The combinatorics of (k, l)-lecture hall partitions

Isaac Konan
ICJ, University Claude Bernard Lyon 1
SLC 87

Finite sequences and integer partitions

Let λ be a finite sequence $\left(\lambda_{1}, \ldots, \lambda_{t}\right)$ of non-negative integers.

- The parts: $\lambda_{1}, \ldots, \lambda_{t}$.
- The weight: $|\lambda|=\lambda_{1}+\cdots+\lambda_{t}$.
- The odd weight: $|\lambda|_{o}=\sum_{i \text { odd }} \lambda_{i}$.
- The even weight: $|\lambda|_{e}=\sum_{i \text { even }} \lambda_{i}$.

Partition of $n: \lambda$ such that $\lambda_{1} \geq \cdots \geq \lambda_{t} \geq 1$ and $|\lambda|=n$.

Theorem 1: Distinct-odd identity (Euler)

Let n be a non-negative integer. Then, the number of partitions of n into distinct parts is equal to the number of partitions of n into odd parts. The corresponding identity is

$$
\prod_{n \geq 1}\left(1-q^{n}\right)=\prod_{n \geq 1} \frac{1}{1-q^{2 n-1}}
$$

Partitions of 6 into distinct parts: $(6),(5,1),(4,2),(3,2,1)$.
Partitions of 6 into odd parts: $(5,1),(3,3),(3,1,1,1),(1,1,1,1,1,1)$.

Lecture-hall partitions

Let n be a positive integer.
Set of lecture-hall partitions \mathcal{L}_{n} : sequences $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ of non-negative integers, such that $\left(\frac{\lambda_{i}}{i}\right)_{i=1}^{n}$ is non-decreasing. Example: $(0,1,2,4,5,7,9) \in \mathcal{L}_{7}$ but $(0,1,2,4,5,7,8) \notin \mathcal{L}_{7}$.

Bousquet-Mélou-Eriksson's refinement of Euler's theorem

Theorem 2: Lecture-hall theorem (Bousquet-Mélou and Eriksson 1997)

Let m be a non-negative integer. Then, the number of sequences in \mathcal{L}_{n} with weight m is equal to the number of partitions of m into odd parts less than $2 n$. The corresponding identity is

$$
\sum_{\lambda \in \mathcal{L}_{n}} q^{|\lambda|}=\prod_{i=1}^{n} \frac{1}{1-q^{2 i-1}}
$$

We have

$$
\{\lambda \text { partitions into distinct parts }\} \equiv \lim _{n \rightarrow \infty} \mathcal{L}_{n} .
$$

By tending n to ∞, the Lecture-hall theorem gives the distinct-odd theorem.

The ($k, /$)-sequence

Let $k, /$ be positive integers such that $k l \geq 4$.
The (k, l)-sequence $\left(a_{n}^{(k, l)}\right)_{n \in \mathbb{Z}}$ is such that

$$
\left\{\begin{array}{l}
a_{2 n}^{(k, l)}=l a_{2 n-1}^{(k, l)}-a_{2 n-2}^{(k, l)} \tag{1}\\
a_{2 n+1}^{(k, l)}=k a_{2 n}^{(k, l)}-a_{2 n-1}^{(k, l)}
\end{array}\right.
$$

for $n \in \mathbb{Z}$, with $a_{i}^{(k, l)}=i$ for $i \in\{0,1\}$.
Set $u_{k l}=\frac{\sqrt{k l}+\sqrt{k l-4}}{2}$, and for $n \in \mathbb{Z}$, set $s_{2 n+1}^{(k, l)}=u_{k l}^{-2 n}$ and $s_{2 n}^{(k, l)}=\sqrt{1 / k} \cdot u_{k l}^{-2 n+1}$.
The sequence $\left(s_{n}^{(k, /)}\right)_{n \in \mathbb{Z}}$ satisfies (1).

The ($k, /$)-lecture-hall partitions

Let n be a positive integer.
Set of (k, l)-lecture hall partitions $\mathcal{L}_{n}^{(k, l)}: \lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ such that $\lambda_{1} \geq 0$ and $\left(\frac{\lambda_{i}}{\left.a_{i}, / l\right)}\right)_{i=1}^{n}$ is non-decreasing.
Set $b_{n}^{(k, l)}=a_{n}^{(k, l)}+a_{n-1}^{(l, k)}$. The set $\mathcal{B}_{n}^{(k, l)}$: sequences $\lambda=\left(b_{i_{1}}^{(k, l)}, \ldots, b_{i_{t}}^{(k, l)}\right)$ such that $1 \leq i_{1} \leq \cdots \leq i_{t} \leq n$.

$$
\mathcal{B}^{(k, l)}=\lim _{n \rightarrow \infty} \mathcal{B}_{n}^{(k, l)} .
$$

Write $\lambda=\prod_{i \geq 1}\left(b_{i}^{(k, l)}\right)^{m_{i}}$ where m_{i} is the number of parts $b_{i}^{(k, l)}$ in λ.

The ($k, /$)-lecture-hall theorem

Theorem 3: The (k, l)-lecture hall identity (Bousquet-Mélou and Eriksson 1997)

Let k, I, n be positive integers such that $k I \geq 4$. Then,

$$
\begin{aligned}
\sum_{\lambda \in \mathcal{L}_{2 n}^{(k, l)}} x^{|\lambda|_{o}} y^{|\lambda|_{e}} & =\prod_{i=1}^{2 n} \frac{1}{1-x^{a_{i-1}^{(l, k)}} y^{a_{i}^{(k, l)}}} \\
\sum_{\lambda \in \mathcal{L}_{2 n-1}^{(k, l)}} x^{|\lambda|_{o}} y^{|\lambda|_{e}} & =\prod_{i=1}^{2 n-1} \frac{1}{1-x^{a_{i}^{(l, k)}} y^{a_{i-1}^{(k, l)}}}
\end{aligned}
$$

This implies that, for a fixed weight $m \geq 0$, there are as many (k, l)-lecture hall partitions in $\mathcal{L}_{2 n}^{(k, l)}$ as sequences in $\mathcal{B}_{2 n}^{(k, l)}$, and there are as many (k, l)-lecture hall partitions in $\mathcal{L}_{2 n-1}^{(k, /)}$ as sequences in $\mathcal{B}_{2 n-1}^{(l, k)}$.

The (k, l)-Euler theorem

The set of (k, l)-Euler partitions $\mathcal{L}^{(k, l)}: \lambda=\left(\lambda_{1}, \ldots, \lambda_{2 t}\right)$ such that $0=\lambda_{2 t} \leq \lambda_{2 t-1}$ and for $1 \leq i \leq t-1$,

$$
s_{0}^{(l, k)} \cdot \lambda_{2 i+1}<\lambda_{2 i}<\left(s_{0}^{(k, /)}\right)^{-1} \cdot \lambda_{2 i-1}
$$

Theorem 4: The (k, l)-Euler identity (Bousquet-Mélou and Eriksson)

Let k, l be positive integers such that $k l \geq 4$. Then,

$$
\sum_{\lambda \in \mathcal{L}^{(k, l)}} x^{|\lambda|_{o}} y^{|\lambda|_{e}}=\prod_{i=1}^{\infty} \frac{1}{1-x^{a_{i}^{(k, l)}} y^{a_{i-1}^{(l, k)}}} .
$$

This implies that, for fixed weight $m \geq 0$, there are as many (k, l)-Euler partitions in $\mathcal{L}^{(k, l)}$ as sequences in $\mathcal{B}^{(k, l)}$.

We have

$$
\mathcal{L}^{(k, l)} \equiv \lim _{n \rightarrow \infty} \mathcal{L}_{2 n}^{(k, l)} .
$$

Hence, by tending n to ∞, the (k, l)-Lecture-hall theorem gives the (k, l)-Euler theorem.

What we had so far

What we had so far.

- Recursive analytic proof of the (k, l)-lecture hall theorem (BME), that induces a recursive bijective proof.
- Proof of the (k, I)-Euler theorem from the limit of the (k, I)-lecture hall.
- In the case $k=I \geq 2$, bijective proof of I-lecture hall theorem and I-Euler theorem (Savage and Yee 2008), and a conjectured bijection for the case $k, I \geq 2$, and a conjecture that the BME recursive bijection and the SY bijection are the same

What we bring to the table

What we had so far.

- Recursive analytic proof of the (k, l)-lecture hall theorem (BME), that induces a recursive bijective proof.
- Proof of the (k, I)-Euler theorem from the limit of the (k, I)-lecture hall.
- In the case $k=I \geq 2$, bijective proof of I-lecture hall theorem and I-Euler theorem (Savage and Yee 2008), and a conjectured bijection for the case $k, I \geq 2$, and a conjecture that the BME recursive bijection and the SY bijection are the same

What we bring to the table.

- Proof of the conjectured bijection for $k, I \geq 2$, and construction of the bijection for the case $k=1$ and the case $I=1$.
- Proof that the BME recursive bijection and our bijection are the same in all the cases for the (k, l)-lecture hall theorem.
- Construction of a recursive bijection for the (k, l)-Euler theorem.

The map $\Phi^{(k, l)}$ from $\mathcal{B}^{(k, l)}$ to $\mathcal{L}^{(k, l)}$
Let $\nu=\left(b_{i_{1}}^{(k, l)}, \ldots, b_{i_{r}}^{(k, l)}\right) \in \mathcal{B}^{(k, l)}$ and set $\lambda=\left(\lambda_{i}\right)_{i \geq 1}$ an infinite sequence of terms all equal to 0 . Proceed by inserting the parts $b_{i}^{(k, l)}$ into the pairs $\left(\lambda_{2 j-1}, \lambda_{2 j}\right)$, starting from the smallest j and the greatest i.

The map $\phi^{(k, l)}$ from $\mathcal{B}^{(k, l)}$ to $\mathcal{L}^{(k, l)}$
Let $\nu=\left(b_{i_{1}}^{(k, l)}, \ldots, b_{i_{r}}^{(k, l)}\right) \in \mathcal{B}^{(k, l)}$ and set $\lambda=\left(\lambda_{i}\right)_{i \geq 1}$ an infinite sequence of terms all equal to 0 . Proceed by inserting the parts $b_{i}^{(k, l)}$ into the pairs $\left(\lambda_{2 j-1}, \lambda_{2 j}\right)$, starting from the smallest j and the greatest i.

- To insert $b_{i}^{(k, l)}$ with $i>1$ into $\left(\lambda_{2 j-1}, \lambda_{2 j}\right)$: if

$$
\lambda_{2 j-1}-s_{0}^{(k, l)} \cdot \lambda_{2 j}>s_{i-1}^{(k, l)}-s_{i}^{(k, l)}
$$

then do

$$
\begin{equation*}
\left(\lambda_{2 j-1}, \lambda_{2 j}\right) \mapsto\left(\lambda_{2 j-1}+a_{i}^{(k, /)}-a_{i-1}^{(k, /)}, \lambda_{2 j}+a_{i-1}^{(l, k)}-a_{i-2}^{(l, k)}\right) \tag{1}
\end{equation*}
$$

and store $b_{i-1}^{(k, l)}$ for the insertion into the pair $\left(\lambda_{2 j+1}, \lambda_{2 j+2}\right)$. Else, do

$$
\begin{equation*}
\left(\lambda_{2 j-1}, \lambda_{2 j}\right) \mapsto\left(\lambda_{2 j-1}+a_{i}^{(k, I)}, \lambda_{2 j}+a_{i-1}^{(I, k)}\right) \tag{2}
\end{equation*}
$$

The map $\phi^{(k, l)}$ from $\mathcal{B}^{(k, l)}$ to $\mathcal{L}^{(k, l)}$
Let $\nu=\left(b_{i_{1}}^{(k, l)}, \ldots, b_{i_{r}}^{(k, l)}\right) \in \mathcal{B}^{(k, l)}$ and set $\lambda=\left(\lambda_{i}\right)_{i \geq 1}$ an infinite sequence of terms all equal to 0 . Proceed by inserting the parts $b_{i}^{(k, l)}$ into the pairs $\left(\lambda_{2 j-1}, \lambda_{2 j}\right)$, starting from the smallest j and the greatest i.

- To insert $b_{i}^{(k, l)}$ with $i>1$ into $\left(\lambda_{2 j-1}, \lambda_{2 j}\right)$: if

$$
\lambda_{2 j-1}-s_{0}^{(k, l)} \cdot \lambda_{2 j}>s_{i-1}^{(k, l)}-s_{i}^{(k, l)}
$$

then do

$$
\begin{equation*}
\left(\lambda_{2 j-1}, \lambda_{2 j}\right) \mapsto\left(\lambda_{2 j-1}+a_{i}^{(k, /)}-a_{i-1}^{(k, /)}, \lambda_{2 j}+a_{i-1}^{(l, k)}-a_{i-2}^{(l, k)}\right) \tag{1}
\end{equation*}
$$

and store $b_{i-1}^{(k, l)}$ for the insertion into the pair $\left(\lambda_{2 j+1}, \lambda_{2 j+2}\right)$. Else, do

$$
\begin{equation*}
\left(\lambda_{2 j-1}, \lambda_{2 j}\right) \mapsto\left(\lambda_{2 j-1}+a_{i}^{(k, l)}, \lambda_{2 j}+a_{i-1}^{(I, k)}\right) \tag{2}
\end{equation*}
$$

- To insert $b_{1}^{(k, l)}:$ do (2) for $i=1$.

The map $\Phi^{(k, l)}$ from $\mathcal{B}^{(k, l)}$ to $\mathcal{L}^{(k, l)}$
Let $\nu=\left(b_{i_{1}}^{(k, l)}, \ldots, b_{i_{r}}^{(k, l)}\right) \in \mathcal{B}^{(k, l)}$ and set $\lambda=\left(\lambda_{i}\right)_{i \geq 1}$ an infinite sequence of terms all equal to 0 . Proceed by inserting the parts $b_{i}^{(k, l)}$ into the pairs $\left(\lambda_{2 j-1}, \lambda_{2 j}\right)$, starting from the smallest j and the greatest i.

- To insert $b_{i}^{(k, l)}$ with $i>1$ into $\left(\lambda_{2 j-1}, \lambda_{2 j}\right)$: if

$$
\lambda_{2 j-1}-s_{0}^{(k, l)} \cdot \lambda_{2 j}>s_{i-1}^{(k, l)}-s_{i}^{(k, l)}
$$

then do

$$
\begin{equation*}
\left(\lambda_{2 j-1}, \lambda_{2 j}\right) \mapsto\left(\lambda_{2 j-1}+a_{i}^{(k, l)}-a_{i-1}^{(k, /)}, \lambda_{2 j}+a_{i-1}^{(l, k)}-a_{i-2}^{(l, k)}\right) \tag{1}
\end{equation*}
$$

and store $b_{i-1}^{(k, l)}$ for the insertion into the pair $\left(\lambda_{2 j+1}, \lambda_{2 j+2}\right)$. Else, do

$$
\begin{equation*}
\left(\lambda_{2 j-1}, \lambda_{2 j}\right) \mapsto\left(\lambda_{2 j-1}+a_{i}^{(k, /)}, \lambda_{2 j}+a_{i-1}^{(I, k)}\right) \tag{2}
\end{equation*}
$$

- To insert $b_{1}^{(k, l)}$: do (2) for $i=1$.

After all the insertions, we set $\Phi^{(k, l)}(\nu)=\left(\lambda_{j}\right)_{j=1}^{2 t}$ where t is the smallest positive j such that $\lambda_{2 j}=0$.

The ($k, /$)-admissible words

Set $o_{2 i-1}^{(k, l)}=I-2$ and $o_{2 i}^{(k, l)}=k-2$ for $i \geq 1$. A (k, l)-admissible word is a sequence $\left(c_{i}\right)_{i \geq 1}$ of non-negative integers such that :

- there are finitely many positive terms,
- $c_{i} \in\left\{0, \ldots, o_{i}^{(k, l)}+1\right\}$,
- there is no pair $1 \leq i<j$ such that

$$
c_{h}=o_{h}^{(k, l)}+\chi(h \in\{i, j\}) \quad \text { for } \quad h \in\{i, i+1, \ldots, j\} .
$$

The ($k, /$)-admissible words

Set $o_{2 i-1}^{(k, l)}=I-2$ and $o_{2 i}^{(k, l)}=k-2$ for $i \geq 1$. A (k, l)-admissible word is a sequence $\left(c_{i}\right)_{i \geq 1}$ of non-negative integers such that:

- there are finitely many positive terms,
- $c_{i} \in\left\{0, \ldots, o_{i}^{(k, l)}+1\right\}$,
- there is no pair $1 \leq i<j$ such that

$$
c_{h}=o_{h}^{(k, l)}+\chi(h \in\{i, j\}) \quad \text { for } \quad h \in\{i, i+1, \ldots, j\} .
$$

Let $\mathcal{C}^{(k, l)}$ be the set of (k, l)-admissible words. Let $n \geq 1$.
The set ${ }_{n} \mathcal{C}^{(k, l)}:(k, l)$-admissible words with the $(n-1)$ first terms equal to 0 . ${ }_{n}\left(c_{i}\right)_{i \geq 1}$: replace c_{1}, \ldots, c_{n-1} by 0 .

Order on ($k, /$)-admissible words

Let \prec be the lexicographic strict order on the set of integer sequences:
$\left(c_{i}\right) \prec\left(d_{i}\right)$ if and only if there exists $n>0$ such that $c_{n}<d_{n}$ and $c_{i}=d_{i}$ for $i>n$.

Proposition 1: Fraenkel's numeration system

The function

$$
\begin{aligned}
& \Gamma_{(k, l)}: \mathcal{C}^{(k, l)} \rightarrow \mathbb{Z}_{\geq 0} \\
&\left(c_{i}\right)_{i \geq 1} \mapsto \sum_{i \geq 1} c_{i} \cdot a_{i}^{(k, l)}
\end{aligned}
$$

describes a bijection from $\mathcal{C}^{(k, l)}$ to $\mathbb{Z}_{\geq 0}$ and

$$
\left(c_{i}\right) \prec\left(d_{i}\right) \Longleftrightarrow \Gamma_{(k, l)}\left(\left(c_{i}\right)\right)<\Gamma_{(k, l)}\left(\left(d_{i}\right)\right) .
$$

For all $m \in \mathbb{Z}_{\geq 0}$, we write $[m]^{(k, l)}=\Gamma_{(k, l)}^{-1}(m)$.

The transformation 0 .

For $t \in \mathbb{Z}_{\geq 0} \cup\{\infty\}$ and all integer sequence $c=\left(c_{i}\right)_{i=1}^{t}, 0 \cdot c$ denotes the sequence $d=\left(d_{i}\right)_{i=1}^{t+1}$ satisfying $d_{1}=0$ and $d_{i+1}=c_{i}$ for $1 \leq i \leq t$.

The transformation 0 .

For $t \in \mathbb{Z}_{\geq 0} \cup\{\infty\}$ and all integer sequence $c=\left(c_{i}\right)_{i=1}^{t}, 0 \cdot c$ denotes the sequence $d=\left(d_{i}\right)_{i=1}^{t+1}$ satisfying $d_{1}=0$ and $d_{i+1}=c_{i}$ for $1 \leq i \leq t$.

Proposition 4: The shifting
Let $k, I \geq 2$. For positive integers n and $n+1 \geq j \geq 1,0$. induces a bijection from ${ }_{n} \mathcal{C}^{(\bar{T}, k)}$ to ${ }_{n+1} \mathcal{C}^{(k, l)}$.

The transformation 0 .

For $t \in \mathbb{Z}_{\geq 0} \cup\{\infty\}$ and all integer sequence $c=\left(c_{i}\right)_{i=1}^{t}, 0 \cdot c$ denotes the sequence $d=\left(d_{i}\right)_{i=1}^{t+1}$ satisfying $d_{1}=0$ and $d_{i+1}=c_{i}$ for $1 \leq i \leq t$.

Proposition 6: The shifting

Let $k, I \geq 2$. For positive integers n and $n+1 \geq j \geq 1,0$. induces a bijection from ${ }_{n} \mathcal{C}^{(\bar{T}, k)}$ to ${ }_{n+1} \mathcal{C}^{(k, l)}$.

Proposition 7: Order in terms of (k, l)-admissible words
For a sequence $\lambda=\left(\lambda_{1}, \ldots, \lambda_{2 t}\right)$ such that $t \geq 1,0=\lambda_{2 t} \leq \lambda_{2 t-1}$ and $\lambda_{i}>0$ for $1 \leq i \leq 2 t-2$,
$\lambda \in \mathcal{L}^{(k, l)} \Longleftrightarrow\left[\lambda_{2 i-1}\right]^{(k, l)} \succeq 0 \cdot\left[\lambda_{2 i}\right]^{(l, k)} \succeq 00 \cdot\left[\lambda_{2 i+1}\right]^{(k, l)}$ for all $1 \leq i \leq t-1$.

The bijection in terms of (k, l)-admissible words

Let (S, \preceq) be a countable and total ordered set. For $m \in \mathbb{Z}_{\geq 0}, c$ is the $m^{\text {th }}$ element that precedes d in S or d is the $m^{\text {th }}$ element that follows c in S, if the intervalle [c, d] have $m+1$ elements in S, and we note

$$
d=\mathcal{F}(m, S, c)=\mathcal{F}(m, S) \cdot c
$$

We set the following notations.

- $\left(\lambda_{2 j-1}^{(i)}, \lambda_{2 j}^{(i)}\right)$: the pairs $\left(\lambda_{2 j-1}, \lambda_{2 j}\right)$ after the insertion of all the parts $b_{i}^{(k, l)}$.
- $m_{i}^{(j)}$: the number of parts $b_{i}^{(k, l)}$ inserted into the pair $\left(\lambda_{2 j-1}, \lambda_{2 j}\right)$.

Hence, $m_{i}^{(1)}$ equals the number of occurrences of $b_{i}^{(k, l)}$ in ν, and the image of ν by $\Phi^{(k, l)}$ consists of $\left(\lambda_{j}^{(1)}\right)_{j=1}^{2 t}$, where t is the smallest j such that $\lambda_{2 j}^{(1)}=0$.

The bijection in terms of (k, I)-admissible words
For $t \geq j \geq 1$,

- for $i \geq 2$, we have

$$
\left[\lambda_{2 j-1}^{(i)}\right]^{(k, l)}=0 \cdot\left[\lambda_{2 j}^{(i)}\right]^{(I, k)} \in{ }_{i} \mathcal{C}^{(k, l)}
$$

- Finally, $\lambda_{2 j}^{(1)}=\lambda_{2 j}^{(2)}$ and $\left[\lambda_{2 j-1}^{(1)}\right]^{(k, l)}=\mathcal{F}\left(m_{1}^{(j)}, \mathcal{C}^{(k, l)},\left[\lambda_{2 j-1}^{(2)}\right]^{(k, l)}\right)$.

Equivalently, this means that $m_{1}^{(j)}=\lambda_{2 j-1}^{(1)}-1-\left\lfloor s_{0}^{(k, l)} \lambda_{2 j}^{(1)}\right\rfloor$ if $\lambda_{2 j}^{(1)}>0$ and $m_{1}^{(j)}=\lambda_{2 j-1}^{(1)}$ if $\lambda_{2 j}^{(1)}=0$.

The little Göllnitz theorem

Theorem 5: Little Göllnitz' identities 1963

Let n be a non-negative integer. Then,
\star the number of partitions of n into parts differing by at least 2 and no consecutive odd parts equals the number of partitions of n into parts congruent to $1,5,6 \bmod 8$,
\star the number of partitions of n into parts differing by at least 2 , no consecutive odd parts, and no ones equals the number of partitions of n into parts congruent to $2,3,7 \bmod 8$.

In terms of q-series, we have

$$
\begin{aligned}
\sum_{n \geq 0} \frac{\left(-q^{-1} ; q^{2}\right)_{n} q^{n^{2}+n}}{\left(q^{2} ; q^{2}\right)_{n}} & =\frac{1}{\left(q, q^{5}, q^{6} ; q^{8}\right)_{\infty}} \\
\sum_{n \geq 0} \frac{\left(-q ; q^{2}\right)_{n} q^{n^{2}+n}}{\left(q^{2} ; q^{2}\right)_{n}} & =\frac{1}{\left(q^{2}, q^{3}, q^{7} ; q^{8}\right)_{\infty}}
\end{aligned}
$$

where $\left(a_{1}, \ldots, a_{t} ; q\right)_{n}=\prod_{i \geq 0} \prod_{j=1}^{t}\left(1-a_{j} q^{i}\right)$ for $n \in \mathbb{Z}_{\geq 0} \cup\{\infty\}$.

The $(1,4)$ and $(4,1)$-Euler theorems

Theorem 6: The Savage-Sills identities 2011

Let n be a non-negative integer. Then,

* the number of partitions of n into distinct parts such that the positive parts at even positions are even equals the number of partitions of n into parts congruent to $1,5,6 \bmod 8$,
* the number of partitions of n into distinct parts such that the positive parts at odd positions are even equals the number of partitions of n into parts congruent to $2,3,7 \bmod 8$.

In terms of q-series, we have

$$
\begin{aligned}
& \sum_{n \geq 0} \frac{\left(-q^{3-4\lceil n / 2\rceil} ; q^{4}\right)_{\lceil n / 2\rceil} q^{n^{2}+n}}{\left(q^{2} ; q^{2}\right)_{n}}=\frac{1}{\left(q, q^{5}, q^{6} ; q^{8}\right)_{\infty}} \\
& \sum_{n \geq 0} \frac{\left(-q^{1-4\lfloor n / 2\rfloor} ; q^{4}\right)_{\lfloor n / 2\rfloor} q^{n^{2}+n}}{\left(q^{2} ; q^{2}\right)_{n}}=\frac{1}{\left(q^{2}, q^{3}, q^{7} ; q^{8}\right)_{\infty}}
\end{aligned}
$$

Open question

Theorem 7

We have

$$
\begin{aligned}
\sum_{n \geq 0} \frac{\left(-q^{-1} ; q^{2}\right)_{n} q^{n^{2}+n}}{\left(q^{2} ; q^{2}\right)_{n}} & =\sum_{n \geq 0} \frac{\left(-q^{3-4\lceil n / 2\rceil} ; q^{4}\right)_{\lceil n / 2\rceil} q^{n^{2}+n}}{\left(q^{2} ; q^{2}\right)_{n}} \\
\sum_{n \geq 0} \frac{\left(-q ; q^{2}\right)_{n} q^{n^{2}+n}}{\left(q^{2} ; q^{2}\right)_{n}} & =\sum_{n \geq 0} \frac{\left(-q^{1-4\lfloor n / 2\rfloor} ; q^{4}\right)_{\lfloor n / 2\rfloor} q^{n^{2}+n}}{\left(q^{2} ; q^{2}\right)_{n}}
\end{aligned}
$$

Bijective proofs of the above identities induce bijective proofs of the little Göllnitz identities. How do we build them?

THANK YOU!!!

Example for $\Phi^{(k, l)}$ with $(k, l)=(3,2)$

$$
\begin{aligned}
\nu & =\left(b_{1}^{(3,2)}\right)^{5}\left(b_{2}^{(3,2)}\right)^{4}\left(b_{3}^{(3,2)}\right)^{2}\left(b_{4}^{(3,2)}\right)^{3}\left(b_{5}^{(3,2)}\right)\left(b_{6}^{(3,2)}\right)^{3} \\
& =(1+0)^{5}(2+1)^{4}(5+3)^{2}(8+5)^{3}(19+12)(30+19)^{3}
\end{aligned}
$$

For the insertion into the pair $\left(\lambda_{1}, \lambda_{2}\right)$, we have the following.

- Insertions of $b_{6}^{(3,2)}$: we successively apply (2), (2) and (1) to obtain $\left(\lambda_{1}, \lambda_{2}\right)=(71,45)$, and store once $b_{5}^{(3,2)}$ for the pair $\left(\lambda_{3}, \lambda_{4}\right)$.
- Insertions of $b_{5}^{(3,2)}$: we apply (2) to obtain $\left(\lambda_{1}, \lambda_{2}\right)=(90,57)$.
- Insertions of $b_{4}^{(3,2)}$: we successively apply (2), (1) and (2) to obtain $\left(\lambda_{1}, \lambda_{2}\right)=(109,69)$, and store once $b_{3}^{(3,2)}$ for the pair $\left(\lambda_{3}, \lambda_{4}\right)$.
- Insertions of $b_{3}^{(3,2)}$: we successively apply (1) and (2) to obtain $\left(\lambda_{1}, \lambda_{2}\right)=(117,74)$, and store once $b_{2}^{(3,2)}$ for the pair $\left(\lambda_{3}, \lambda_{4}\right)$.
- Insertions of $b_{2}^{(3,2)}$: we successively apply (2), (1), (2) and (2) to obtain $\left(\lambda_{1}, \lambda_{2}\right)=(124,78)$, and store once $b_{1}^{(3,2)}$ for the pair $\left(\lambda_{3}, \lambda_{4}\right)$.
- Insertions of $b_{1}^{(3,2)}$: we apply five times (2) to obtain $\left(\lambda_{1}, \lambda_{2}\right)=(129,78)$.

Hence, we store once $b_{5}^{(3,2)}, b_{3}^{(3,2)}, b_{2}^{(3,2)}, b_{1}^{(3,2)}$ for the insertion into the pair $\left(\lambda_{3}, \lambda_{4}\right)$. We then do (2) for $i=5,3,2,1$ to obtain $\left(\lambda_{3}, \lambda_{4}\right)=(27,16)$. As there is no part stored for the insertion in $\left(\lambda_{5}, \lambda_{6}\right)$, we have $\left(\lambda_{5}, \lambda_{6}\right)=(0,0)$. Set $\Phi^{(3,2)}(\nu)=(129,78,27,16,0,0) \in \mathcal{L}^{(3,2)}$

Example for $\Phi^{(k, l)}$ with $(k, l)=(3,2)$

i	$m_{i}^{(1)}$	$\left[\lambda_{1}^{(i)}\right]^{(3,2)}$	$m_{i}^{(2)}$	$\left[\lambda_{3}^{(i)}\right]^{(3,2)}$	$m_{i}^{(3)}$	$\left[\lambda_{5}^{(i)}\right]^{(3,2)}$
7	0	$(0,0,0,0,0,0,0,0,0, \ldots)$	0	$(0,0,0,0,0,0,0, \ldots)$	0	$(0,0,0,0,0,0,0, \ldots)$
6	3	$(0,0,0,0,0,0,1,0,0, \ldots)$	0	$(0,0,0,0,0,0,0, \ldots)$	0	$(0,0,0,0,0,0,0, \ldots)$
5	1	$(0,0,0,0,1,0,1,0,0, \ldots)$	1	$(0,0,0,0,1,0,0, \ldots)$	0	$(0,0,0,0,0,0,0, \ldots)$
4	3	$(0,0,0,1,0,1,1,0,0, \ldots)$	0	$(0,0,0,0,1,0,0, \ldots)$	0	$(0,0,0,0,0,0,0, \ldots)$
3	2	$(0,0,1,0,0,0,0,1,0, \ldots)$	1	$(0,0,1,0,1,0,0, \ldots)$	0	$(0,0,0,0,0,0,0, \ldots)$
2	4	$(0,2,0,1,0,0,0,1,0, \ldots)$	1	$(0,1,1,0,1,0,0, \ldots)$	0	$(0,0,0,0,0,0,0, \ldots)$
1	5	$(1,0,0,2,0,0,0,1,0, \ldots)$	1	$(0,0,0,1,1,0,0, \ldots)$	0	$(0,0,0,0,0,0,0, \ldots)$

