
Core size of large partitions
under the Plancherel measure

Salim Rostam

Univ Rennes

April 2022

SLC 87, Saint-Paul-en-Jarez



1 Plancherel measure

2 Core of a partition
Descent set
Rim hooks
Core

3 Core asymptotics under the Plancherel measure



Partitions

Let n ∈ Z≥0.

Definition
A partition of (size) n is a non increasing sequence of positive
integers λ = (λ1 ≥ · · · ≥ λh > 0) with sum n.

Example
The partitions of 5 are (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1),
(2, 1, 1, 1), (1, 1, 1, 1, 1).

One can picture a partition with its Young diagram.

Example
The Young diagram of the partition (5, 3, 3, 2) is .
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Plancherel measure
Let λ be a partition of n. A standard tableau of shape λ is a
labelling of the boxes of the Young diagram of λ with the integers
1, . . . , n such that the rows (resp. columns) are increasing from left
to right (resp. top to bottom).

Example
The tableau 1 2 5

3 6 7
4

is standard with shape (3, 3, 1).

We denote by std(λ) the number of standard tableaux with shape λ.

Proposition

n! =
∑

λ partition of n
std(λ)2

The Plancherel measure on the set of partitions of n is defined by:

Pln(λ) := std(λ)2

n! .
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Russian convention

x

y
y = ωλ(x)

Figure: Russian convention for the partition (4, 4, 2, 1).



Limit shape theorem

Figure: A partition of n = 700 and the limit shape
(Kerov–Vershik, Logan–Shepp, 1977).
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Descent set
Definition
The descent set associated with a partition λ = (λi )i≥1 is:

D(λ) := {λi − i : i ≥ 1} ⊆ Z.

For instance, D(4, 4, 2, 1) = {3, 2,−1,−3,−5,−6,−7, . . . }.

x

y
y = ωλ(x)



A determinantal process

The discrete Bessel kernel is defined for x , y ∈ R by:

J n(x , y) :=
√
nJxJy+1 − Jx+1Jy

x − y (2
√
n),

where Jx is the Bessel function of the first kind of order x .

Theorem (Borodin-Okounkov-Olshanski 2000)
Let x1, . . . , xs ∈ Z be distinct. Under the (Poissonised) Plancherel
measure pln we have:

pln
(
x1, . . . , xs ∈ D(λ)

)
= det

[
J n(xa, xb)

]
1≤a,b≤s . (♦)
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Hooks and their rims

• • • •
•
•
•
•

Figure: A hook (with •) and its corresponding rim hook (in red)
for λ = (5, 5, 5, 4, 2).



Link between rim hooks and beads

Proposition
Let λ, µ be two partitions. The Young diagram of µ is obtained by
removing a rim hook of size e in the Young diagram of λ if and only
if:

D(µ) =
(
D(λ) \ {b}

)
∪ {b − e},

for a certain b ∈ D(λ) with b − e /∈ D(λ).

With λ := (2, 2, 1, 1) one has D(λ) = (1, 0,−2,−3,−5,−6, . . . )
and:
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Core of a partition

Let e ≥ 1.

Definition (Core)
The e-core of a partition is the partition that we obtain after we
have removed all the possible rim hooks of size e of the Young
diagram.

Example
The 8-core of (5, 5, 5, 4, 2) is (3, 2): .

The 4-core of (3, 2, 2, 1) is empty:

or .
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Is the e-core well-defined?
Proposition
The e-core of a partition λ is obtained by sliding all the beads in
D(λ) as far as possible to the right in their class of congruence
modulo e.

With λ = (3, 2, 2, 1) and e = 4 as before:
the order corresponds to:

the order corresponds to:

the 4-core being:
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Partitions with the same core

Theorem (“Nakayama’s Conjecture”, Brauer–Robinson 1947)
Two partitions belong to the same p-block of Sn if and only if they
have the same p-core.

Proposition (James–Kerber)
Two partitions have the same e-core if and only if they have the
same multiset of e-residues.

Example
The partition (3, 2, 2, 1) has empty 4-core and its multiset of
4-residues is given by 0 1 2

3 0
2 3
1

.

The partition (4, 4) has empty 4-core and its multiset of
4-residues is given by 0 1 2 3

3 2 1 0
.
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How does a core of a large partition look like?

Figure: Some 5-cores (in green) for n = 700.



Computing the core size
For i ∈ Z/eZ, the number of boxes of residue i in the Young
diagram of a partition λ is:

ci (λ) = 1
2
∑
k∈Z

ωλ(i + ke)− |i + ke| ∈ N.

Define:
xi (λ) := ci (λ)− ci+1(λ) ∈ Z.

Proposition (Garvan-Kim-Stanton 1990, Fayers 2006)
The size `e(λ) of the e-core of λ is given by:

`e(λ) = e
2
∑

i∈Z/eZ
xi (λ)2 +

e−1∑
i=0

ixi (λ). (♦)

Remark (Back to partitions with the same core)
One can show that xi (λ) = xi (µ) for all i ∈ Z/eZ if and only if λ
and µ share the same e-core.
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Central limit theorem
Proposition (R. 21)
For all i ∈ {0, . . . , e − 1} one has:

xi (λ) = #
(
eZ≥−n2 + i

)
∩ D(λ)− n2 + R(λ), (♦)

where R(λ) L2
−−−−→
n→+∞

0.

We denote by En,Varn the expectation and variance under pln.

Theorem (Costin–Lebowitz 1995)
Define #i := #

(
eZ≥−n2 + i

)
∩ D(λ). If Varn #i −−−−→n→+∞

+∞ then:

#i − En#i√
Varn #i

d−−−−→
n→+∞

N (0, 1).

Remark
The theorem was stated in a much more general setting.
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Expectation and variance

Theorem (R. 21)
When n→ +∞, one has:

Enxi (λ) = O(1),

and:
Varn xi (λ) ∼ 4

√
n

πe2 cot π2e .

Corollary (R. 21)
Under the (Poissonised) Plancherel measure pln one has:

n−1/4xi (λ) d−−−−→
n→+∞

N
(
0, 4
πe2 cot π2e

)
.



Joint asymptotics
We now use a multidimensional version of the central limit theorem
(Soshnikov 2000).

Theorem (R. 21)
Under the (Poissonised) Plancherel measure pln one has:

e
√
π

2

(xi (λ)
n1/4

)
i∈Z/eZ

d−−−−→
n→+∞

N (0,B),

where B = (bij) with bij := cot
(
j − i + 1

2
)
π
e − cot

(
j − i − 1

2
)
π
e .

In particular, if µ0, . . . , µe−1 are the eigenvalues of B then:

eπ
2
√
t
`e(λ) d−−−−→

n→+∞

e−1∑
k=0

Γ
(1

2 , µk
)
.

Proposition (R. 21)

For all k ∈ {0, . . . , e − 1} we have µk = 2e sin kπ
e .
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Conclusion

Theorem (R. 21, main result)
Under the (Poissonised) Plancherel measure pln, the size `e(λ) of
the e-core satisfies:

π

4
√
n `e(λ) d−−−−→

n→+∞

e−1∑
k=1

Γ
(1

2 , sin kπ
e
)

(sum of mutually independent random variables).

Lulov–Pittel (1999) and Ayyer–Sinha (2020) have shown that under
the uniform measure on the set of partitions of n one has:

π√
n `e(λ) d−−−−→

n→+∞
Γ
( e−1

2 ,
√
6
)

=
e−1∑
k=1

Γ
(1

2 ,
√
6
)
.
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In pictures

Figure: Convergence in distribution of π
4
√

n `e(λ) to
∑e−1

k=1 Γ
( 1

2 , sin kπ
e
)

for e = 7 and n = 100, 500, 3000.



The end

a t t e n t i o n
T h a n k
y o u r
f o r
y o u
!
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