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Shuffle product on packed words [Chapoton, 00;
Hivert-Novelli-Thibon]

A surjection f : t1, . . . , nu Ñ t1, . . . , du (n ě d) can be represented as a
word f p1q . . . f pnq called packed word of length n, using all letters in
t1, . . . , du.

To any map g : t1, . . . , nu Ñ ti1 ă . . . ă iku can be associated a set
composition SCg “ pg

´1pi1q, . . . , g
´1pikqq. There is a unique surjection

packpgq :t1, . . . , nu Ñ t1, . . . , ku having the same set composition as g .

Example

packp154422q “ 143322
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Shuffle product on packed words [Chapoton, 00;
Hivert-Novelli-Thibon]

Definition

The vector space spanned by packed words can be endowed with a shuffle
product defined by:

u ˚ v “
ÿ

a.b,

where the sum runs over all words a and b such that packpaq “ u,
packpbq “ v and the concatenation a.b is a packed word.

Examples:

1 ˚ 1 “ 11` 12` 21

12 ˚ 11 “ 1211` 1322` 1233` 2311
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Shuffle product on planar trees [Loday-Ronco, 04]
A planar tree is a combinatorial structure defined recursively by :

| is a PT
_pF1, . . . ,Fnq is a PBT, if F1, . . . ,Fn are PBTs, for any n ě 2.

Definition

The vector space spanned by PBT can be endowed with a shuffle product
defined by:

| ˚ T “ T ˚ _ “ T ,

and for T “ _pT1, . . . ,Tkq and S “ _pS1, . . . ,Spq,

T ˚S “ _pT ˚S1, . . . ,Spq`_pT1, . . . ,Tk ˚S1, . . . ,Spq`_pT1, . . . ,Tk ˚Sq

Example:

˚ “ ` ` ` ` ` ` `

` ` ` ` `
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Main questions

How to generate these combinatorial objects ?

Are the algebras free ? What are their basis ?
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Some shuffle algebras

Packed words PT

Free ? yes [NT06 with Foissy07] yes [LR04]

Basis unsecable words Infinitely many

Goal :

Find a smaller basis !

Idea:

Three kinds of trees (looking at the root) : why not splitting in three the
product ˚ ?
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Inductive definition of tridendriform products on trees

If T “
tl tr

and S “
sl sr

,

T ă S “
tl tr ˚ S

T ¨S “
tl tr ˚ sl sr

and

T ą S “
T ˚ sl sr

Examples :

ă “ `

`

¨ “

ą “
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Tridendriform algebras

Definition (Loday, Ronco, 2004 ; Chapoton 2002)

A tridendriform algebra is a vector space A endowed with products
ă: Ab AÑ A, ¨ : Ab AÑ A and ą: Ab AÑ A, such that:

1 pa ă bq ă c “ a ă pb ˚ cq,

2 pa ˚ bq ą c “ a ą pb ą cq,

3 pa ą bq ă c “ a ą pb ă cq,

4 pa ¨ bq ¨ c “ a ¨ pb ¨ cq,

5 pa ą bq ¨ c “ a ą pb ¨ cq,

6 pa ă bq ¨ c “ a ¨ pb ą cq,

7 pa ¨ bq ă c “ a ¨ pb ă cq,

with ˚ “ă ` ¨ ` ą



1

Algebra on packed words WQSym [Novelli-Thibon, 2006]

u#v “
ÿ

packpαq“u
packpβq“v

c#

αβ,

where c# “ minpαq ă minpβq for # “ă,
c# “ minpαq “ minpβq for # “ ¨,
and c# “ minpαq ą minpβq for # “ą.

Example :

11 ą 221 “ 22221` 33221` 22331

11 ¨ 221 “ 11221

11 ă 221 “ 11332
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Algebra on packed words WQSym [Novelli-Thibon, 2006]

u#v “
ÿ

packpαq“u
packpβq“v

c#

αβ,

where c# “ minpαq ă minpβq for # “ă,
c# “ minpαq “ minpβq for # “ ¨,
and c# “ minpαq ą minpβq for # “ą.

Example :

11 ą 221 “ 22221` 33221` 22331

11 ¨ 221 “ 11221

11 ă 221 “ 11332

Tridendriform products ñ WQSym free tridendriform algebra on infinitely
many generators [Vong, Burgunder-Curien-Ronco, 2015]
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Link with associahedra and permutohedra
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1234

1243 1324 2134

1423 1342 2143 3124 2314

1432 4123 2413 3142 3214 2341

4132 4213 3412 2431 3241

4312 4231 3421

4321
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Simplices Associahedra Hypercubes Permutohedra
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Hypergraphs

Definition

A hypergraph (on vertex set V ) is a pair pV ,E q where:

V is a finite set, (the vertex set)

E is a set of sets of size at least 2, E Ă PpV q.

Example of an hypergraph on r1; 7s

A

B

C
D

4

7 6

5

1

2

3

.
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Hypergraph polytope [Došen, Petrić] (=nestohedra
[Postnikov])

1 2

34 1 2

3

4
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Constructs [Postnikov; Curien-Ivanovic-Obradović]

Constructs

A construct of a hypergraph H is defined inductively. For E Ă V pHq (the
set of vertices of H),

If E “ V pHq, the construct is the rooted tree with only one node
labelled by E ,

Otherwise, denoting by pT1, . . . ,Tnq constructs on every connected
component in H ´ E , a construct of H can be obtained by grafting
these trees on a node labelled by E .

The set of constructs of a given hypergraph labels faces of the associated
polytope.

First example:

1 2

34
Ñ

1

234

2

134

3

1

2

4

3

2

1

4

4

3

1

2

4

3

2

1

4

1

23

4

2

13

1, 2

34

1, 3

24

. . .
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First example geometrically

1 2

34
Ñ

1

234

2

134

3

1

2

4

3

2

1

4

4

3

1

2

4

3

2

1

4

1

23

4

2

13

1, 2

34

1, 3

24

. . .



2

Correspondence Tubings = Constructs = Spines

1 2 3 4

2 3

41

4

1

2 3

1

2

3

3

1 2 3 4 1 2 3 4 1 2 3 4
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Shuffle product on faces of graph associahedra
Consider an admissible family pG i

nq1ďiďsn
ně1

, with a collection of associative

maps αpn,mq : ts1, . . . , snu ˆ ts1, . . . , smu Ñ ts1, . . . , sn`mu such that

G
αpn,mqpi ,jq
n`m |t1,...,nu “ G i

n and G
αpn,mqpi ,jq
n`m |tn`1,...,n`mu “ G j

m (up to a shift).

Definition

Define on T P ConspGnq and W P ConspGmq the following product:

T ˚W “
ÿ

U,

where the sum runs over all constructs U of Gn`m such that T (resp. W )
is obtained from U|t1,...,nu (resp. U|tn`1,...,n`mu) by merging some edges
(resp. and shifting the labelling).

Theorem (Ronco, 12)

This product is
associative.

Two goals

Split this product

Extend to hypergraph associahedra
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Heuristics for a tridendriform structure

Let HX be a family of hypergraph polytopes, indexed by some finite sets
X (sets of vertices of the associated hypergraphs).
For S “ ApS1, . . . ,Smq and T “ BpT1, . . . ,Tnq two constructs of HX and
HY respectively (X ,Y disjoint), we would like to define the following
operations

S ă T as a sum of constructs of HXYY having root A,

S ą T as a sum of constructs of HXYY having root B,

S ¨ T as a sum of constructs of HXYY having root AY B.
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Tridendriform products defined on faces of simplices
[Loday-Ronco, Chapoton]

On simplices, we get the following (triass) products, denoting by pX ,Aq
the multipointed set whose underlying set is X and whose set of pointed
elements is A:

pX ,Aq ă pY,Bq “ pX Y Y,Aq
pX ,Aq ą pY,Bq “ pX Y Y,Bq
pX ,Aq ¨ pY,Bq “ pX Y Y,AY Bq
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Tridendriform products defined on faces of hypercubes

Applying this construction to hypercube gives :

u ă v “ u p´|v |q

u ą pv1 ` v2q “

"

pu ‹ v1q ` v2 pv1 ‰ εq
u ` v2 pv1 “ εq

u ¨ pv1 ` v2q “ u p´|v1|q ‚ v2

where each word begins by a ` and the ` denotes the rightmost
occurence of `.

Question

How to formalize this construction ?

How to deal with these examples which does not fit in the graph
associahedra frame ? (lost edges, not associative)
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Universe and preteam
The considered hypergraphs belong to a set of hypergraphs U, called
universe.
A preteam is a pair τ “ ptHa|a P Au,Hq where

- tHa|a P A,Ha P Uu is a set of pairwise disjoint hypergraphs, called
participating hypergraphs

- H P U is a hypergraph such that H “
Ť

aPAHa, called supporting
hypergraph.

Ha0
Ha1 Ha2

Ha3

H
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Strict and semi-strict teams
A preteam is a (resp. semi-strict) strict team if the connected components
obtained by deleting a subset Xa to every hypergraph Ha are in U and
included in the connected components of Hz p

Ť

aPA Xaq (resp. or totally
disconnected)

Ha0
Ha1zXa1 Ha2

Ha3zXa3

HzpXa1 Y Xa3q

(Xa0 “ Xa2 “ H)
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Strict and semi-strict teams

A preteam is a (resp. semi-strict) strict team if the connected components
obtained by deleting a subset Xa to every hypergraph Ha are in U and
included in the connected components of Hz p

Ť

aPA Xaq (resp. or totally
disconnected)

Examples:

Simplices

Hypercubes

Associahedra

Permutohedra
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Product

Considering a team E and denoting by δ a tuple of constructs of the
team’s participating hypergraphs, we inductively associate to δ a sum of
constructs of the supporting hypergraph:

˚pδq “
ÿ

HĂBĎA

q|B|´1 p
ď

bPB

Xbqp˚pδ
B
1 q, . . . , ˚pδ

B
nB
qq, (1)
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Polydendriform structure
Let us introduce new operations

˚Bpδq “ p
ď

bPB

Xbqp˚pδ
B
1 q, . . . , ˚pδ

B
nB
qq

such that the product splits

˚pδq “
ÿ

HĂBĎA

q|B|´1 ˚B pδq

It satisfies relations:
$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

˚B2 A2 “
˚B2

˚

A

A1
a0

if B2 Ď Azta0u

˚B2 A2 “
˚B

˚B 1

A

A1
a0

if B2 Ď Azta0u
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Associative clan

A set of (resp. semi-strict) strict team with ”good” closure properties is
called strict clan (each connected component obtained from the
supporting hypergraph is itself a supporting hypergraph of a team).

XB

∗δB1

Ha1

Ha2
Cb C(b,i)

Xb

Ha3

Ha0

XB′
τ

Hb0 X(a0,b)

C(a0,b)

τ ′

Hb1 Hb2

Ã

Ã′

a0

B

B′

ϕBτ

ϕB
′

τ

XB

∗δB1

Ha1

Ha2
Cb C(b,i)

Xb
Ha3

τ ′′

H(a0,b0)

H(a0,b1)

X(a0,b)

C(a0,b)
H(a0,b2)

Ã′′

B′′

ϕBτ
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Associativity of ˚

XB

∗δB1

Ha1

Ha2
Cb C(b,i)

Xb

Ha3

Ha0

XB′
τ

Hb0 X(a0,b)

C(a0,b)

τ ′

Hb1 Hb2

Ã

Ã′

a0

B

B′

ϕBτ

ϕB
′

τ

XB

∗δB1

Ha1

Ha2
Cb C(b,i)

Xb
Ha3

τ ′′

H(a0,b0)

H(a0,b1)

X(a0,b)

C(a0,b)
H(a0,b2)

Ã′′

B′′

ϕBτ

Theorem (Curien-D.O.-Obradović, 21+)

Consider a clan C. The product ˚ is associative if

C is strict,

or C is semi-strict and q “ ´1.

Strict clans: Associahedra, Permutohedra, Restrictohedra, . . .

Semi-strict clans: Simplices, Hypercubes, Cyclohedra, . . .
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