Core size of large partitions
 under the Plancherel measure

Salim Rostam

Univ Rennes
April 2022
SLC 87, Saint-Paul-en-Jarez
(1) Plancherel measure
(2) Core of a partition

- Descent set
- Rim hooks
- Core
(3) Core asymptotics under the Plancherel measure

Partitions

Let $n \in \mathbb{Z}_{\geq 0}$.

Definition

A partition of (size) n is a non increasing sequence of positive integers $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{h}>0\right)$ with sum n.

Example

The partitions of 5 are (5), (4, 1), $(3,2),(3,1,1),(2,2,1)$, $(2,1,1,1),(1,1,1,1,1)$.

Partitions

Let $n \in \mathbb{Z}_{\geq 0}$.

Definition

A partition of (size) n is a non increasing sequence of positive integers $\lambda=\left(\lambda_{1} \geq \cdots \geq \lambda_{h}>0\right)$ with sum n.

Example

The partitions of 5 are (5), (4, 1), $(3,2),(3,1,1),(2,2,1)$, $(2,1,1,1),(1,1,1,1,1)$.

One can picture a partition with its Young diagram.

Example

The Young diagram of the partition $(5,3,3,2)$ is

Plancherel measure

Let λ be a partition of n. A standard tableau of shape λ is a labelling of the boxes of the Young diagram of λ with the integers $1, \ldots, n$ such that the rows (resp. columns) are increasing from left to right (resp. top to bottom).

Example

The tableau | 1 | 2 | 5 |
| :--- | :--- | :--- |
| | 6 | 6 |
| | is | is standard with shape $(3,3,1)$. |

We denote by $\operatorname{std}(\lambda)$ the number of standard tableaux with shape λ.

Plancherel measure

Let λ be a partition of n. A standard tableau of shape λ is a labelling of the boxes of the Young diagram of λ with the integers $1, \ldots, n$ such that the rows (resp. columns) are increasing from left to right (resp. top to bottom).

Example

We denote by $\operatorname{std}(\lambda)$ the number of standard tableaux with shape λ.
Proposition

$$
n!=\sum_{\lambda \text { partition of } n} \operatorname{std}(\lambda)^{2}
$$

The Plancherel measure on the set of partitions of n is defined by:

$$
\mathrm{Pl}_{n}(\lambda):=\frac{\operatorname{std}(\lambda)^{2}}{n!}
$$

Figure: Russian convention for the partition (4, 4, 2, 1).

Limit shape theorem

Figure: A partition of $n=700$ and the limit shape (Kerov-Vershik, Logan-Shepp, 1977).
(1) Plancherel measure
(2) Core of a partition

- Descent set
- Rim hooks
- Core
(3) Core asymptotics under the Plancherel measure

Descent set

Definition

The descent set associated with a partition $\lambda=\left(\lambda_{i}\right)_{i \geq 1}$ is:

$$
\mathcal{D}(\lambda):=\left\{\lambda_{i}-i: i \geq 1\right\} \subseteq \mathbb{Z}
$$

For instance, $\mathcal{D}(4,4,2,1)=\{3,2,-1,-3,-5,-6,-7, \ldots\}$.

A determinantal process

The discrete Bessel kernel is defined for $x, y \in \mathbb{R}$ by:

$$
\mathcal{J}^{n}(x, y):=\sqrt{n} \frac{J_{x} J_{y+1}-J_{x+1} J_{y}}{x-y}(2 \sqrt{n})
$$

where J_{x} is the Bessel function of the first kind of order x.
Theorem (Borodin-Okounkov-Olshanski 2000)
Let $x_{1}, \ldots, x_{s} \in \mathbb{Z}$ be distinct. Under the (Poissonised) Plancherel measure pl_{n} we have:

$$
\operatorname{pl}_{n}\left(x_{1}, \ldots, x_{s} \in \mathcal{D}(\lambda)\right)=\operatorname{det}\left[\mathcal{J}^{n}\left(x_{a}, x_{b}\right)\right]_{1 \leq a, b \leq s}
$$

(1) Plancherel measure
(2) Core of a partition

- Descent set
- Rim hooks
- Core
(3) Core asymptotics under the Plancherel measure

Figure: A hook (with •) and its corresponding rim hook (in red) for $\lambda=(5,5,5,4,2)$.

Link between rim hooks and beads

Proposition

Let λ, μ be two partitions. The Young diagram of μ is obtained by removing a rim hook of size e in the Young diagram of λ if and only if:

$$
\mathcal{D}(\mu)=(\mathcal{D}(\lambda) \backslash\{b\}) \cup\{b-e\}
$$

for a certain $b \in \mathcal{D}(\lambda)$ with $b-e \notin \mathcal{D}(\lambda)$.

Link between rim hooks and beads

Proposition

Let λ, μ be two partitions. The Young diagram of μ is obtained by removing a rim hook of size e in the Young diagram of λ if and only if:

$$
\mathcal{D}(\mu)=(\mathcal{D}(\lambda) \backslash\{b\}) \cup\{b-e\}
$$

for a certain $b \in \mathcal{D}(\lambda)$ with $b-e \notin \mathcal{D}(\lambda)$.
With $\lambda:=(2,2,1,1)$ one has $\mathcal{D}(\lambda)=(1,0,-2,-3,-5,-6, \ldots)$ and:

(1) Plancherel measure
(2) Core of a partition

- Descent set
- Rim hooks
- Core
(3) Core asymptotics under the Plancherel measure

Core of a partition

Let $e \geq 1$.

Definition (Core)

The e-core of a partition is the partition that we obtain after we have removed all the possible rim hooks of size e of the Young diagram.

Example

- The 8 -core of $(5,5,5,4,2)$ is $(3,2)$:

- The 4 -core of $(3,2,2,1)$ is empty:

Core of a partition

Let $e \geq 1$.

Definition (Core)

The e-core of a partition is the partition that we obtain after we have removed all the possible rim hooks of size e of the Young diagram.

Example

- The 8 -core of $(5,5,5,4,2)$ is $(3,2)$:

- The 4-core of $(3,2,2,1)$ is empty:

Is the e-core well-defined?

Proposition

The e-core of a partition λ is obtained by sliding all the beads in $\mathcal{D}(\lambda)$ as far as possible to the right in their class of congruence modulo e.

Is the e-core well-defined?

Proposition
The e-core of a partition λ is obtained by sliding all the beads in $\mathcal{D}(\lambda)$ as far as possible to the right in their class of congruence modulo e.

With $\lambda=(3,2,2,1)$ and $e=4$ as before:

- the order \square corresponds to:

Is the e-core well-defined?

Proposition

The e-core of a partition λ is obtained by sliding all the beads in $\mathcal{D}(\lambda)$ as far as possible to the right in their class of congruence modulo e.

With $\lambda=(3,2,2,1)$ and $e=4$ as before:

- the order \square corresponds to:

- the order $\square \square$ corresponds to:

Is the e-core well-defined?

Proposition

The e-core of a partition λ is obtained by sliding all the beads in $\mathcal{D}(\lambda)$ as far as possible to the right in their class of congruence modulo e.

With $\lambda=(3,2,2,1)$ and $e=4$ as before:

- the order \square corresponds to:

- the order
 corresponds to:

the 4-core being:

Theorem ("Nakayama's Conjecture", Brauer-Robinson 1947)
Two partitions belong to the same p-block of \mathfrak{S}_{n} if and only if they have the same p-core.

Partitions with the same core

Theorem ("Nakayama's Conjecture", Brauer-Robinson 1947)

Two partitions belong to the same p-block of \mathfrak{S}_{n} if and only if they have the same p-core.

Proposition (James-Kerber)

Two partitions have the same e-core if and only if they have the same multiset of e-residues.

Example

- The partition $(3,2,2,1)$ has empty 4 -core and its multiset of 4 -residues is given by

0	1	2
3	0	
$y 2$	3	
1		

- The partition $(4,4)$ has empty 4 -core and its multiset of 4-residues is given by | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| 3 | 2 | 1 | 0 |.

(1) Plancherel measure

(2) Core of a partition

- Descent set
- Rim hooks
- Core
(3) Core asymptotics under the Plancherel measure

How does a core of a large partition look like?

Figure: Some 5-cores (in green) for $n=700$.

Computing the core size

For $i \in \mathbb{Z} / e \mathbb{Z}$, the number of boxes of residue i in the Young diagram of a partition λ is:

$$
c_{i}(\lambda)=\frac{1}{2} \sum_{k \in \mathbb{Z}} \omega_{\lambda}(i+k e)-|i+k e| \in \mathbb{N} .
$$

Define:

$$
x_{i}(\lambda):=c_{i}(\lambda)-c_{i+1}(\lambda) \in \mathbb{Z}
$$

Computing the core size

For $i \in \mathbb{Z} / e \mathbb{Z}$, the number of boxes of residue i in the Young diagram of a partition λ is:

$$
c_{i}(\lambda)=\frac{1}{2} \sum_{k \in \mathbb{Z}} \omega_{\lambda}(i+k e)-|i+k e| \in \mathbb{N} .
$$

Define:

$$
x_{i}(\lambda):=c_{i}(\lambda)-c_{i+1}(\lambda) \in \mathbb{Z}
$$

Proposition (Garvan-Kim-Stanton 1990, Fayers 2006)

The size $\ell_{e}(\lambda)$ of the e-core of λ is given by:

$$
\ell_{e}(\lambda)=\frac{e}{2} \sum_{i \in \mathbb{Z} / e \mathbb{Z}} x_{i}(\lambda)^{2}+\sum_{i=0}^{e-1} i x_{i}(\lambda)
$$

Computing the core size

For $i \in \mathbb{Z} / e \mathbb{Z}$, the number of boxes of residue i in the Young diagram of a partition λ is:

$$
c_{i}(\lambda)=\frac{1}{2} \sum_{k \in \mathbb{Z}} \omega_{\lambda}(i+k e)-|i+k e| \in \mathbb{N} .
$$

Define:

$$
x_{i}(\lambda):=c_{i}(\lambda)-c_{i+1}(\lambda) \in \mathbb{Z}
$$

Proposition (Garvan-Kim-Stanton 1990, Fayers 2006)

The size $\ell_{e}(\lambda)$ of the e-core of λ is given by:

$$
\ell_{e}(\lambda)=\frac{e}{2} \sum_{i \in \mathbb{Z} / e \mathbb{Z}} x_{i}(\lambda)^{2}+\sum_{i=0}^{e-1} i x_{i}(\lambda)
$$

Remark (Back to partitions with the same core)
One can show that $x_{i}(\lambda)=x_{i}(\mu)$ for all $i \in \mathbb{Z} / e \mathbb{Z}$ if and only if λ and μ share the same e-core.

Central limit theorem

Proposition (R. 21)

For all $i \in\{0, \ldots, e-1\}$ one has:

$$
x_{i}(\lambda)=\#\left(e \mathbb{Z}_{\geq-n^{2}}+i\right) \cap \mathcal{D}(\lambda)-n^{2}+R(\lambda),
$$

where $R(\lambda) \xrightarrow[n \rightarrow+\infty]{\mathrm{L}^{2}} 0$.

Central limit theorem

Proposition (R. 21)

For all $i \in\{0, \ldots, e-1\}$ one has:

$$
x_{i}(\lambda)=\#\left(e \mathbb{Z}_{\geq-n^{2}}+i\right) \cap \mathcal{D}(\lambda)-n^{2}+R(\lambda)
$$

where $R(\lambda) \xrightarrow[n \rightarrow+\infty]{\mathrm{L}^{2}} 0$.
We denote by $\mathbb{E}_{n}, \operatorname{Var}_{n}$ the expectation and variance under pl_{n}.

Theorem (Costin-Lebowitz 1995)

Define $\#_{i}:=\#\left(e \mathbb{Z}_{\geq-n^{2}}+i\right) \cap \mathcal{D}(\lambda)$. If $\operatorname{Var}_{n} \#_{i} \xrightarrow[n \rightarrow+\infty]{ }+\infty$ then:

$$
\frac{\#_{i}-\mathbb{E}_{n} \#_{i}}{\sqrt{\operatorname{Var}_{\mathrm{n}} \#_{i}}} \xrightarrow[n \rightarrow+\infty]{d} \mathcal{N}(0,1)
$$

Remark

The theorem was stated in a much more general setting.

Theorem (R. 21)

When $n \rightarrow+\infty$, one has:

$$
\mathbb{E}_{n} x_{i}(\lambda)=O(1)
$$

and:

$$
\operatorname{Var}_{\mathrm{n}} x_{i}(\lambda) \sim \frac{4 \sqrt{n}}{\pi e^{2}} \cot \frac{\pi}{2 e}
$$

Corollary (R. 21)
Under the (Poissonised) Plancherel measure pl_{n} one has:

$$
n^{-1 / 4} x_{i}(\lambda) \xrightarrow[n \rightarrow+\infty]{d} \mathcal{N}\left(0, \frac{4}{\pi e^{2}} \cot \frac{\pi}{2 e}\right) .
$$

Joint asymptotics

We now use a multidimensional version of the central limit theorem (Soshnikov 2000).

Theorem (R. 21)

Under the (Poissonised) Plancherel measure pl_{n} one has:

$$
e \sqrt{\frac{\pi}{2}}\left(\frac{x_{i}(\lambda)}{n^{1 / 4}}\right)_{i \in \mathbb{Z} / e \mathbb{Z}} \xrightarrow{n \rightarrow+\infty} \mathcal{N}(0, B)
$$

where $B=\left(b_{i j}\right)$ with $b_{i j}:=\cot \left(j-i+\frac{1}{2}\right) \frac{\pi}{e}-\cot \left(j-i-\frac{1}{2}\right) \frac{\pi}{e}$.

Joint asymptotics

We now use a multidimensional version of the central limit theorem (Soshnikov 2000).

Theorem (R. 21)

Under the (Poissonised) Plancherel measure pl_{n} one has:

$$
e \sqrt{\frac{\pi}{2}}\left(\frac{x_{i}(\lambda)}{n^{1 / 4}}\right)_{i \in \mathbb{Z} / e \mathbb{Z}} \xrightarrow[n \rightarrow+\infty]{d} \mathcal{N}(0, B)
$$

where $B=\left(b_{i j}\right)$ with $b_{i j}:=\cot \left(j-i+\frac{1}{2}\right) \frac{\pi}{e}-\cot \left(j-i-\frac{1}{2}\right) \frac{\pi}{e}$.
In particular, if $\mu_{0}, \ldots, \mu_{e-1}$ are the eigenvalues of B then:

$$
\frac{e \pi}{2 \sqrt{t}} \ell_{e}(\lambda) \xrightarrow[n \rightarrow+\infty]{d} \sum_{k=0}^{e-1} \Gamma\left(\frac{1}{2}, \mu_{k}\right)
$$

Joint asymptotics

We now use a multidimensional version of the central limit theorem (Soshnikov 2000).

Theorem (R. 21)

Under the (Poissonised) Plancherel measure pl_{n} one has:

$$
e \sqrt{\frac{\pi}{2}}\left(\frac{x_{i}(\lambda)}{n^{1 / 4}}\right)_{i \in \mathbb{Z} / e \mathbb{Z}} \xrightarrow{n \rightarrow+\infty} \mathcal{N}(0, B)
$$

where $B=\left(b_{i j}\right)$ with $b_{i j}:=\cot \left(j-i+\frac{1}{2}\right) \frac{\pi}{e}-\cot \left(j-i-\frac{1}{2}\right) \frac{\pi}{e}$.
In particular, if $\mu_{0}, \ldots, \mu_{e-1}$ are the eigenvalues of B then:

$$
\frac{e \pi}{2 \sqrt{t}} \ell_{e}(\lambda) \xrightarrow[n \rightarrow+\infty]{d} \sum_{k=0}^{e-1} \Gamma\left(\frac{1}{2}, \mu_{k}\right)
$$

Proposition (R. 21)

For all $k \in\{0, \ldots, e-1\}$ we have $\mu_{k}=2 e \sin \frac{k \pi}{e}$.

Theorem (R. 21, main result)

Under the (Poissonised) Plancherel measure pl_{n}, the size $\ell_{e}(\lambda)$ of the e-core satisfies:

$$
\frac{\pi}{4 \sqrt{n}} \ell_{e}(\lambda) \xrightarrow[n \rightarrow+\infty]{d} \sum_{k=1}^{e-1} \Gamma\left(\frac{1}{2}, \sin \frac{k \pi}{e}\right)
$$

(sum of mutually independent random variables).

Theorem (R. 21, main result)

Under the (Poissonised) Plancherel measure pl_{n}, the size $\ell_{e}(\lambda)$ of the e-core satisfies:

$$
\frac{\pi}{4 \sqrt{n}} \ell_{e}(\lambda) \xrightarrow[n \rightarrow+\infty]{d} \sum_{k=1}^{e-1} \Gamma\left(\frac{1}{2}, \sin \frac{k \pi}{e}\right)
$$

(sum of mutually independent random variables).

Lulov-Pittel (1999) and Ayyer-Sinha (2020) have shown that under the uniform measure on the set of partitions of n one has:

$$
\frac{\pi}{\sqrt{n}} \ell_{e}(\lambda) \xrightarrow[n \rightarrow+\infty]{d} \Gamma\left(\frac{e-1}{2}, \sqrt{6}\right)=\sum_{k=1}^{e-1} \Gamma\left(\frac{1}{2}, \sqrt{6}\right)
$$

In pictures

Figure: Convergence in distribution of $\frac{\pi}{4 \sqrt{n}} \ell_{e}(\lambda)$ to $\sum_{k=1}^{e-1} \Gamma\left(\frac{1}{2}, \sin \frac{k \pi}{e}\right)$ for $e=7$ and $n=100,500,3000$.

The end

