\lambda+\rho)}}{\sum_{w \in W} \varepsilon(w) e^{w(\rho)}} \text { where } \rho=\frac{1}{2} \sum_{\alpha \in R_{+}} \alpha
$$

The type A case

One identifies the weight lattice with

$$
P=\left\{\beta \in \mathbb{Z}^{n} \mid \beta_{1}+\cdots+\beta_{n}=0\right\}
$$

and the dominant weights of $\mathfrak{s l}_{n}$ with the partitions
$\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n-1} \geq \lambda_{n}=0\right)$

$$
\lambda=\sum_{i=1}^{n-1}\left(\lambda_{i}-\lambda_{i+1}\right) \omega_{i}
$$

and by setting

$$
x_{1}=e^{\omega_{1}}, \quad x_{i}=e^{\omega_{i}-\omega_{i-1}}, i=2, \ldots, n-1, \quad x_{n}=e^{-\omega_{n-1}}
$$

the character s_{λ} is the image of the Schur function $s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)$ in $\operatorname{Sym}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1} \cdots x_{n}=1\right)$.

Semisimplicity

Each f.d. representation of \mathfrak{g} (or \mathfrak{g}-module) M decomposes on the form

$$
M \simeq \underset{\lambda \in P_{+}}{\bigoplus} V(\lambda)^{\oplus m_{\lambda}}
$$

The module M is irreducible (or simple) and isomorphic to $V(\lambda)$ when its highest weight vectors space

$$
M^{h}:=\left\{v \in M \mid \text { weight vectors } v \text { s.t. } e_{i} \cdot v=0 \text { for any } i=1, \ldots, n\right\}
$$

has dimension 1 and coincides with the weight space

$$
M_{\lambda}=\left\{v \in M \mid h_{i} \cdot v=\lambda\left(h_{i}\right) v \text { for any } i=1, \ldots, n\right\}
$$

Quantum groups

Each simple Lie algebra $\mathfrak{g}=\mathfrak{g}_{+} \oplus \mathfrak{h} \oplus \mathfrak{g}_{-}$is embedded in its universal envelopping algebra $U(\mathfrak{g})$.
The quantum group $U_{q}(\mathfrak{g})$ is obtained by deforming $U(\mathfrak{g})$ with a formal parameter q.

Example

$U_{q}\left(\mathfrak{s l}_{2}\right)$ is the associative algebra over $\mathbb{C}(q)$ generated by E, F, T et T^{-1} and the relations

$$
\left\{\begin{array} { c }
{ T = q ^ { h } } \\
{ T E T ^ { - 1 } = q ^ { 2 } E } \\
{ T F T ^ { - 1 } = q ^ { - 2 } F } \\
{ [E , F] = E F - F E = \frac { T - T ^ { - 1 } } { q - q ^ { - 1 } } }
\end{array} \quad \text { versus } \left\{\begin{array}{l}
{[\mathbf{h}, \mathbf{e}]=\mathbf{h e}-\mathbf{e h}=2 \mathbf{e}} \\
{[\mathbf{h}, \mathbf{f}]=\mathbf{h f}-\mathbf{f h}=-2 \mathbf{f}} \\
{[\mathbf{e}, \mathbf{f}]=\mathbf{e f}-\mathbf{f e}=\mathbf{h}}
\end{array}\right.\right.
$$

The Cartan subalgebra is now $U_{q}(\mathfrak{g})=\left\{q^{h} \mid h \in \mathfrak{h}\right\}$.
F.d. $U_{q}(\mathfrak{g})$-modules are just q-deformations of $U(\mathfrak{g})$-modules. Their weights yet belong to P
A weight vector of M_{q} of weight $\mu \in \mathfrak{h}^{*}$ is a vector v s.t. $q^{h} . v=q^{\mu(h)} v$ for any $q^{h} \in U_{q}(\mathfrak{h})$.
The highest weight vectors of M_{q} is a weight vector v s.t. $E_{i} \cdot v=0$ for any $i=1, \ldots, n$. Its weight is dominant.

Theorem

- The irreducible f.d. $U_{q}(\mathfrak{g})$-modules are indexed by the dominant weights λ.
- $V_{q}(\lambda)=U_{q}(\mathfrak{g}) \cdot v_{\lambda}$ where v_{λ} is of h.w. λ.
- $\lim _{q \rightarrow 1} V_{q}(\lambda)=V(\lambda)$."
- M_{q} is irreducible i.i.f it admits up to a constant only one h.w.v.

An example

The irreducible f.d. rep. of $U_{q}\left(\mathfrak{s l}_{n}\right)$ are indexed by the partitions

$$
\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n-1} \geq 0\right) \in \mathbb{Z}_{\geq 0}^{n-1}
$$

The Chevalley generators $E_{i}, H_{i}, F_{i}, i=1, \ldots, n-1$ of $U_{q}\left(\mathfrak{s l}_{n}\right)$ act on

$$
V_{q}(\square)=\bigoplus_{j=1}^{n} \mathbb{C}(q) v_{j}
$$

by

$$
E_{i}\left(v_{j+1}\right)=\delta_{i, j} v_{i} \quad H_{i}\left(v_{j}\right)=q^{\left(\delta_{i, j}-\delta_{i, i+1}\right)} v_{j} \quad F_{i}\left(v_{j}\right)=\delta_{i, j} v_{i+1}
$$

This can be encoded by the graph:

$$
v_{1} \xrightarrow{F_{1}} v_{2} \xrightarrow{F_{2}} v_{3} \xrightarrow{F_{3}} \cdots \xrightarrow{F_{n-2}} v_{n-1} \xrightarrow{F_{n-1}} v_{n} .
$$

Tensor product of two modules

Given M_{q} and N_{q} two $U_{q}(\mathfrak{g})$-modules, the Chevalley generators act on $M_{q} \otimes N_{q}$ by

$$
\begin{aligned}
H_{i}(u \otimes v) & =H_{i}(u) \otimes H_{i}(v) \\
E_{i}(u \otimes v) & =E_{i}(u) \otimes H_{i}^{-1}(v)+u \otimes E_{i}(v) \\
F_{i}(u \otimes v) & =F_{i}(u) \otimes v+H_{i}(u) \otimes F_{i}(v)
\end{aligned}
$$

Example

The $U_{q}\left(\mathfrak{s l}_{3}\right)$-module $V_{q}(\square)^{\otimes 3}$ has four irreducible components of h.w. v.
(1) $v_{1} \otimes v_{1} \otimes v_{1}$ of weight $(3,0)$
(2) $v_{1} \otimes\left(v_{1} \otimes v_{2}-q v_{2} \otimes v_{1}\right)$ and $\left(v_{1} \otimes v_{2}-q v_{2} \otimes v_{1}\right) \otimes v_{1}$ of weight $(2,1)$
(3) $\sum_{\sigma \in S_{3}}(-q)^{/(\sigma)} v_{\sigma(1)} \otimes v_{\sigma(2)} \otimes v_{\sigma(3)}$ of weight $(0,0)$.

So

$$
V_{q}(\square)^{\otimes 3} \simeq V(3,0) \oplus V(2,1)^{\oplus 2} \oplus V(0,0)
$$

Crystals in rank 1

For $U_{q}\left(\mathfrak{s l}_{2}\right)$, we have $P_{+}=\mathbb{Z}_{\geq 0} \omega_{1}$.
Set

$$
[a]_{q}=\frac{q^{a}-q^{-a}}{q-q^{-1}}
$$

Given $k \in \mathbb{Z}_{\geq 0}$, the irr. rep. $V_{q}(k)$ is

$$
V_{q}(k)=\bigoplus_{a=0}^{k} \mathbb{C}(q) v_{a}
$$

where

$$
F\left(v_{a}\right)=[a+1]_{q} v_{a+1}, \quad E\left(v_{a+1}\right)=[k-a]_{q} v_{a} \text { and } \quad H\left(v_{a}\right)=q^{k-2 a} v_{i}
$$

This suggests to introduce the graph

$$
B(k): v_{0} \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{k}
$$

by "renormalizing" the actions of F and E.

Crystal graph of a simple module

The crystal graph $B(\lambda)$ of $V_{q}(\lambda)$ is a colored oriented graph: an arrow $b \xrightarrow{i} b^{\prime}$ means

$$
b^{\prime}=\widetilde{F}_{i}(b) \text { i.e. " } b^{\prime}=F_{i}(b) \text { at } q=0 "
$$

Each $b \in B(\lambda)$ belongs to an i-chain starting at $s(b)$ and ending at $e(b)$. Set

$$
\begin{gathered}
\varepsilon_{i}(b)=d\left(b, b_{s}\right) \text { and } \varphi_{i}(b)=d\left(b, b_{e}\right) . \\
b_{s} \underbrace{\stackrel{i}{\rightarrow} \cdots \stackrel{i}{\rightarrow}}_{\varepsilon_{i}(b)} b \underbrace{\stackrel{i}{\rightarrow} \cdots \stackrel{i}{\rightarrow}}_{\varphi_{i}(b)} b_{e}
\end{gathered}
$$

Example

The crystal of $V(1)$ for $U_{q}\left(\mathfrak{s l}_{n}\right)$ is simply

$$
B(1): 1 \xrightarrow{1} 2 \xrightarrow{2} 3 \xrightarrow{3} \cdots \xrightarrow{n-2} n-1 \xrightarrow{n-1} n .
$$

Theorem (Kashiwara-Littelmann 1992)

For any dominant weight λ

$$
\operatorname{char} V(\lambda)=\sum_{b \in B(\lambda)} e^{\mathrm{wt}(b)} \text { where } \mathrm{wt}(b)=\sum_{i=1}^{n}\left(\varphi_{i}(b)-\varepsilon_{i}(b)\right) \omega_{i}
$$

This answers to Problem 1.

Example

With $B(1)$ for $U_{q}\left(\mathfrak{s l}_{n}\right)$, we get $w t(i)=\omega_{i}-\omega_{i-1}$ and with $x_{i}=e^{\omega_{i}-\omega_{i-1}}$ $\operatorname{char} V(1)=x_{1}+\cdots+x_{n}$.

The Weyl group W also acts on $B(\lambda)$ by symmetrizing each i-chain:

$$
s_{i}\left(b_{e}\right) \underbrace{\stackrel{i}{\rightarrow} \cdots \stackrel{i}{\rightarrow}}_{\varepsilon_{i}\left(s_{i}(b)\right)=\varphi_{i}(b)} s_{i}(b) \underbrace{\stackrel{i}{\rightarrow} \cdots \stackrel{i}{\rightarrow}}_{\varphi_{i}\left(s_{i}(b)\right)=\varepsilon_{i}(b)} s_{i}\left(b_{s}\right) .
$$

Crystal of a tensor product

The crystal graph $B(\lambda) \otimes B(\mu)$ of $V_{q}(\lambda) \otimes V_{q}(\mu)$ has vertices

$$
b \otimes b^{\prime} \text { s.t. } b \in B(\lambda), b^{\prime} \in B(\mu)
$$

and the action of the \widetilde{F}_{i} is

$$
\widetilde{F}_{i}\left(b \otimes b^{\prime}\right)=\left\{\begin{array}{l}
\widetilde{F}_{i}(b) \otimes b^{\prime} \text { if } \varphi_{i}(b)>\varepsilon_{i}\left(b^{\prime}\right) \\
b \otimes \widetilde{F}_{i}\left(b^{\prime}\right) \text { otherwise }
\end{array}\right.
$$

Theorem (Kashiwara 1992)

The decomposition of $B(\lambda) \otimes B(\mu)$ into its connected components gives that of $V_{q}(\lambda) \otimes V_{q}(\mu)$ into its irreducible components.

This answers to Problem 2.

An example

Crystal of the defining rep. of $U_{q}\left(\mathfrak{s l}_{3}\right)$.

$$
1 \xrightarrow{1} 2 \xrightarrow{2} 3
$$

and its tensor square

$$
\begin{array}{rccccc}
& 1 & \xrightarrow{1} & 2 & \xrightarrow{2} & 3 \\
1 & 1 \otimes 1 & \xrightarrow{1} & 2 \otimes 1 & \xrightarrow{2} & 3 \otimes 1 \\
1 \downarrow & & & 1 \downarrow & & 1 \downarrow \\
2 & 1 \otimes 2 & & 2 \otimes 2 & \xrightarrow{2} & 3 \otimes 2 \\
2 \downarrow & 2 \downarrow & & & & 2 \downarrow \\
3 & 1 \otimes 3 & \xrightarrow{1} & 2 \otimes 3 & & 3 \otimes 3
\end{array}
$$

We get

$$
V^{\otimes 2} \simeq V(2,0) \oplus V(1,1)
$$

The crystal structure on words

Each vertex $b \in B(1)^{\otimes \ell}$ can identified with the word $w=x_{1} \cdots x_{\ell}$ on the alphabet $\{1<\cdots<n\}$.
For each $i=1, \ldots, n-1$, form w_{i} the subword of w containing only the letters i and $i+1$.
$w_{i}^{\text {red }}=(i+1)^{\varepsilon_{i}(w)} ; \varphi_{i}(w)$ is obtained by recursive deletion of factors $i(i+1)$ in w_{i}.
Example: $w=212111322313$ with $n=3$
(1) $w_{1}=2(12) 1[1(12) 2] 1$ and $w_{1}^{\text {red }}=211$. Thus $\varepsilon_{1}(w)=1$ and $\varphi_{1}(w)=2$
(2) $w_{2}=2(23)[2(23) 3]$ and $w_{2}^{\text {red }}=2$. Thus $\varepsilon_{2}(w)=0$ and $\varphi_{3}(w)=1$.

Fact

\tilde{f}_{i} (resp. \tilde{e}_{i}) is obtained by modifying the leftmost surviving i (resp. rightmost $i+1$) into $i+1$ (resp. i).

Example: $\tilde{f}_{1}(w)=212211322313$

Tableaux and crystals

By identifying each tableau with its row reading, $B(\lambda)$ can be labelled by semistandard tableaux of shape λ.

The crystal $B(2,1,0)$ for $U_{q}\left(\mathfrak{s l}_{3}\right)$ is labelled by the tableaux of shape $\lambda=(2,1,0)$.

$$
\operatorname{char} V_{q}(\lambda)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}+2 x_{1} x_{2} x_{3}
$$

Littelmann path model

Littelmann defined operators $\tilde{f}_{i}, \tilde{e}_{i}, i=1, \ldots, n$ on paths $\pi:[0,1] \rightarrow P$.
Each vertex $b \in B(\lambda)$ is now regared as a path s.t. $\pi(1)=\mathrm{wt}(b)$. There are many realizations of $B(\lambda)$ by
(1) first choosing a h.w path π_{λ} such that $\operatorname{Im} \pi_{\lambda} \subset P_{+}$,

Example

By identifying each word $w=x_{1} \cdots x_{\ell}$ with the piecewise paths $\pi[0,1] \rightarrow \mathbb{Z}^{n}$ s.t.

$$
\pi\left(\frac{k}{\ell}\right)=\varepsilon_{1}+\cdots+\varepsilon_{k}
$$

and projecting on $P=\left\{x \in \mathbb{Z}^{n} \mid x_{1}+\cdots+x_{n}=0\right\}$, we get a Littelmann path model in which the h.w.v are the reverse lattice words.

Littelmann path model

Littelmann defined operators $\tilde{f}_{i}, \tilde{e}_{i}, i=1, \ldots, n$ on paths $\pi:[0,1] \rightarrow P$.
Each vertex $b \in B(\lambda)$ is now regared as a path s.t. $\pi(1)=w t(b)$. There are many realizations of $B(\lambda)$ by
(1) first choosing a h.w path π_{λ} such that $\operatorname{Im} \pi_{\lambda} \subset P_{+}$,
(2) next appying to π_{λ} the Littelmann operators $\tilde{f}_{i}, i=1, \ldots, n-1$

Example

By identifying each word $w=x_{1} \cdots x_{\ell}$ with the piecewise paths $\pi[0,1] \rightarrow \mathbb{Z}^{n}$ s.t.

$$
\pi\left(\frac{k}{\ell}\right)=\varepsilon_{1}+\cdots+\varepsilon_{k}
$$

and projecting on $P=\left\{x \in \mathbb{Z}^{n} \mid x_{1}+\cdots+x_{n}=0\right\}$, we get a Littelmann path model in which the h.w.v are the reverse lattice words.

Figure: A path corresponding to a word on letters 1,2 and its projection in P for $\mathfrak{S H}_{2}$.

Canonical bases

Theorem (Kashiwara-Luszig)

The canonical basis is the unique basis $\{G(b) \mid b \in B(\lambda)\}$ of $V_{q}(\lambda)$ such that
(1) $G(b)=b$ when $q=0$,
(2) $G(b)=\overline{G(b)}$ where - is a simple involution defined on $V_{q}(\lambda)$.

This answers to Problem 3.

