Crystal graph theory and some of its generalizations II: Kostka polynomials

Cédric Lecouvey
University of Tours

Saint-Paul en Jarez 2022

I. Kostka-Foulkes polynomials in type A

$\mathbb{Z}^{n}=\bigoplus_{i=1}^{n} \mathbb{Z} \varepsilon_{i}$.
Remind that the root lattice Q of $\mathfrak{s l}_{n}$ is the sublattice of \mathbb{Z}^{n} generated by the vectors $\varepsilon_{i}-\varepsilon_{i+1}, 1 \leq i<n$.

For $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{Z}^{n}$, set $x^{\beta}=x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}}$.
The q-Kostant partition function of type A_{n-1} is defined by

$$
\prod_{1 \leq i<j \leq n} \frac{1}{1-q \frac{x_{i}}{x_{j}}}=\sum_{\beta \in \mathbb{Z}^{n}} \mathcal{P}_{q}(\beta) x^{\beta}
$$

- $\mathcal{P}_{q}(\beta) \in \mathbb{Z}_{\geq 0}[q]$

I. Kostka-Foulkes polynomials in type A

$\mathbb{Z}^{n}=\bigoplus_{i=1}^{n} \mathbb{Z} \varepsilon_{i}$.
Remind that the root lattice Q of $\mathfrak{s l}_{n}$ is the sublattice of \mathbb{Z}^{n} generated by the vectors $\varepsilon_{i}-\varepsilon_{i+1}, 1 \leq i<n$.

For $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{Z}^{n}$, set $x^{\beta}=x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}}$.
The q-Kostant partition function of type A_{n-1} is defined by

$$
\prod_{1 \leq i<j \leq n} \frac{1}{1-q \frac{x_{i}}{x_{j}}}=\sum_{\beta \in \mathbb{Z}^{n}} \mathcal{P}_{q}(\beta) x^{\beta}
$$

- $\mathcal{P}_{q}(\beta) \in \mathbb{Z}_{\geq 0}[q]$
- $\mathcal{P}_{1}(\beta)$ gives the number of nonnegative decompositions of β as a sum of $\varepsilon_{i}-\varepsilon_{j}, 1 \leq i<j \leq n$.

I. Kostka-Foulkes polynomials in type A

$\mathbb{Z}^{n}=\bigoplus_{i=1}^{n} \mathbb{Z} \varepsilon_{i}$.
Remind that the root lattice Q of $\mathfrak{s l}_{n}$ is the sublattice of \mathbb{Z}^{n} generated by the vectors $\varepsilon_{i}-\varepsilon_{i+1}, 1 \leq i<n$.

For $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{Z}^{n}$, set $x^{\beta}=x_{1}^{\beta_{1}} \cdots x_{n}^{\beta_{n}}$.
The q-Kostant partition function of type A_{n-1} is defined by

$$
\prod_{1 \leq i<j \leq n} \frac{1}{1-q \frac{x_{i}}{x_{j}}}=\sum_{\beta \in \mathbb{Z}^{n}} \mathcal{P}_{q}(\beta) x^{\beta}
$$

- $\mathcal{P}_{q}(\beta) \in \mathbb{Z}_{\geq 0}[q]$
- $\mathcal{P}_{1}(\beta)$ gives the number of nonnegative decompositions of β as a sum of $\varepsilon_{i}-\varepsilon_{j}, 1 \leq i<j \leq n$.
- $\mathcal{P}_{q}(\beta)=0$ when $\beta \notin Q$.

A partition is a sequence $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0\right) \in \mathbb{Z}^{n}$. Each partition is encoded by its Young diagram. For example

Let $\rho=(n-1, n-2, \ldots, 1,0)$.

Let \mathfrak{S}_{n} be the symmetric group of rank n.
The group \mathfrak{S}_{n} acts on \mathbb{Z}^{n} by permutation $\sigma \cdot\left(\beta_{1}, \ldots, \beta_{n}\right)=\left(\beta_{\sigma(1)}, \ldots, \beta_{\sigma(n)}\right)$.

Consider λ and μ two partitions with at most n parts.
They can be identified with dominant weights of $\mathfrak{s l}_{n}$

$$
\lambda=\sum_{i=1}^{n-1}\left(\lambda_{i}-\lambda_{i+1}\right) \omega_{i} \text { and } \mu=\sum_{i=1}^{n-1}\left(\mu_{i}-\mu_{i+1}\right) \omega_{i}
$$

Definition

The Kostka polynomial $K_{\lambda, \mu}(q)$ is the polynomial of $\mathbb{Z}[q]$ s.t.

$$
K_{\lambda, \mu}(q)=\sum_{\sigma \in \mathfrak{S}_{n}} \varepsilon(\sigma) \mathcal{P}_{q}(\sigma(\lambda+\rho)-\rho-\mu)
$$

where $\rho=(n-1, \ldots, 1,0) \in \mathbb{Z}=\mathbb{N}^{n}$.

By the Weyl character formula

$$
K_{\lambda, \mu}(1)=\operatorname{dim} V(\lambda)_{\mu}
$$

where $V(\lambda)_{\mu}$ is the space of weight μ in the f.d. representation $V(\lambda)$.

A semistandard tableau T of shape λ is a filling of λ by letters in $\{1, \ldots, n\}$ with

- strictly increasing columns from top to bottom
- weakly increasing rows from left to right.

Its weight is $\mathrm{wt}(T)=\left(\mu_{1}, \ldots, \mu_{n}\right)$ with $\mu_{i}=\#$ letters i in T

Example

$T=$| 1 | 1 | 2 | 4 |
| :--- | :--- | :--- | :--- |
| 2 | 3 | 5 | |
| 3 | 4 | | |
| 5 | | | |
| | | | |

with weight $\mathrm{wt}(T)=(2,2,2,2,2)$ and row reading

$$
\mathrm{w}(T)=4211532435
$$

Theorem

(1) $K_{\lambda, \mu}(1)$ is equal to the number of SST of shape λ and weight μ.
(2) $K_{\lambda, \mu}(q) \in \mathbb{Z}_{\geq 0}[q]$ and $K_{\lambda, \mu}(q) \neq 0$ only if $\lambda-\mu \in Q_{+}=\oplus_{i=1}^{n-1} \mathbb{N} \alpha_{i}$.

For Assertion 2 :

- sophisticated geometric or algebraic proofs (affine Kazhdan-Lusztig polynomials, Brilinsky-Kostant filtration 1989).

Theorem

(1) $K_{\lambda, \mu}(1)$ is equal to the number of SST of shape λ and weight μ.
(2) $K_{\lambda, \mu}(q) \in \mathbb{Z}_{\geq 0}[q]$ and $K_{\lambda, \mu}(q) \neq 0$ only if $\lambda-\mu \in Q_{+}=\oplus_{i=1}^{n-1} \mathbb{N} \alpha_{i}$.

For Assertion 2 :

- sophisticated geometric or algebraic proofs (affine Kazhdan-Lusztig polynomials, Brilinsky-Kostant filtration 1989).
- a combinatorial proof and description by Lascoux \& Schützenberger based on the charge statistics on SST.

Hall-Littlewood polynomials

For any $P \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ set

$$
J(P)=\sum_{w \in W} \varepsilon(w) w \cdot P
$$

The HL-polynomial associated to μ is defined by

$$
P_{\mu}=\frac{1}{W_{\mu}(q)} \frac{J\left(\prod_{\alpha \in R_{+}}\left(1-q e^{-\alpha}\right) e^{\mu+\rho}\right)}{J\left(e^{\rho}\right)}
$$

where $W_{\mu}(q)=\sum_{\sigma \in \mathfrak{S}_{n} \mid \sigma(\mu)=\mu} q^{\ell(\sigma)}$.

Theorem

The HL polynomials are symmetric polynomials and for any partition λ

$$
s_{\lambda}=\sum_{\mu} K_{\lambda, \mu}(q) P_{\mu}
$$

This permits to prove that $K_{\lambda, \mu}(q)$ is an affine KL-polynomial (Kato 1982).

II. The charge statistics

Row insertions of letters in a SST.

		1	2		\longleftarrow	$5=$	1	1	2	4	5
		3	5				2	3	5		
		4					3	4			
							1	1	2	3	5
1		2	4				2	4			
2		5				$3=$	3	5			
3							6				

Cyclage from T of weight μ :
Remove the southwest entry and insert it in the remaining tableau.

Theorem

Cocyclage operations eventually ends at the unique row R_{μ} of weight μ

Definition

For T of weight μ, set

$$
\operatorname{ch}_{n}(T)=\sum_{i=1}^{n}(i-1) \mu_{i}-I=\operatorname{ch}_{n}\left(R_{\mu}\right)-I
$$

where I the number of cyclage operations needed to get R_{μ}.

Theorem (LS 1980)

We have

$$
K_{\lambda, \mu}(q)=\sum_{T \in S S T_{\mu}(\lambda)} q^{\mathrm{ch}_{n}(T)}
$$

where $\operatorname{SST}_{\mu}(\lambda)$ is the set of SST of shape λ and weight μ.

Example

For $\lambda=(2,1,0)$ we have

$$
\rightarrow \begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 &
\end{array} \rightarrow \begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline
\end{array}
$$

Thus

$$
\begin{aligned}
\operatorname{ch}_{n}\left(\begin{array}{l|l|l}
\hline 1 & 2 & 3 \\
\operatorname{ch}_{n}\left(\begin{array}{|l|l}
1 & 3 \\
\hline 2 &
\end{array}\right) & =0 \times 1+1 \times 1+2 \times 1=3
\end{array}\right. & =1 \text { and } \operatorname{ch}_{n}\left(\begin{array}{|l|l}
\hline & 2 \\
\hline &
\end{array}\right)=2 .
\end{aligned}
$$

We get

$$
K_{(2,1,0)}(q)=q+q^{2} .
$$

Charge and crystals

Problem

Interpret the charge in crystal theory.

Let $w=x_{1} \cdots x_{\ell}$ be a word on $\{1<\cdots<n\}$.
For each $i=1, \ldots, n-1$, form w_{i} the subword of w contained only the letters i and $i+1$.

Remind the definition of ε_{i} and $\varphi_{i}($ Part I).
Example: $w=241153243131$ with $n=5 w_{1}=21(12) 11$ and $w_{1}^{\text {red }}=2111$. Thus $\varepsilon_{1}(w)=1$ and $\varphi_{1}(w)=3$.

Remind also the action of the Weyl group: s_{i} acts by symmetrizing each i-chain :

$$
s_{i}(w)=242153243231
$$

Let $O(T)$ be the orbit of the tableau T under the \mathfrak{S}_{n}-crystal action.

Theorem (LLT 1995)

For any tableau T of dominant weight

$$
\operatorname{ch}_{n}(T)=\frac{1}{|O(T)|} \sum_{T^{\prime} \in O(T)} \chi\left(T^{\prime}\right)
$$

where

$$
\chi\left(T^{\prime}\right)=\sum_{i=1}^{n-1}(n-i) \varepsilon_{i}(\mathrm{w}(T))
$$

Fact

This gives an interpretation of ch_{n} independent of the tableau model.

III Affine type A quantum groups and 1-d sums

$U_{q}\left(\widehat{\mathfrak{s l}}_{n}\right)$ is the quantum group associated to the affine Lie algebra

$$
\widehat{\mathfrak{s l}}_{n}=\mathfrak{s l}_{n} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} d \oplus \mathbb{C} K .
$$

It admits
(1) highest weight representations but infinite dimensional (quite simple)

III Affine type A quantum groups and 1-d sums

$U_{q}\left(\widehat{\mathfrak{s l}}_{n}\right)$ is the quantum group associated to the affine Lie algebra

$$
\widehat{\mathfrak{s l}}_{n}=\mathfrak{s l}_{n} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} d \oplus \mathbb{C} K .
$$

It admits
(1) highest weight representations but infinite dimensional (quite simple)
(2) finite dimensional representations but without h.w. vectors (more complicated).

K-R modules and crystals

For $\mu=\left(\mu_{1}, \ldots, \mu_{m}\right) \in \mathbb{Z}_{\geq 0}^{m}$, consider

$$
B_{\mu}=B\left(\mu_{1} \omega_{1}\right) \otimes \cdots \otimes B\left(\mu_{m} \omega_{1}\right)
$$

the crystal of the $U_{q}\left(\mathfrak{s l}_{n}\right)$-module $V_{q, \mu}$

$$
V_{q, \mu}=V_{q}\left(\mu_{1} \omega_{1}\right) \otimes \cdots \otimes V_{q}\left(\mu_{m} \omega_{1}\right)
$$

Theorem

(1) $V_{q, \mu}$ has also the structure of an irreducible affine $U_{q}\left(\widehat{\mathfrak{s l}}_{n}\right)$-module $\widehat{V}_{q, \mu}$.
(2) $\widehat{V}_{q, \mu}$ has a crystal \widehat{B}_{μ} obtained by adding arrows of color 0 in B_{μ}.

An example

Figure: The affine $U_{q}\left(\widehat{\mathfrak{s l}}_{3}\right)$-crystal $\widehat{B}_{\left(1^{2}\right)}$

We have

$$
\tilde{f}_{0}=\operatorname{pr}^{-1} \circ \tilde{f}_{1} \circ \mathrm{pr}
$$

where the promotion operator pr changes each $i=1, \ldots, n$ in $i+1 \bmod n$.
\widehat{B}_{μ} is graded by the "energy" D defined from the graph structure. D is constant on the classical connected components.
D is given on $\widehat{B}_{1} \ell$ by
$D(b)=\sum_{k=1}^{\ell-1}(\ell-k) H\left(x_{k} \otimes x_{k+1}\right)$ where $H\left(x_{k} \otimes x_{k+1}\right)=\left\{\begin{array}{l}1 \text { if } x_{k} \leq x_{k+1} \\ 0 \text { if } x_{k}>x_{k+1}\end{array}\right.$
for any $b=x_{1} \otimes \cdots \otimes x_{\ell}$.

Example

On $\widehat{B}_{\left(1^{2}\right)}$, we have $D=1$ on $\widehat{B}(1 \otimes 1)$ and $D=0$ on $\widehat{B}(1 \otimes 2)$.
The definition is more complicated for a general μ.

One-dimensional sums and Kostka polynomials

For any partition λ, set

$$
E_{\lambda, \mu}=\left\{b \in \widehat{B}_{\mu} \mid b \text { is of highest weight } \lambda\right\}
$$

Definition

The one-dimensional sum $X_{\lambda, \mu}$ is defined by

$$
X_{\lambda, \mu}(q)=\sum_{b \in E_{\lambda, \mu}} q^{D(b)}
$$

It is related to particle theory in mathematical physics.
Theorem (Nakayashiki-Yamada 1996)
The 1-d sums coincide with the Kostka polynomials.

Idea of the proof

Key ingredient: "Schur duality":

$$
\begin{gathered}
K_{\lambda, \mu}=\operatorname{dim} V_{q}(\lambda)_{\mu}=\left[V_{q, \mu}: V_{q}(\lambda)\right] \\
\text { SST } T \text { of weight } \mu \stackrel{1: 1}{\leftrightarrow} b \in \widehat{B}_{\mu} \text { of h.w. } \lambda
\end{gathered}
$$

Example

with $\lambda=(5,4,1)$ and $\mu=(2,2,3,3)$

$T=$	1	1	2	3	4	
	2	3	3	4		$\stackrel{1: 1}{\leftrightarrows}$
	4					

$$
\begin{array}{|l|l|}
\hline 1 & 1 \\
\hline
\end{array} \otimes \begin{array}{|l|l|l|l|}
\hline 1 & 2 \\
\hline
\end{array} \otimes \begin{array}{|l|l|l|}
\hline 1 & 2 & 2 \\
\hline
\end{array}
$$

where b is indeed of highest weight λ in \widehat{B}_{μ} for

$$
\mathrm{w}(b)=1121221321
$$

It remains to prove that

$$
\operatorname{ch}_{n}(T)=D(b)
$$

This can be done

- either by using another expression of ch_{n} in terms of indices of T (NY 1995)

It remains to prove that

$$
\operatorname{ch}_{n}(T)=D(b)
$$

This can be done

- either by using another expression of ch_{n} in terms of indices of T (NY 1995)
- or directly by proving that cyclage on T corresponds to promotion on b (Gerber-L 2021).

Beyond type A

The Kostka polynomial $K_{\lambda, \mu}(q)$ with $\lambda, \mu \in P_{+}$is defined similarly as a q-analogue of $\operatorname{dim} V(\lambda)_{\mu}$.

Problem

Find a description of $K_{\lambda, \mu}(q)$.
This is a elementary but difficult question and only partial answers are known.

Theorem (L-Okado-Shimozono 2011)

One-dimensional sums defined from classical types KR crystals of row or column shapes are Kostka polynomials.

Unfortunately, the converse is false, for example

$$
K_{\lambda, 0}(q) \text { i.e. for } \mu=0
$$

is not a $1-\mathrm{d}$ sum in general.

Some results

(1) A conjectural description of the $K_{\lambda, \mu}(q)$ in type C based on cyclage on Kashiwara-Nakashima tableaux (L-2005).

All these results seems to indicate that the crystal structure does not suffice to capture the combinatorial complexity of the KF-polynomials.

Some results

(1) A conjectural description of the $K_{\lambda, \mu}(q)$ in type C based on cyclage on Kashiwara-Nakashima tableaux (L-2005).
(2) A description of $K_{\lambda, 0}(q)$ in type C based on King tableaux and a proof of 1 for columns tableaux (L-Lenart 2018).

All these results seems to indicate that the crystal structure does not suffice to capture the combinatorial complexity of the KF-polynomials.

Some results

(1) A conjectural description of the $K_{\lambda, \mu}(q)$ in type C based on cyclage on Kashiwara-Nakashima tableaux (L-2005).
(2) A description of $K_{\lambda, 0}(q)$ in type C based on King tableaux and a proof of 1 for columns tableaux (L-Lenart 2018).
(3) A description of $K_{\lambda, 0}(q)$ in type B, D (Jang-Known 2019)

All these results seems to indicate that the crystal structure does not suffice to capture the combinatorial complexity of the KF-polynomials.

Some results

(1) A conjectural description of the $K_{\lambda, \mu}(q)$ in type C based on cyclage on Kashiwara-Nakashima tableaux (L-2005).
(2) A description of $K_{\lambda, 0}(q)$ in type C based on King tableaux and a proof of 1 for columns tableaux (L-Lenart 2018).
(3) A description of $K_{\lambda, 0}(q)$ in type B, D (Jang-Known 2019)
(9) A proof of 1 for λ row partition (Gerber-Dolega-Torres 2020).

All these results seems to indicate that the crystal structure does not suffice to capture the combinatorial complexity of the KF-polynomials.

Some results

(1) A conjectural description of the $K_{\lambda, \mu}(q)$ in type C based on cyclage on Kashiwara-Nakashima tableaux (L-2005).
(2) A description of $K_{\lambda, 0}(q)$ in type C based on King tableaux and a proof of 1 for columns tableaux (L-Lenart 2018).
(3) A description of $K_{\lambda, 0}(q)$ in type B, D (Jang-Known 2019)
(9) A proof of 1 for λ row partition (Gerber-Dolega-Torres 2020).
(0) A new approach based on atomic decomposition of characters (L-Lenart 2020).

All these results seems to indicate that the crystal structure does not suffice to capture the combinatorial complexity of the KF-polynomials.

