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Finite sequences and integer partitions

Let λ be a finite sequence (λ1, . . . , λt) of non-negative integers.

• The parts: λ1, . . . , λt .

• The weight: |λ| = λ1 + · · ·+ λt .

• The odd weight: |λ|o =
∑

i odd λi .

• The even weight: |λ|e =
∑

i even λi .

Partition of n: λ such that λ1 ≥ · · · ≥ λt ≥ 1 and |λ| = n.
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Theorem 1: Distinct-odd identity (Euler)

Let n be a non-negative integer. Then, the number of partitions of n into
distinct parts is equal to the number of partitions of n into odd parts. The
corresponding identity is∏

n≥1

(1− qn) =
∏
n≥1

1

1− q2n−1
.

Partitions of 6 into distinct parts: (6), (5, 1), (4, 2), (3, 2, 1).
Partitions of 6 into odd parts: (5, 1), (3, 3), (3, 1, 1, 1), (1, 1, 1, 1, 1, 1).
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Lecture-hall partitions

Let n be a positive integer.
Set of lecture-hall partitions Ln: sequences λ = (λ1, . . . , λn) of non-negative integers,

such that
(
λi
i

)n
i=1

is non-decreasing. Example: (0, 1, 2, 4, 5, 7, 9) ∈ L7 but

(0, 1, 2, 4, 5, 7, 8) /∈ L7.
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Bousquet-Mélou–Eriksson’s refinement of Euler’s theorem

Theorem 2: Lecture-hall theorem (Bousquet-Mélou and Eriksson 1997)

Let m be a non-negative integer. Then, the number of sequences in Ln with
weight m is equal to the number of partitions of m into odd parts less than
2n. The corresponding identity is

∑
λ∈Ln

q|λ| =
n∏

i=1

1

1− q2i−1
.

We have

{λ partitions into distinct parts} ≡ lim
n→∞

Ln.

By tending n to ∞, the Lecture-hall theorem gives the distinct-odd theorem.
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The (k , l)-sequence

Let k, l be positive integers such that kl ≥ 4.

The (k, l)-sequence
(
a

(k,l)
n

)
n∈Z

is such that

{
a

(k,l)
2n = la

(k,l)
2n−1 − a

(k,l)
2n−2,

a
(k,l)
2n+1 = ka

(k,l)
2n − a

(k,l)
2n−1,

(1)

for n ∈ Z, with a
(k,l)
i = i for i ∈ {0, 1}.

Set ukl =
√
kl+
√
kl−4

2
, and for n ∈ Z, set s

(k,l)
2n+1 = u−2n

kl and s
(k,l)
2n =

√
l/k · u−2n+1

kl .

The sequence
(
s

(k,l)
n

)
n∈Z

satisfies (1).
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The (k , l)-lecture-hall partitions

Let n be a positive integer.

Set of (k, l)-lecture hall partitions L(k,l)
n : λ = (λ1, . . . , λn) such that λ1 ≥ 0 and(

λi

a
(k,l)
i

)n

i=1

is non-decreasing.

Set b
(k,l)
n = a

(k,l)
n + a

(l,k)
n−1 . The set B(k,l)

n : sequences λ =
(
b

(k,l)
i1

, . . . , b
(k,l)
it

)
such that

1 ≤ i1 ≤ · · · ≤ it ≤ n.

B(k,l) = lim
n→∞

B(k,l)
n ·

Write λ =
∏

i≥1

(
b

(k,l)
i

)mi
where mi is the number of parts b

(k,l)
i in λ.
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The (k , l)-lecture-hall theorem

Theorem 3: The (k, l)-lecture hall identity (Bousquet-Mélou and Eriksson
1997)

Let k, l , n be positive integers such that kl ≥ 4. Then,

∑
λ∈L(k,l)

2n

x |λ|o y |λ|e =
2n∏
i=1

1

1− x
a

(l,k)
i−1 ya

(k,l)
i

,

∑
λ∈L(k,l)

2n−1

x |λ|o y |λ|e =

2n−1∏
i=1

1

1− xa
(l,k)
i y

a
(k,l)
i−1

.

This implies that, for a fixed weight m ≥ 0, there are as many (k, l)-lecture hall

partitions in L(k,l)
2n as sequences in B(k,l)

2n , and there are as many (k, l)-lecture

hall partitions in L(k,l)
2n−1 as sequences in B(l,k)

2n−1.
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The (k , l)-Euler theorem
The set of (k, l)-Euler partitions L(k,l): λ = (λ1, . . . , λ2t) such that 0 = λ2t ≤ λ2t−1

and for 1 ≤ i ≤ t − 1,

s
(l,k)
0 · λ2i+1 < λ2i <

(
s

(k,l)
0

)−1
· λ2i−1.

Theorem 4: The (k, l)-Euler identity (Bousquet-Mélou and Eriksson)

Let k, l be positive integers such that kl ≥ 4. Then,

∑
λ∈L(k,l)

x |λ|o y |λ|e =
∞∏
i=1

1

1− xa
(k,l)
i y

a
(l,k)
i−1

.

This implies that, for fixed weight m ≥ 0, there are as many (k, l)-Euler
partitions in L(k,l) as sequences in B(k,l).

We have
L(k,l) ≡ lim

n→∞
L(k,l)

2n .

Hence, by tending n to ∞, the (k, l)-Lecture-hall theorem gives the (k, l)-Euler
theorem.
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What we had so far

What we had so far.

• Recursive analytic proof of the (k, l)-lecture hall theorem (BME), that induces a
recursive bijective proof.

• Proof of the (k, l)-Euler theorem from the limit of the (k, l)-lecture hall.

• In the case k = l ≥ 2, bijective proof of l-lecture hall theorem and l-Euler theorem
(Savage and Yee 2008), and a conjectured bijection for the case k, l ≥ 2, and a
conjecture that the BME recursive bijection and the SY bijection are the same

What we bring to the table.

• Proof of the conjectured bijection for k, l ≥ 2, and construction of the bijection
for the case k = 1 and the case l = 1.

• Proof that the BME recursive bijection and our bijection are the same in all the
cases for the (k, l)-lecture hall theorem.

• Construction of a recursive bijection for the (k, l)-Euler theorem.

Isaac Konan The combinatorics of (k, l)-lecture hall partitions



6/15

Introduction
Bijection for the case k, l ≥ 2 of the (k, l)-Euler theorem

Combinatorics of (k, l)-admissible words
Well-definedness of the bijection

Road to a bijective proof of the little Göllnitz theorem
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The map Φ(k,l) from B(k,l) to L(k,l)

Let ν = (b
(k,l)
i1

, . . . , b
(k,l)
ir

) ∈ B(k,l) and set λ = (λi )i≥1 an infinite sequence of terms

all equal to 0. Proceed by inserting the parts b
(k,l)
i into the pairs (λ2j−1, λ2j ), starting

from the smallest j and the greatest i .

• To insert b
(k,l)
i with i > 1 into (λ2j−1, λ2j ): if

λ2j−1 − s
(k,l)
0 · λ2j > s

(k,l)
i−1 − s

(k,l)
i ,

then do

(λ2j−1, λ2j ) 7→ (λ2j−1 + a
(k,l)
i − a

(k,l)
i−1 , λ2j + a

(l,k)
i−1 − a

(l,k)
i−2 ) (1)

and store b
(k,l)
i−1 for the insertion into the pair (λ2j+1, λ2j+2). Else, do

(λ2j−1, λ2j ) 7→ (λ2j−1 + a
(k,l)
i , λ2j + a

(l,k)
i−1 ). (2)

• To insert b
(k,l)
1 : do (2) for i = 1.

After all the insertions, we set Φ(k,l)(ν) = (λj )
2t
j=1 where t is the smallest positive j

such that λ2j = 0.
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The (k , l)-admissible words

Set o
(k,l)
2i−1 = l − 2 and o

(k,l)
2i = k − 2 for i ≥ 1. A (k, l)-admissible word is a sequence

(ci )i≥1 of non-negative integers such that :

• there are finitely many positive terms,

• ci ∈ {0, . . . , o
(k,l)
i + 1},

• there is no pair 1 ≤ i < j such that

ch = o
(k,l)
h + χ(h ∈ {i , j}) for h ∈ {i , i + 1, . . . , j}.

Let C(k,l) be the set of (k, l)-admissible words. Let n ≥ 1.
The set nC(k,l): (k, l)-admissible words with the (n − 1) first terms equal to 0.

n(ci )i≥1: replace c1, . . . , cn−1 by 0.

Isaac Konan The combinatorics of (k, l)-lecture hall partitions



8/15

Introduction
Bijection for the case k, l ≥ 2 of the (k, l)-Euler theorem

Combinatorics of (k, l)-admissible words
Well-definedness of the bijection

Road to a bijective proof of the little Göllnitz theorem
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Order on (k , l)-admissible words

Let ≺ be the lexicographic strict order on the set of integer sequences:

(ci ) ≺ (di ) if and only if there exists n > 0 such that cn < dn and ci = di for i > n.

Proposition 1: Fraenkel’s numeration system

The function

Γ(k,l) : C(k,l) → Z≥0

(ci )i≥1 7→
∑
i≥1

ci · a
(k,l)
i

describes a bijection from C(k,l) to Z≥0 and

(ci ) ≺ (di )⇐⇒ Γ(k,l)((ci )) < Γ(k,l)((di )).

For all m ∈ Z≥0, we write [m](k,l) = Γ−1
(k,l)

(m).
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The transformation 0·

For t ∈ Z≥0 ∪ {∞} and all integer sequence c = (ci )
t
i=1, 0·c denotes the sequence

d = (di )
t+1
i=1 satisfying d1 = 0 and di+1 = ci for 1 ≤ i ≤ t.

Proposition 2: The shifting

Let k, l ≥ 2. For positive integers n and n + 1 ≥ j ≥ 1, 0· induces a bijection
from nC(l,k) to n+1C(k,l).

Proposition 3: Order in terms of (k, l)-admissible words

For a sequence λ = (λ1, . . . , λ2t) such that t ≥ 1, 0 = λ2t ≤ λ2t−1 and λi > 0
for 1 ≤ i ≤ 2t − 2,

λ ∈ L(k,l) ⇐⇒ [λ2i−1](k,l) � 0·[λ2i ]
(l,k) � 00·[λ2i+1](k,l) for all 1 ≤ i ≤ t−1.
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The bijection in terms of (k , l)-admissible words

Let (S ,�) be a countable and total ordered set. For m ∈ Z≥0, c is the mth element

that precedes d in S or d is the mth element that follows c in S, if the intervalle [c, d ]
have m + 1 elements in S , and we note

d = F(m, S , c) = F(m,S) · c.

We set the following notations.

•
(
λ

(i)
2j−1, λ

(i)
2j

)
: the pairs (λ2j−1, λ2j ) after the insertion of all the parts b

(k,l)
i .

• m
(j)
i : the number of parts b

(k,l)
i inserted into the pair (λ2j−1, λ2j ).

Hence, m
(1)
i equals the number of occurrences of b

(k,l)
i in ν, and the image of ν by

Φ(k,l) consists of
(
λ

(1)
j

)2t

j=1
, where t is the smallest j such that λ

(1)
2j = 0.
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The bijection in terms of (k , l)-admissible words

For t ≥ j ≥ 1,

• for i ≥ 2, we have [
λ

(i)
2j−1

](k,l)
= 0·

[
λ

(i)
2j

](l,k)
∈ iC(k,l) ·

i+1

[
λ

(i)
2j−1

](k,l)

[
λ

(i+1)
2j−1

](k,l)

[
λ

(i)
2j−1

](k,l)

00 ·
[
λ

(i)
2j+1

](k,l)

00 ·
[
λ

(i−1)
2j+1

](k,l)

F(m
(j)
i , iC(k,l)) F(m

(j+1)
i−1 , i+1C(k,l)) F(m

(j+1)
i−1 , i+1C(k,l))

• Finally, λ
(1)
2j = λ

(2)
2j and

[
λ

(1)
2j−1

](k,l)
= F

(
m

(j)
1 , C(k,l),

[
λ

(2)
2j−1

](k,l)
)

.

Equivalently, this means that m
(j)
1 = λ

(1)
2j−1 − 1−

⌊
s

(k,l)
0 λ

(1)
2j

⌋
if λ

(1)
2j > 0 and

m
(j)
1 = λ

(1)
2j−1 if λ

(1)
2j = 0.
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The little Göllnitz theorem

Theorem 5: Little Göllnitz’ identities 1963

Let n be a non-negative integer. Then,

? the number of partitions of n into parts differing by at least 2 and no
consecutive odd parts equals the number of partitions of n into parts
congruent to 1, 5, 6 mod 8,

? the number of partitions of n into parts differing by at least 2, no con-
secutive odd parts, and no ones equals the number of partitions of n into
parts congruent to 2, 3, 7 mod 8.

In terms of q-series, we have

∑
n≥0

(−q−1; q2)nqn
2+n

(q2; q2)n
=

1

(q, q5, q6; q8)∞
,

∑
n≥0

(−q; q2)nqn
2+n

(q2; q2)n
=

1

(q2, q3, q7; q8)∞
,

where (a1, . . . , at ; q)n =
∏

i≥0

∏t
j=1(1− ajq

i ) for n ∈ Z≥0 ∪ {∞}.
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The (1, 4) and (4, 1)-Euler theorems

Theorem 6: The Savage–Sills identities 2011

Let n be a non-negative integer. Then,

? the number of partitions of n into distinct parts such that the positive
parts at even positions are even equals the number of partitions of n into
parts congruent to 1, 5, 6 mod 8,

? the number of partitions of n into distinct parts such that the positive
parts at odd positions are even equals the number of partitions of n into
parts congruent to 2, 3, 7 mod 8.

In terms of q-series, we have

∑
n≥0

(−q3−4dn/2e; q4)dn/2eq
n2+n

(q2; q2)n
=

1

(q, q5, q6; q8)∞
,

∑
n≥0

(−q1−4bn/2c; q4)bn/2cq
n2+n

(q2; q2)n
=

1

(q2, q3, q7; q8)∞
.
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Open question

Theorem 7

We have

∑
n≥0

(−q−1; q2)nqn
2+n

(q2; q2)n
=
∑
n≥0

(−q3−4dn/2e; q4)dn/2eq
n2+n

(q2; q2)n
,

∑
n≥0

(−q; q2)nqn
2+n

(q2; q2)n
=
∑
n≥0

(−q1−4bn/2c; q4)bn/2cq
n2+n

(q2; q2)n
.

Bijective proofs of the above identities induce bijective proofs of the little Göllnitz
identities. How do we build them?
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THANK YOU!!!
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Example for Φ(k,l) with (k, l) = (3, 2)

ν =
(
b

(3,2)
1

)5 (
b

(3,2)
2

)4 (
b

(3,2)
3

)2 (
b

(3,2)
4

)3 (
b

(3,2)
5

)(
b

(3,2)
6

)3

= (1 + 0)5(2 + 1)4(5 + 3)2(8 + 5)3(19 + 12)(30 + 19)3
.

For the insertion into the pair (λ1, λ2), we have the following.

• Insertions of b
(3,2)
6 : we successively apply (2), (2) and (1) to obtain (λ1, λ2) = (71, 45), and

store once b
(3,2)
5 for the pair (λ3, λ4).

• Insertions of b
(3,2)
5 : we apply (2) to obtain (λ1, λ2) = (90, 57).

• Insertions of b
(3,2)
4 : we successively apply (2), (1) and (2) to obtain (λ1, λ2) = (109, 69),

and store once b
(3,2)
3 for the pair (λ3, λ4).

• Insertions of b
(3,2)
3 : we successively apply (1) and (2) to obtain (λ1, λ2) = (117, 74), and

store once b
(3,2)
2 for the pair (λ3, λ4).

• Insertions of b
(3,2)
2 : we successively apply (2), (1) , (2) and (2) to obtain

(λ1, λ2) = (124, 78), and store once b
(3,2)
1 for the pair (λ3, λ4).

• Insertions of b
(3,2)
1 : we apply five times (2) to obtain (λ1, λ2) = (129, 78).

Hence, we store once b
(3,2)
5 , b

(3,2)
3 , b

(3,2)
2 , b

(3,2)
1 for the insertion into the pair (λ3, λ4). We then do

(2) for i = 5, 3, 2, 1 to obtain (λ3, λ4) = (27, 16). As there is no part stored for the insertion in

(λ5, λ6), we have (λ5, λ6) = (0, 0). Set Φ(3,2)(ν) = (129, 78, 27, 16, 0, 0) ∈ L(3,2).
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Example for Φ(k,l) with (k, l) = (3, 2)

i m
(1)
i

[
λ

(i)
1

](3,2)
m

(2)
i

[
λ

(i)
3

](3,2)
m

(3)
i

[
λ

(i)
5

](3,2)

7 0 (0, 0, 0, 0, 0, 0, 0, 0, 0, . . .) 0 (0, 0, 0, 0, 0, 0, 0, . . .) 0 (0, 0, 0, 0, 0, 0, 0, . . .)
6 3 (0, 0, 0, 0, 0, 0, 1, 0, 0, . . .) 0 (0, 0, 0, 0, 0, 0, 0, . . .) 0 (0, 0, 0, 0, 0, 0, 0, . . .)
5 1 (0, 0, 0, 0, 1, 0, 1, 0, 0, . . .) 1 (0, 0, 0, 0, 1, 0, 0, . . .) 0 (0, 0, 0, 0, 0, 0, 0, . . .)
4 3 (0, 0, 0, 1, 0, 1, 1, 0, 0, . . .) 0 (0, 0, 0, 0, 1, 0, 0, . . .) 0 (0, 0, 0, 0, 0, 0, 0, . . .)
3 2 (0, 0, 1, 0, 0, 0, 0, 1, 0, . . .) 1 (0, 0, 1, 0, 1, 0, 0, . . .) 0 (0, 0, 0, 0, 0, 0, 0, . . .)
2 4 (0, 2, 0, 1, 0, 0, 0, 1, 0, . . .) 1 (0, 1, 1, 0, 1, 0, 0, . . .) 0 (0, 0, 0, 0, 0, 0, 0, . . .)
1 5 (1, 0, 0, 2, 0, 0, 0, 1, 0, . . .) 1 (0, 0, 0, 1, 1, 0, 0, . . .) 0 (0, 0, 0, 0, 0, 0, 0, . . .)

.

Isaac Konan The combinatorics of (k, l)-lecture hall partitions


	Introduction
	From Euler's theorem to lecture-hall partitions
	The (k,l)-lecture hall theorem
	The (k,l)-Euler theorem
	State of art and contributions

	Bijection for the case k,l2 of the (k,l)-Euler theorem
	Combinatorics of (k,l)-admissible words
	Definition of (k,l)-admissible words
	Relations between admissible words, lecture-hall partitions and Euler partitions

	Well-definedness of the bijection
	Road to a bijective proof of the little Göllnitz theorem

