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April 2022



Bailey pairs and strange identities

Introduction

Recap

q-hypergeometric series are everywhere!

q-series identities are fundamental and beautiful.

The structure of Bailey pairs lies behind many important identities.

Once the iterative framework is set up, results like the
Andrews-Gordon identities come easily.

One identity gives infinitely many identities.

Bailey pairs can be used to express Ramanujan’s mock theta
functions in terms of Appell-type series or indefinite theta
functions, whose modular transformation properties were
determined by Zwegers.
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Introduction

Recap

Ramanujan’s mock theta functions can then be completed to
non-holomorphic modular forms via an Eichler integral.

Standard applications of the Bailey chain do not produce families
of q-hypergeometric mock theta functions, but a more nuanced
approach does.

And the corresponding Bailey pairs have nice applications,
including to colored Jones polynomials of certain torus knots and
WRT invariants of 3-manifolds.

In fact, the colored Jones polynomials and their cyclotomic
coefficients essentially form a Bailey pair!
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Introduction

Remark

If you thought that the two “mini-courses” at SLC 87 were
completely unrelated, see:

S.O. Warnaar, The Bailey lemma and Kostka polynomials, J.
Algebraic Combin. 20 (2004), no. 2, 131–171.

(This paper concers a “higher level” Bailey lemma...)
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Zagier’s strange identity and applications

Zagier’s “identity”

Zagier (2001) recorded the “strange identity”∑
n≥0

(q)n“ = ”− 1

2

∑
n≥1

n

(
12

n

)
q(n

2−1)/24.

Here

(
12

n

)
=


1, if n ≡ ±1 (mod 12),

−1, if n ≡ ±5 (mod 12),

0, otherwise.

Note that

(q)∞ =
∑
n≥0

(
12

n

)
q(n

2−1)/24.



Bailey pairs and strange identities

Zagier’s strange identity and applications

Zagier’s “identity”

The right-hand side of Zagier’s “identity” is

−1

2

(
1− 5q − 7q2 + 11q5 + 13q7 − 17q12 − · · ·

)
.

This is an analytic function for |q| < 1.

The left-hand side is not an analytic function on any open subset
of C.

So, what does Zagier mean by “ = ” ?
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Zagier’s strange identity and applications

Zagier’s “identity”

Note that the left-hand side is a finite sum (and hence
well-defined) when q is a root of unity.

In particular, if qN = 1 then

∞∑
n=0

(q)n =
N−1∑
n=0

(q)n.

Similarly, for any root of unity ζ, the left-hand side is a
well-defined power series in t when

q = ζe−t = ζ

∑
k≥0

(−1)ktk

k!

 .
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Zagier’s strange identity and applications

Zagier’s “identity”

If we replace q by ζe−t on the right-hand side, classical results in
asymptotic analysis give that as t → 0+,

−1

2

∑
n≥1

n

(
12

n

)
ζ(n

2−1)/24e−t(n2−1)/24 ∼ a power series in t.

The “ = ” in Zagier’s “identity” means that at any root of unity
these two power series are equal.
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Zagier’s strange identity and applications

Zagier’s “identity”

For example, at q = 1 we have∑
n≥0

(e−t ; e−t)n = 3 + 11t +
133

2
t2 +

3389

6
t3 +

148177

24
t4 + · · ·

∼ −1

2

∑
n≥1

n

(
12

n

)
e−t(n2−1)/24.

At q = −1 we have∑
n≥0

(−e−t ;−e−t)n = 1 + t +
3

2
t2 +

19

6
t3 +

207

24
t4 + · · ·

∼ −1

2

∑
n≥1

n

(
12

n

)
(−1)(n

2−1)/24e−t(n2−1)/24.
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Zagier’s strange identity and applications

Applications

It turns out that Zagier’s strange identity has many interesting
applications.

Let
F (q) =

∑
n≥0

(q)n.

This is called the “Kontsevich-Zagier function”.
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Zagier’s strange identity and applications

Applications - values of F (q)

Habiro (2000) and Lê (2003) showed that the colored Jones
polynomial of the trefoil knot can be written

JN(q) = q1−N
∑
n≥0

q−nN(q1−N)n.

Therefore

F (e2πi/N) = JN(e
2πi/N) (The Kashaev invariant).

Using the strange identity, one can show that if L is such that

ζ
L
12 = 1, then

F (ζ) =
1

4L

L∑
m=1

m2

(
12

m

)
ζ(m

2−1)/24.
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Zagier’s strange identity and applications

Applications - quantum modularity

A quantum modular form of weight k is a function f : Q → C such

that for all γ =

(
a b
c d

)
in (a subgroup of) SL2(Z), one has that

gγ(x) = f

(
ax + b

cx + d

)
− •(cx + d)k f (x)

is a a continuous (or smooth) function on R\{−d
c }.

Using the strange identity one can show that the function
ϕ : Q → C defined by

ϕ(x) = eπix/12F (e2πix)

is a weight 3/2 quantum modular form.
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Zagier’s strange identity and applications

Applications - congruences for Fishburn numbers

The Kontsevich-Zagier series at 1− q,

F (1− q) = 1 + q + 2q2 + 5q3 + 15q4 + 53q5 + · · · ,

is a well-known combinatorial generating function.

It counts Fishburn matrices, (2 + 2)-free posets, ascent sequences,
linearized chord diagrams,... (Bousquet-Mélou, Claesson, Dukes,
Kitaev, 2010)

For example, a Fishburn matrix is an upper-triangular matrix with
non-negative integer entries such that no row or column consists
only of zeros.
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Zagier’s strange identity and applications

Applications - congruences for Fishburn numbers

The five Fishburn matrices for n = 3 are

(
3
)
,

(
1 1
0 1

)
,

(
2 0
0 1

)
,

(
1 0
0 2

)
,

1 0 0
0 1 0
0 0 1



Using the strange identity, one can show that the Fishburn
numbers satisfy many Ramanujan-type congruences, like

a(5n + r) ≡ 0 (mod 5), r ∈ {3, 4}
a(7n + 6) ≡ 0 (mod 7),

a(11n + s) ≡ 0 (mod 11), s ∈ {8, 9, 10},
...
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General strange identities

Strange identity - definition

Generalizing Zagier’s example, a strange identity∑
n≥0

(q)nfn(q)“ = ”
∑
n≥0

nvχ(n)q(n
2−a)/b

means that for q = ζe−t , the right-hand side has an asymptotic
expansion as a power series as t → 0+ and this power series is
given by the left-hand side at ζe−t .

Here the fn are polynomials, v ∈ {0, 1}, a ≥ 0 and b > 0 are
integers, and χ : Z → C is a periodic function such that:

(i) χ(n) ̸= 0 if and only if n2−a
b ∈ Z,

(ii) The function n → ζ(n
2−a)/bχ(n) is a periodic function with

mean value zero for any root of unity ζ.
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General strange identities

Strange identity - definition

This definition can be relaxed in several ways, notably by replacing
(q)n on the left-hand side by other q-factorials, such as (q; q2)n or
(q)n
(−q)n

, and appropriately restricting to a subset of the roots of unity.

In these two cases, for example, we only consider the odd roots of
unity.

One can also let v be any positive integer.
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General strange identities

General results

Following Zagier’s work, many applications of Zagier’s strange
identity were extended to general strange identities:

1) Bringmann-Rolen and Goswami-Osburn showed that
q-hypergeometric series satisfying a strange identity are quantum
modular forms.

2) Guerzhoy-Kent-Rolen and Ahlgren-Kim-L. showed that if G (q)
satisfies a strange identity, then the coefficients of G (1− q) will
have many Ramanujan-type congruences.

3) Goswami-Jha-Kim-Osburn found an asymptotic formula for the
coefficients of G (1− q) when G (q) satisfies a strange identity.
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General strange identities

Hikami’s strange identity

Many nice results and very few examples.

Aside from a few isolated examples, until recently the only other
strange identities are due to Hikami (2006).

We need the q-binomial coefficient (or “Gaussian polynomial”)
defined by [

n
k

]
=

[
n
k

]
q

=

{
(q)n

(q)n−k (q)k
, if 0 ≤ k ≤ n,

0, otherwise.
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General strange identities

Hikami’s strange identity

For 0 ≤ a ≤ k − 1 we have

∑
n1,...,nk≥0

(q)nkq
n21+···+n2k−1+na+1+···+nk−1

k−1∏
i=1

[
ni+1 + δi ,a

ni

]

“ = ”− 1

2

∑
n≥0

nχ
(a)
8k+4(n)q

n2−(2k−2a−1)2

8(2k+1) ,

where χ
(a)
8k+4(n) is the even periodic function modulo 8k + 4

defined by

χ
(a)
8k+4(n) =


1, if n ≡ 2k − 2a− 1 or 6k + 2a+ 5 (mod 8k + 4),

−1, if n ≡ 2k + 2a+ 3 or 6k − 2a+ 1 (mod 8k + 4),

0, otherwise.
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General strange identities

Hikami’s strange identity

The case k = 1 is Zagier’s strange identity.

For k = 2 we have∑
n1,n2≥0

(q)n2q
n21+n1

[
n2
n1

]
“ = ”− 1

2

∑
n≥0

nχ
(0)
20 (n)q

n2−9
40

and ∑
n1,n2≥0

(q)n2q
n21

[
n2 + 1
n1

]
“ = ”− 1

2

∑
n≥0

nχ
(1)
20 (n)q

n2−1
40 .
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General strange identities

Hikami’s strange identity - Remarks

One can deduce formulas, quantum modularity, asymptotics,
congruences, etc.

The case (k , 0) corresponds to the Kashaev invariant for the torus
knot (2, 2k + 1).

Very recently another family of strange identities was found,
corresponding to the torus knots (3, 2t).

Can any of this be understood in the context of Bailey pairs?

Yes!
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New families of strange identities

Results (L., 2022)

Here is a sample of what one can prove using the Bailey machinery.

Let χ4k(n) be the even periodic function modulo 4k defined by

χ4k(n) =


1, if n ≡ k − 1 or 3k + 1 (mod 4k),

−1, if n ≡ k + 1 or 3k − 1 (mod 4k),

0, otherwise.
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New families of strange identities

Results (L., 2022)

Then

1)
∑

n1,...,nk≥0

(q)nk
qn

2
1+···+n2k−1+n1+···+nk−1

(−q)n1

k−1∏
i=1

[
ni+1

ni

]
“ = ”− (1 + δk,1)

∑
n≥0

nχ4k(n)q
n2−(k−1)2

4k

and

2)
∑

n1,...,nk≥0

(q2; q2)nk
q2n

2
1+2n1+···+2n2k−1+2nk−1(q; q2)n1

(−q)2n1+1

k−1∏
i=1

[
ni+1

ni

]
q2

“ = ”− (1 + δk,1)
1

2

∑
n≥0

nχ8k−4(n)q
n2−(2k−2)2

8k−4 .
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New families of strange identities

Results (L., 2022)

Let χ
(a)
8k (n) be the even periodic function modulo 8k defined by

χ
(a)
8k (n) =


1, if n ≡ 2k − 2a− 1 or 6k + 2a+ 1 (mod 8k),

−1, if n ≡ 2k + 2a+ 1 or 6k − 2a− 1 (mod 8k),

0, otherwise.

Then

3)
∑

n1,...,nk≥0

(q2; q2)nk
q2n

2
1+···+2n2k−1+2na+1+···+2nk−1

(−q; q2)n1+δa,0

k−1∏
i=1

[
ni+1 + δi ,a

ni

]
q2

“ = ”− 1

2

∑
n≥0

nχ
(a)
8k (n)q

n2−(2k−2a−1)2

8k .
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New families of strange identities

Results (L., 2022)

There are many more.

One has all of the usual applications.

In addition, one obtains interesting q-series identities at roots of
unity by comparing strange identities.
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New families of strange identities

Results (L., 2022)

Comparing the first two strange identities we have that

∑
n1,...,n2k−1≥0

(q)n2k−1

qn
2
1+···+n22k−2+n1+···+n2k−2

(−q)n1

2k−2∏
i=1

[
ni+1

ni

]

= 2
∑

n1,...,nk≥0

(q2; q2)nk
q2n

2
1+2n1+···+2n2k−1+2nk−1(q; q2)n1

(−q)2n1+1

k−1∏
i=1

[
ni+1

ni

]
q2

at any odd root of unity (in which case the sums become finite),
but of course not as functions inside the unit disk (where neither
series converges, anyway).

The case k = 1 reads∑
n≥0

(q)n
(−q)n

= 2
∑
n≥0

(q)2n
(−q)2n+1

.
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Proofs using Bailey pairs

Proof of Zagier’s identity

Using q-difference equations, Zagier showed that for |x | < 1,

(1− x)
∑
n≥0

(xq)nx
n =

∑
n≥0

(−1)nx3nqn(3n+1)/2(1− x2q2n+1).

We want to take d
dx |x=1.

Zagier added and subtracted (x)∞ on the left-hand side to obtain

(1− x)
∑
n≥0

((xq)n − (xq)∞) xn + (xq)∞

=
∑
n≥0

(−1)nx3nqn(3n+1)/2(1− x2q2n+1).
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Proofs using Bailey pairs

Proof of Zagier’s identity

Replacing x by x2 on both sides, multiplying by x , and taking
d
dx |x=1 gives the “sum of tails” identity,

2
∑
n≥0

((q)n − (q)∞) + (q)∞

−1 + 2
∑
n≥1

qn

1− qn


= −

∑
n≥1

n

(
12

n

)
q(n

2−1)/24.

Letting q approach a root of unity, we obtain Zagier’s strange
identity, since (q)∞ vanishes to infinite order.
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Proofs using Bailey pairs

Proof of Hikami’s identity

Using q-difference equations and some impressive calculations,
Hikami showed that

(1− x)
∑

n1,...,nk≥0

(xq)nkq
n21+···+n2k−1+na+1+···+nk−1

× x2n1+···+2nk−1+nk

k−1∏
i=1

[
ni+1 + δa,i

ni

]
=

∑
n≥0

(−1)nx (2k+1)nq(
n+1
2 )+(a+1)n2+(k−a−1)(n2+n)

× (1− x2(a+1)q(a+1)(2n+1))

=
∑
n≥0

χ
(a)
8k+4(n)q

n2−(2k−2a−1)2

8(2k+1) x
n−(2k−2a−1)

2 .
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Proofs using Bailey pairs

Proof of Hikami’s identity

Arguing along the lines of Zagier (with considerably more
complications), Hikami arrived at his strange identity.

One new element he required was the “Andrews-Gordon variant”

∑
n1,n2,...,nk−1≥0

qn
2
1+···+n2k−1+na+1+···+nk−1

(q)nk−1

k−2∏
i=1

[
ni+1 + δa,i

ni

]

=
1

(q)∞

∑
n≥0

χ
(a)
8m+4(n)q

n2−(2k−2a−1)2

8(2k+1)

=
∏

n ̸≡0,±(a+1) (mod 2k+1)

1

1− qn
.
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Proofs using Bailey pairs

Bailey pairs

How does this all fit into the framework of Bailey pairs?

Recall from classical work of Bailey that if (αn, βn) is a Bailey pair
relative to a, then∑
n≥0

(b)n(c)n(aq/bc)
nβn =

(aq/b)∞(aq/c)∞
(aq)∞(aq/bc)∞

∑
n≥0

(b)n(c)n(aq/bc)
n

(aq/b)n(aq/c)n
αn.

Using (a, b, c) = (x2q, xq, q) we have the key identity

(1− x)
∑
n≥0

(xq)n(q)nx
nβn = (1− x2q)

∑
n≥0

(q)n
(x2q)n

xnαn.
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Proofs using Bailey pairs

Bailey pairs

Still using work of Bailey and Slater, we have the Bailey pair
relative to x2q,

αn =
(x2q)n(1− x2q2n+1)(−1)nx2nqn(3n+1)/2

(q)n(1− x2q)

and

βn =
1

(q)n
.

This gives

(1− x)
∑
n≥0

(xq)nx
n =

∑
n≥0

(−1)nx3nqn(3n+1)/2(1− x2q2n+1),

the starting point for Zagier’s proof.
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Proofs using Bailey pairs

Bailey pairs

To get to the starting point for Hikami’s strange identity requires
much more work.

The result we need is that for k ≥ 1 and 0 ≤ a ≤ k − 1, the
following is a Bailey pair relative to x2q:

αn =
(x2q)n

(q)n(1− x2q)
(−1)nx2knq(

n+1
2 )+(a+1)n2+(k−a−1)(n2+n)

× (1− x2(a+1)q(a+1)(2n+1))

and

βn = βnk =
∑

n1,n2,...,nk−1≥0

qn
2
1+···+n2k−1+na+1+···+nk−1x2n1+···+2nk−1

(q)nk

×
k−1∏
i=1

[
ni+1 + δa,i

ni

]
.
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Proofs using Bailey pairs

Bailey pairs

Using this in the key identity one obtains the starting point for
Hikami’s proof.

It also gives Hikami’s Andrews-Gordon variant using a different
application of the Bailey lemma.

Its proof requires a sequence of new Bailey-type lemmas,
culminating in a key lemma, which says that if (αn, βn) is a Bailey
pair relative to a, then (α′′

n, β
′′
n ) is a Bailey pair relative to aq,

where

α′′
n =

1

1− aq

(
1− qn+1

1− aq2n+2
αn+1 +

qn(1− aqn)

1− aq2n
αn

)
and

β′′
n = (1− qn+1)βn+1.
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Proofs using Bailey pairs

The proof of the desired Bailey pair then goes as follows:

Start with the unit Bailey pair relative to x2, iterate a+ 1 times
along the Bailey chain with b, c → ∞, apply the key lemma to
obtain a Bailey pair relative to x2q, iterate k − 1− a times along
the Bailey chain with b, c → ∞, and simplify to obtain the result.
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Proofs using Bailey pairs

Conclusion

Many other Bailey pairs can be used in the key identity to
(ultimately) obtain strange identities.

The presence of the term (q)n/(x
2q)n does restrict the possibilities.

Behind the scenes, we’ve always iterated along the Bailey chain
using b, c → ∞. Other choices give, for example,

∑
n1,...,nk≥0

(q)nk (−q)nk−1
qn

2
1+···+n2k−2+(

nk−1+1

2 )+na+1+···+nk−2

(−q)nk

×
k−1∏
i=1

[
ni+1 + δi ,a

ni

]
“ = ”−

∑
n≥0

nχ
(a)
4k (n)q

n2−(k−a−1)2

4k .
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Proofs using Bailey pairs

Conclusion

Here 0 ≤ a < k − 1, and χ
(a)
4k (n) is the even periodic function

modulo 4k defined by

χ
(a)
4k (n) =


1, if n ≡ k − a− 1 or 3k + a+ 1 (mod 4k),

−1, if n ≡ k + a+ 1 or 3k − a− 1 (mod 4k),

0, otherwise.

It does not appear possible to obtain a strange identity for every
periodic function.
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Proofs using Bailey pairs

Conclusion

One important class we seem to miss is∑
n≥0

nχ2st(n)q
n2−(st−s−t)2

4st ,

where χ2st(n) is the even periodic function modulo 2st defined by

χ2st(n) =


1, if n ≡ st − s − t or st + s + t (mod 2st),

−1, if n ≡ st − s + t or st + s − t (mod 2st),

0, otherwise.

These are related to the torus knots Ts,t .
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Proofs using Bailey pairs
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