Crystal graph theory and some of its generalizations III: random walks

Cédric Lecouvey

SLC 87 Saint-Paul en Jarez

April 2022

C. Lecouvey (SLC 87 Saint-Paul en Jarez)

Crystal graphs and beyond

April 2022 1 / 26

Let $B = \{e_1, \dots, e_n\}$ be the standard basis of \mathbb{R}^n and let \overline{C} be the cone $\overline{C} = \{x \in \mathbb{R}^n \mid x_1 \ge \dots \ge x_n \ge 0\} \subset \mathbb{R}^n.$

The elements of $\overline{C} \cap \mathbb{Z}^n$ are partitions $\lambda = (\lambda_1 \ge \cdots \ge \lambda_n \ge 0)$. Set

$$|\lambda|=\lambda_1+\cdots+\lambda_n.$$

Let $(X_{\ell})_{\ell \geq 1}$ be a sequence of random variables in B (i.i.d.)

$$\mathbb{P}(X_\ell=e_i)=p_{e_i}\in]0,1[ext{ for }i=1,\ldots,n$$
 $p_{e_1}+\cdots+p_{e_n}=1$

$$m:=E(X_\ell)=\sum_{i=1}^n p_{e_i}e_i.$$

 $S_{\ell} = X_1 + \cdots + X_{\ell}$ defines a random walk on \mathbb{Z}^n with steps in B. It is a Markov chain with transition matrix

$$\Pi(\alpha,\beta) = \begin{cases} p_{e_i} \text{ if } \beta - \alpha = e_i \in B, \\ 0 \text{ otherwise} \end{cases}$$

Assume $E(X_{\ell}) = m = (p_{e_1}, ..., p_{e_n}) \in C$.

For any partition μ , set $\psi(\mu) = \mathbb{P}_{\mu}(S_{\ell} \in \overline{C}, \forall \ell \geq 1)$ and $\hat{\psi}(\mu) = p^{\mu}\psi(\mu)$

Lemma

• The function ψ is positive on $\overline{C} \cap \mathbb{Z}^n$

Assume $E(X_\ell) = m = (p_{e_1}, \ldots, p_{e_n}) \in C$.

For any partition μ , set $\psi(\mu) = \mathbb{P}_{\mu}(S_{\ell} \in \overline{C}, \forall \ell \geq 1)$ and $\hat{\psi}(\mu) = p^{\mu}\psi(\mu)$

Lemma

- The function ψ is positive on $\overline{C} \cap \mathbb{Z}^n$
- ② The function $\hat{\psi}$ is harmonic on $\overline{C}\cap \mathbb{Z}^n$

$$\hat{\psi}(\mu) = \sum_{\mu \leadsto \lambda} \hat{\psi}(\lambda)$$

where the sum is over the partitions $\lambda \supset \mu$ such that $|\lambda| - |\mu| = 1$.

Since $\psi > 0$, the conditioning of $(S_{\ell})_{\ell \ge 0}$ to stay in \overline{C} is well-defined. For partitions $\lambda \supset \mu$ such that $|\lambda| - |\mu| = 1$, set

$$\Pi_{\overline{C}}(\mu,\lambda) = \mathbb{P}(S_{\ell+1} = \lambda \mid S_{\ell} = \mu, S_k \in \overline{C}, \forall k \ge 1).$$

Theorem (O'Connell 2004)

The conditioning of $(S_{\ell})_{\ell>0}$ to stay in \overline{C} is a Markov chain with transitions

$$\Pi_{\overline{C}}(\mu,\lambda) = \Pi(\mu,\lambda)\frac{\hat{\psi}(\lambda)}{\hat{\psi}(\mu)} = \frac{\hat{\psi}(\lambda)}{\hat{\psi}(\mu)}\mathbf{1}_{B}(\lambda-\mu).$$

Problem

Compute the function $\hat{\psi}$.

Theorem (O'Connell (2004))

Assume $m = (p_{e_1} > \cdots > p_{e_n})$. For any partition λ ,

$$\hat{\psi}(\lambda) = \prod_{1 \leqslant i < j \leqslant n} \left(1 - rac{p_{e_j}}{p_{e_i}}\right) s_{\lambda}(p_{e_1}, \dots, p_{e_n})$$

where s_{λ} is the Schur polynomial associated to λ .

Corollary

We have

$$\Pi_{\overline{C}}(\mu,\lambda) = \frac{s_{\lambda}(p_{e_1},\ldots,p_{e_n})}{s_{\mu}(p_{e_1},\ldots,p_{e_n})} \mathbb{1}_B(\lambda-\mu).$$

イロト イポト イヨト イヨト

Idea of the proof

Based on 3 ingredients

The insertion procedure on SST (RSK)

Remark: there is a simpler proof based on the reflection principle of Gessel and Zeilberger.

Based on 3 ingredients

- The insertion procedure on SST (RSK)
- A probabilistic theorem on Martin boundaries due to Doob

Remark: there is a simpler proof based on the reflection principle of Gessel and Zeilberger.

Based on 3 ingredients

- The insertion procedure on SST (RSK)
- A probabilistic theorem on Martin boundaries due to Doob

The limit

$$\lim_{\ell \to +\infty} \frac{f_{\lambda^{(\ell)}/\mu}}{f_{\lambda^{(\ell)}}} = s_{\mu}(p_{e_1}, \ldots, p_{e_n})$$

when $\lambda^{(\ell)}$ is a sequence of partitions such that

$$\lim_{\ell\to+\infty}\frac{1}{\ell}\lambda^{(\ell)}=m=(p_{e_1}>\cdots>p_{e_n}).$$

Here $f_{\lambda^{(\ell)}/\mu}$ is the number of standard skew tableaux of shape $\lambda^{(\ell)}/\mu$. Remark: there is a simpler proof based on the reflection principle of Gessel and Zeilberger.

Problem

 Study conditioned random walks with steps the weights of any f.d. irreducible representation V of any simple Lie algebra g over C, for example ±e_i in Zⁿ.

Ideas

Problem

- Study conditioned random walks with steps the weights of any f.d. irreducible representation V of any simple Lie algebra g over C, for example ±e_i in Zⁿ.
- Study the connection of the obtained Markov chain with the original random walk.

Ideas

Problem

- Study conditioned random walks with steps the weights of any f.d. irreducible representation V of any simple Lie algebra g over C, for example ±e_i in Zⁿ.
- Study the connection of the obtained Markov chain with the original random walk.

Ideas

Replace random walks by random (continuous) trajectories obtained as the concatenation of Littelmann paths in the crystal of V.

Problem

- Study conditioned random walks with steps the weights of any f.d. irreducible representation V of any simple Lie algebra g over C, for example ±e_i in Zⁿ.
- Study the connection of the obtained Markov chain with the original random walk.

Ideas

- Replace random walks by random (continuous) trajectories obtained as the concatenation of Littelmann paths in the crystal of V.
- Replace the reflection principle by the Weyl character formula (Littelmann proof of the WCF generalizes the reflection principle).

Problem

- Study conditioned random walks with steps the weights of any f.d. irreducible representation V of any simple Lie algebra g over C, for example ±e_i in Zⁿ.
- Study the connection of the obtained Markov chain with the original random walk.

Ideas

- Replace random walks by random (continuous) trajectories obtained as the concatenation of Littelmann paths in the crystal of V.
- Replace the reflection principle by the Weyl character formula (Littelmann proof of the WCF generalizes the reflection principle).
- Use a transformation on trajectories inspired by the Pitman transform on the line instead of RSK.

Image: A matrix

Tableaux give particular Littelmann path models. For example

$$T = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 3 & 3 \\ 3 \end{bmatrix}$$
 corresponds to

$${
m w}_R({\it T})=2*1*1*3*3*2*3$$
 or
the path ${
m w}_R({\it T})=2*3*1*3*1*2*3$

in $\mathbb{R}^3 = \mathbb{R}\varepsilon_1 \oplus \mathbb{R}\varepsilon_2 \oplus \mathbb{R}\varepsilon_3$. The operator \tilde{f}_i changes a precise *i* (parenthezing process) in a *i* + 1 thus applies $s_{\varepsilon_i - \varepsilon_{i+1}}$ to this *i*. Vertices of $B(\lambda)$ can be realized as piecewise continuus paths $\eta : [0, 1] \to P_{\mathbb{R}}$ Let \mathfrak{g} be a simple Lie algebra with root system R, simple roots $\alpha_1, \ldots, \alpha_n$ and weight lattice P.

- A Littelmann path is a piecewise linear map $\eta : [0, 1] \to P_{\mathbb{R}}$ such that $\eta(0) = 0$ and $\eta(1) \in P$.
- The crystal operators *ẽ_i*, *f̃_i*, *i* = 1,..., *n* act on *η* by reflecting some parts of *η* by *s_{α_i}*.
- A highest weight path η is such that $\operatorname{Im} \eta \subset \overline{C}$ (equivalent to $\tilde{e}_i(\eta) = 0$ for any *i*).
- Given $\kappa \in {\it P}_+$ and η_κ a h.w.p such that $\eta(1)=\kappa.$ The set

$$B(\kappa) \simeq B(\eta_{\kappa}) = \{ \tilde{F} \cdot \eta_{\kappa} \mid \tilde{F} \text{ product of } \tilde{f}_i \}$$

is the crystal associated to η_{κ} .

Example

In type C_2 , $P = \mathbb{Z}e_1 \oplus \mathbb{Z}e_2 \subset \mathbb{R}^2$ and $\overline{C} = \{x = (x_1, x_2) \mid x_1 \ge x_2 \ge 0\}$. For $\kappa = \omega_1 = e_1$,

Gystal of the vector representation in type C2

Example

For
$$\kappa = \omega_2 = e_1 + e_2$$
,

In type C2, the crystal of the fundamental representation with dimension 5 with its 5 elementary Littelman paths

C. Lecouvey (SLC 87 Saint-Paul en Jarez)

《■》 ■ のへで April 2022 13 / 26

Assume $B(\eta_\kappa)$ has probability distribution $p=(p_\eta)_{\eta\in \mathcal{B}(\eta_\kappa)}$

Let X be a random variable with values in $B(\eta_{\kappa})$ s.t.

$$\mathbb{P}({\sf X}=\eta)={\sf p}_\eta$$
 for any $\eta\in {\sf B}(\eta_\kappa).$

Set

$$\mathbf{m} := E(X) = \sum_{\eta \in B(\eta_{\kappa})} p_{\eta} \eta$$

and m(1) = m.

Let $(X_{\ell})_{\ell \geq 1}$ be a i.i.d. sequence of random variables with the same law as X.

The random trajectory $\mathcal W$ is defined by

$$\mathcal{W}(t) := X_1(1) + X_2(1) + \cdots + X_{\ell-1}(1) + X_{\ell}(t-\ell)$$

for any $\ell \in \mathbb{Z}_{>0}$ and $t \in [\ell, \ell+1]$.

Set $W_{\ell} = \mathcal{W}(\ell)$.

The sequence $W = (W_{\ell})_{\ell \geq 1}$ is a random walk with steps the weights of $V(\kappa)$.

A trajectory η of length ℓ is the concatenation

$$\eta = \pi_1 * \cdots * \pi_\ell \in B(\eta_\kappa)^{*\ell}$$

of ℓ paths in $B(\eta_{\kappa})$.

It has probability

$$p_{\eta} = p_{\pi_1} \times \cdots \times p_{\pi_{\ell}}.$$

Definition

The distribution p on $B(\eta_{\kappa})$ is central when for any $\ell \geq 1$ and η, η' in $B(\eta_{\kappa})^{*\ell}$ such that $\eta(\ell) = \eta'(\ell)$, we have $p_{\eta} = p_{\eta'}$.

Theorem (L., Lesigne, Peigné)

The distribution p is central i.f.f. there exists $\tau = (\tau_1, \dots, \tau_n) \in \mathbb{R}_{>0}$ such that

$$p_{\eta'} = p_{\eta} \times \tau_i$$

as soon as $\eta \xrightarrow{i} \eta'$ in $B(\eta_{\kappa})$

Example

In type \mathcal{C}_2 with $\kappa = \omega_1$, choose $\tau = (au_1, au_2) \in \mathbb{R}^2_{>0}$

$$e_{1} \frac{1}{\times \tau_{1}} e_{2} \frac{2}{\times \tau_{2}} - e_{2} \frac{1}{\times \tau_{1}} - e_{1}$$

$$p_{e_{1}} = \frac{1}{1 + \tau_{1} + \tau_{1}\tau_{2} + \tau_{1}^{2}\tau_{2}}, \ p_{e_{2}} = \frac{\tau_{1}}{1 + \tau_{1} + \tau_{1}\tau_{2} + \tau_{1}^{2}\tau_{2}}$$

$$p_{-e_{2}} = \frac{\tau_{1}\tau_{2}}{1 + \tau_{1} + \tau_{1}\tau_{2} + \tau_{1}^{2}\tau_{2}}, \ p_{-e_{1}} = \frac{\tau_{1}^{2}\tau_{2}}{1 + \tau_{1} + \tau_{1}\tau_{2} + \tau_{1}^{2}\tau_{2}}$$

and

$$m(\tau) = \frac{1 - \tau_1^2 \tau_2}{1 + \tau_1 + \tau_1 \tau_2 + \tau_1^2 \tau_2} e_1 + \frac{\tau_1 - \tau_1 \tau_2}{1 + \tau_1 + \tau_1 \tau_2 + \tau_1^2 \tau_2} e_2$$

Observe that $m(\tau) \in C$ i.f.f. $(\tau_1, \tau_2) \in]0, 1[^2$.

< ≣ ▶

Assume $\tau \in]0, 1[^n$ (this is equivalent to $m(\tau) \in C$).

For any $eta=a_1lpha_1+\cdots+a_nlpha_n\in Q_+$, set $au^eta= au_1^{a_1}\cdots au_n^{a_n}$

Consider $\lambda \in P_+$. Let $V(\lambda)$ be the f.d. representation of \mathfrak{g} of h.w. λ .

Define the harmonic function ψ on P_+ by

$$\psi(\lambda) = \mathbb{P}_{\lambda}(\mathcal{W}(t) \in \overline{C} \text{ for any } t \geq 0).$$

Theorem (L., Lesigne, Peigné)

We have

$$\psi(\lambda) = \prod_{lpha \in R_+} (1 - au^lpha) \mathcal{S}_\lambda(au)$$

where $S_{\lambda} \in \mathbb{Z}_{\geq 0}[e^{\alpha_1}, \dots, e^{\alpha_n}]$ is the (renormalized) Weyl character of $V(\lambda)$.

Based on WCF, LLN and the path model.

C. Lecouvey (SLC 87 Saint-Paul en Jarez)

Crystal graphs and beyond

▲ ■ ▶ ■ つへへ
 April 2022 21 / 26

Theorem (L., Lesigne, Peigné)

We have

$$\psi(\lambda) = \prod_{lpha \in R_+} (1 - au^lpha) \mathcal{S}_\lambda(au)$$

where $S_{\lambda} \in \mathbb{Z}_{\geq 0}[e^{\alpha_1}, \dots, e^{\alpha_n}]$ is the (renormalized) Weyl character of $V(\lambda)$.

) The law of the random walk W conditioned to stay in \overline{C} is given by

$$\Pi_{\overline{C}}(\mu,\lambda) = \frac{S_{\lambda}(\tau)}{S_{\kappa}(\tau)S_{\mu}(\tau)}\tau^{\kappa+\mu-\lambda}m_{\mu,\kappa}^{\lambda}$$

where $m_{\mu,\kappa}^{\lambda}$ is the multiplicity of $V(\lambda)$ in $V(\mu) \otimes V(\kappa)$.

Proof.

Based on WCF, LLN and the path model.

C. Lecouvey (SLC 87 Saint-Paul en Jarez)

Image: Image:

 $B(\pi_{\kappa})^{*\ell}$ has the structure of a crystal graph. Each trajectory $\eta \in B(\pi_{\kappa})^{*\ell}$ of length ℓ belongs to a connected component $B(\eta) \subset B(\pi_{\kappa})^{*\ell}$. $B(\eta)$ contains a unique trajectory $\mathcal{P}(\eta)$ such that $\tilde{e}_i(\mathcal{P}(\eta)) = 0$ for any i = 1, ..., n. Thus

 $\operatorname{Im} \mathcal{P}(\eta) \subset \overline{\mathcal{C}}.$

Definition (Biane, Bougerol, O'Connell (2005))

The map

$$\mathcal{P}:\eta\to\mathcal{P}(\eta)\in\overline{\mathcal{C}}$$

is the generalized Pitman transform on trajectories.

Example

Unchamin (anbiau) etson image par P(enrouge) pour largeresentation vatorialledesp(4,C)

A path (in blue) and its image by \mathcal{P} (in red).

C. Lecouvey (SLC 87 Saint-Paul en Jarez)

Image: A matrix

April 2022 23 / 26

Set
$$\mathcal{H} = \mathcal{P}(\mathcal{W})$$
.

Theorem (L., Lesigne, Peigné, Tarrago)

• *H* is a Markov chain and its law coincides with the law of *W* conditioned to stay in *C*.

Set $\mathcal{H} = \mathcal{P}(\mathcal{W})$.

Theorem (L., Lesigne, Peigné, Tarrago)

- *H* is a Markov chain and its law coincides with the law of *W* conditioned to stay in *C*.
- *P* is almost surely invertible on infinite trajectories and *P*⁻¹ can be made explicit using Lusztig involution on crystals.

Set $\mathcal{H} = \mathcal{P}(\mathcal{W})$.

Theorem (L., Lesigne, Peigné, Tarrago)

- *H* is a Markov chain and its law coincides with the law of *W* conditioned to stay in *C*.
- *P* is almost surely invertible on infinite trajectories and *P*⁻¹ can be made explicit using Lusztig involution on crystals.
- W and H satisfy a law of large numbers and a central limit theorem.

Set $\mathcal{H} = \mathcal{P}(\mathcal{W})$.

Theorem (L., Lesigne, Peigné, Tarrago)

- *H* is a Markov chain and its law coincides with the law of *W* conditioned to stay in *C*.
- *P* is almost surely invertible on infinite trajectories and *P*⁻¹ can be made explicit using Lusztig involution on crystals.
- W and H satisfy a law of large numbers and a central limit theorem.
- When τ runs over]0, 1[ⁿ, the drifts $m(\tau)$ parametrize $C \cap \Pi_{\kappa}$ where Π_{κ} is the convex hull of the weights for $V(\kappa)$.

Interesting random processes are controled by positive harmonic functions on rooted graded graphs e.g.

vertices	harmonic functions	markov chain
partitions $\lambda \in \mathcal{P}_n$	$\lambda ightarrow s_{\lambda}(p)$	on \mathcal{P}_n
dominant weights $\lambda \in extsf{P}_+$	$\lambda \rightarrow \operatorname{char} V(\lambda)(\boldsymbol{\tau})$	on P_+
(n+1)-core partitions	k-Schur polynomials	on type A alcoves
parabolic cosets W/W_I	hom. aff. grassm.	on alcoves
partition of $\mathcal{P}_{n,\ell}$	fusion ring	on ${\mathcal P}_{n,\ell}$

For the 3 last examples, no combinatorial description of the structure constants is known.