
Séminaire Lotharingien de Combinatoire 88 (2023), Article B88a

ROWMOTION ON ROOTED TREES

PRANJAL DANGWAL, JAMIE KIMBLE, JINTING LIANG, JIANZHI LOU, BRUCE E. SAGAN,
AND ZACH STEWART

Abstract. A rooted tree T is a poset whose Hasse diagram is a graph-theoretic tree having
a unique minimal element. We study rowmotion on antichains and lower order ideals of T .
Recently Elizalde, Roby, Plante and Sagan considered rowmotion on fences which are posets
whose Hasse diagram is a path (but permitting any number of minimal elements). They
showed that in this case, the orbits could be described in terms of tilings of a cylinder. They
also defined a new notion called homometry, which means that a statistic has a constant
sum on all orbits of the same size. This is a weaker condition than the well-studied concept
of homomesy, which requires a constant value for the average of the statistic over all orbits.
Rowmotion on fences is often homometric for certain statistics, but not homomesic. We
introduce a tiling model for rowmotion on rooted trees. We use it to study various specific
types of trees and show that they exhibit homometry, although not homomesy, for certain
statistics.
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1. Introduction

Let S be a set with #S finite where the hash symbol denotes cardinality. A statistic on S
is a function st : S → Z where Z is the integers. We extend st to subsets R ⊆ S by letting

(1) stR =
∑
r∈R

st r.

Now suppose that G is a finite group acting on S. Statistic st is said to be homomesic if,
for any orbit O of G, we have

stO
#O

= c
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for some constant c. To be more specific, we say in this case that this statistic is c-mesic. Ho-
momesy is a well-studied property; see the survey articles of Roby [Rob16] or Striker [Str18].
Recently Elizalde, Roby, Plante, and Sagan [EPRS23] introduced a weaker notion which is
exhibited by certain actions and statistics. We say that a statistic st is homometric if for any
two orbits O1 and O2 of the same cardinality we have stO1 = stO2. We will see numerous
examples of statistics which are homometric but not homomesic in the present work.

Now consider a finite partially ordered set, often abbreviated to poset, (P,≤). An antichain
of P is a A ⊆ P such that no two elements of A are comparable. We denote the set of all
antichains as

A(P ) = {A ⊆ P | A is an antichain}.
A lower order ideal of P is L ⊆ P such that if y ∈ L and x ≤ y, then x ∈ L. We will use
the notation

L(P ) = {L ⊆ P | L is a lower order ideal}.
The lower order ideal generated by any Q ⊆ P is

Q ↓ = {x ∈ P | x ≤ y for some y ∈ Q}.

We also let minQ and maxQ be the sets of minimal and maximal elements of Q, respectively.
We now define rowmotion on antichains to be the action generated by ρ : A(P ) → A(P )
where

ρ(A) = min{x 6∈ (A ↓)}.
Similarly, rowmotion on ideals has generator ρ̂ : L(P )→ L(P ) with

ρ̂(L) = (min{x 6∈ L}) ↓ .

Note that these two actions are related by

ρ̂(L) = ρ(maxL) ↓ .

We will usually use a hat to distinguish a notation on ideals from the corresponding one on
antichains. More information about rowmotion can be found in the aforementioned survey
articles.

The paper of Elizalde et al. was devoted to the study of rowmotion on fences. A fence
is a poset whose Hasse diagram is a path. They showed that the antichain orbits can be
modeled using certain tilings of a cylinder. This tool permitted them to prove a number of
homometries which were not homomesies. In the present work we will consider rowmotion
on rooted trees. A poset T is a rooted tree if its Hasse diagram is a tree in the graph theory
sense of the term, and it has a unique minimal element called the root and denoted 0̂. Note
that these posets are more general than fences in that the tree need not be a path, but also
more restricted in that fences can have any number of minimal elements. We will assume all
our trees our rooted.

We now state a simple recursive formula for the number of antichains in a rooted tree
T which will be useful in the sequel. A similar statement can be made regarding the orbit
structure of rowmotion using the notion of outer product. (The outer product of two cycles c
and d on disjoint sets A and B, respectively, consists of gcd(|c|, |d|) disjoint cycles of length
lcm(|c|, |d|) on the set A×B constructed by parallel action and synchronization of the cycles
in all possible ways.) We use T \ {0̂} for the forest of rooted trees obtained by removing 0̂
from T .
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Figure 1. The intervals, branches, and β-values of a tree T

Lemma 1.1. Let T be a rooted tree. If #T = 1, then #A(T ) = 2. If #T ≥ 2, then let
T1, . . . , Tk be the rooted tree components of T \ {0̂}. In this case

#A(T ) = 1 +
k∏
i=1

#A(Ti).

Proof. If #T = 1, then T has antichains ∅ and {0̂}. When #T ≥ 2, let A be an antichain of
T . Either A = {0̂}, corresponding to the 1 in the sum, or A ⊆ ]iTi. In the latter case the
restriction Ai of A to Ti is an antichain and the product counts the possible Ai. �

The rest of this paper is structured as follows. In the next section we will show that
rowmotion on antichains of a rooted tree can also be viewed in terms of certain cylindrical
tilings. The following three sections will apply this tiling model to four different families of
trees: stars, trees with three leaves, and finally combs and zippers. We end with a section
with comments and open questions.

2. Tilings

We will show that rowmotion orbits on antichains can be more easily viewed as certain
tilings of a cylinder. Given a rooted tree T we will fix an embedding of the Hasse diagram of
T in the plane and label its leaves (maximal elements) as 1, 2, . . . , n from left to right. See
the tree on the left of Figure 1 for an example where n = 5.

For nonnegative integers m,n we use interval notation

[m,n] = {m,m+ 1, . . . , n}
and abbreviate [n] = [1, n]. Associate with each vertex x in T the set of all labels of leaves z
such that z ≥ x. Note that by our choice of labeling, this set will be an interval I. And the
set of all x with interval I forms a path called the branch corresponding to I and denoted BI .
On the right in Figure 1, T has been decomposed into branches with each labeled by a pair
where the first component is the interval I of BI . For example, nodes x and y are exactly
the ones below the leaves 3, 4, 5 but not 1, 2. So their associated interval is I = [3, 5], and
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Figure 2. Rowmotion on antichains in terms of tilings

B[3,5] = {x, y}. We will also label the vertices on the branch for I as xI,1, xI,2, . . ., starting
with the maximal element, and working down. Returning to our example, y = x[3,5],1 and
x = x[3,5],2. Note the following two simple but important properties of this family of intervals.

(I1) The singleton intervals [i, i] are in this family for all i ∈ [n].
(I2) The family is nested in the sense that if I, J are in the family with #I ≤ #J , then

either I ⊆ J or I ∩ J = ∅.
Given an interval I, let

βI = βI(T ) = #BI .

If I consists of a single element then we will abbreviate

βi = β[i,i].

Returning to our usual example, for I = [3, 5] we saw that B[3,5] = {x, y}, which implies
β[3,5] = 2. A crucial tool in defining the tilings will be the set

I(T ) = {(I, βI) | I is the interval of some branch of nodes in T}.
On the right in Figure 1, the elements of I(T ) are displayed next to their corresponding
branches. We will abuse notation and write I ∈ I(T ) to mean that (I, βI) ∈ I(T ).

We will need to consider partitions of intervals. A partition of an interval I is a collection
of nonempty subintervals I1, . . . , Ik whose disjoint union is I. We say that another partition
J1, . . . , Jl of I is a refinement of the first if for every Jj there is an Ii with Jj ⊆ Ii. The
refinement is proper if the two collections of subintervals are not the same. Refinement is a
partial order on partitions. If all the intervals of the partition come from I(T ), then it is
called an I(T )-partition.

We now describe the procedure to produce a tiling τ from an orbit O of rowmotion on
antichains of a rooted tree T . Consider a column of n boxes where the ith box corresponds
to the leaf labeled i in the embedding of T . The first column in Figure 2 is so labeled. Given
an antichain A, we take each x ∈ A and consider the interval I of its branch. The boxes
labeled by the elements of I are then covered by a black tile. All other boxes are covered
by a single yellow tile. Note that these boxes are exactly the ones in rows i such that there
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is no element of A below the leaf labeled i. Returning to Figure 2, consider the antichain
A = {u, x} and the leftmost column of tiles. Since u has interval [1, 1], the box in row 1 gets
a black tile. Similarly, x’s interval is [3, 5], so the rows for this interval also receive a black
tile. The remaining square in row 2 then receives a yellow tile. The reader should now not
find it hard to verify that ρ(A) = {v, y} and that this antichain corresponds to the second
column in the figure. We now paste the columns for all antichains in the orbit O together in
the same order that they appear in the orbit to get a tiling τ = τ(O) of a cylinder. Note that
when pasting, if there are two consecutive columns with black tiles coming from the same
interval I, then these tiles are combined into one. Returning to our perennial example, the
two tiles for I = [3, 5] become one tile as seen in the final diagram. And if there were more
elements on the branch corresponding to I, they would fatten the tile further. Three tilings
corresponding to full orbits are shown in Figure 3. The vertical sides of these rectangles are
identified to make them into cylinders. Also note that, in the middle tiling, a black tile in
the second row stretches over this boundary, as indicated by having it protrude beyond the
sides of the rectangle.

We wish to characterize the possible τ(O). In the definition below, an I × b tile is a tile
which covers the rows indexed by I and b columns. Also, the maximal partitions used are
maximal with respect to the refinement order. They exist because property (I1) implies that
any interval I has a partition using intervals in I(T ) since all singletons are intervals. And
property (I2) guarantees that among all such partitions of I there is a maximal one.

Definition 2.1. Given a rooted tree T , an I(T )-tiling is a tiling of a cylinder using I × βI
black tiles and I × 1 yellow tiles if #I = 1, satisfying the following two properties.

(t1) An I × βI black tile is followed by a yellow tile if #I = 1, or by black tiles corre-
sponding to the intervals in a maximal proper I(T )-partition of I if #I ≥ 2.

(t2) If J is a maximal interval of yellow tiles in a column, then they are followed by black
tiles corresponding to the intervals in a maximal I(T )-partition of J .

Lemma 2.2. Given a rooted tree, T , the map O 7→ τ(O) is a bijection between the antichain
rowmotion orbits of T and the possible I(T )-tilings.

Proof. We must first show that this map is well defined in that τ = τ(O) has tiles satisfying
(t1) and (t2) and of the correct shape. We will do this by studying how rowmotion affects
various elements of T .

Consider A ∈ O and any x ∈ A which is not maximal in its branch, and let I be the
associated interval. Then there is a unique element y which covers x, and it is in the same
branch. Furthermore y ∈ ρ(A). Since x and y correspond to the same interval I, it follows
that the tile covering those rows in the column for A extends into the column for ρ(A). By
induction, this tile extends into a column for an antichain containing the maximal element
on the branch.

Now suppose that x ∈ A is maximal in its branch. If #I = 1, then x is maximal in
T . So in ρ(A) the branch will be empty, and the algorithm will place a yellow tile in the
corresponding row and column. This proves the first case in (t1). On the other hand, if
#I ≥ 2, then x is covered by at least two elements y1, . . . , yk. So the column for ρ(A) will
contain tiles in the corresponding intervals I1, . . . , Ik which is a proper I(T )-partition of I
since k ≥ 2. And it is maximal since if there is some J ∈ I(T ) containing two or more of
the Ii, then there would have to be at least one element between x and the corresponding
yi’s. This completes the proof of (t1).
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For (t2), we will assume for simplicity that 1, n 6∈ J where n is the number of leaves of
T . The cases when J contains one or both of these special values is similar. Say J = [s, t].
Then by our assumption, there are black tiles covering rows s − 1 and t + 1 in the column
for J . Let x and y be the corresponding elements of A. Removing the 0̂–x and 0̂–y paths
from T breaks the lower order ideal generated by the leaves in J into rooted subtrees. Let
z1, . . . , zk be their roots, with corresponding intervals I1, . . . , Ik. Then ρ(A) contains these zi,
and so its column contains tiles for the intervals Ii which form a partition of J . Maximality
is obtained by the same argument as in the previous paragraph.

To complete showing that τ is well defined, we must check the shape of the tiles. Yellow
tiles are of the correct shape by definition of the algorithm. As concerns the black tiles, they
cover rows indexed by intervals in I(T ) by definition. So it suffices to show that a tile in the
rows indexed by I has the correct length. From the previous two paragraphs we see that the
tiles in the partitions following the maximal element of a black tile or following an interval
of yellow tiles all begin with the minimal elements of their respective branches. And by the
second paragraph, such a tile will extend to the maximal element on its branch. So the tile
will have length βI , the length of the branch.

To show that this map is a bijection, we construct its inverse. So given an I(T )-tiling τ ,
we must construct a corresponding orbit O. For each column of τ we form an antichain A as
follows. For each interval I covered by a black tile, suppose the given column is the ith in that
tile. Then add the ith smallest element on the branch for I to A. Now arrange the antichains
in the same order as the columns of the tiling to get an orbit. The demonstration that this
map is well defined is similar to the one just given. And the two functions are inverses since
the algorithms described are step-by-step reversals. This completes the proof. �

We will often call the tiles of shape I×βI simply I-tiles. As a first application of the tiling
model, we will use it to compute various statistics on rowmotion orbits. It will also give
us a simple proof of our first homomesy. Given x ∈ T we have the statistic on antichains
A ∈ A(T ) given by

χx(A) =

{
1 if x ∈ A,
0 if x 6∈ A.

If we want to count the size of antichains we use the statistic

χ(A) =
∑
x∈T

χx(A) = #A.

Now χx(O) and χ(O) are defined for any orbit O by equation (1). The corresponding
statistics for ideals are denoted χ̂x and χ̂. Given a I(T )-tiling τ we will use the notation

mI = mI(τ) = number of I-tiles in τ .

Corollary 2.3. Let T be a rooted tree and τ be a I(T )-tiling corresponding to a rowmotion
orbit O on T . The following hold.

(a) If x ∈ T has interval I, then

χx(O) = mI .

(b) We have

χ(O) =
∑
I∈I(T )

βImI .
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Figure 3. The star S(3, 3, 2) and its tilings

(c) If x = xI,j, then

χ̂x(O) = j ·mI + cI ,

where cI is the number of columns of τ intersecting a J-tile for J ⊂ I.
(d) We have

χ̂(O) =
∑
I∈I(T )

[(
βI + 1

2

)
mI + βIcI

]
.

(e) If x, y are in the same branch, then χx − χy is 0-mesic.

Proof. (a) This follows from the fact that x is represented by a single column in each I-tile
of τ .

(b) Since I-tiles have length βI = #BI we get, by summing (a),

χ(O) =
∑
x∈T

χx(O)

=
∑
I∈I(T )

∑
x∈BI

mI

=
∑
I∈I(T )

βImI .

(c) For a lower order ideal L we have that x ∈ L if and only if x ≤ y for some y ∈ A where
A = maxL. Note also that if y has interval J , then y ≥ x implies J ⊆ I. If J = I, then
there are j choices for y, and so j ·mI counts the total number of columns containing such
an element. And cI accounts for the columns which intersect some J-tile where J ⊂ I.

(d) This result follows from (c) in much the same way that (b) followed from (a). So the
proof is left to the reader.

(e) Let the common branch be BI . Using (a) one last time we get

χx(O)− χy(O) = mI −mI = 0

which implies the homomesy. �
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3. Stars

A star, S, is a rooted tree with n leaves and

I(S) = {([1, 1], β1), . . . , ([n, n], βn), ([n], 1)},
where we are using the previously established abbreviation βi = β[i,i]. We will use the same
abbreviation for other notation involving a subscript [i, i], for example xi,j = x[i,i],j. So S
is the result of taking n chains of length β1, . . . , βn and identifying their minimal elements.
Note that all tiles in a corresponding tiling will only cover one row, except for the tile
corresponding to 0̂. We denote this star by S(α1, . . . , αn) where αi = βi + 1 for i ∈ [n]. The
reason for this change of variables is because it will make our results easier to state since
αi is the length of a black tile followed by a yellow tile in row i. The star S(3, 3, 2) and its
tilings are found in Figure 3. Given an orbit O we will use the notation

δO =

{
1 if 0̂ ∈ O,

0 if 0̂ 6∈ O.

Theorem 3.1. Consider the star S = S(α1, . . . , αn) and an orbit O of rowmotion on S. Let
` = lcm(α1, . . . , αn).

(a) We have
#O = `+ δO,

and the number of orbits is α1 · · ·αn/`.
(b) For any x ∈ S,

χx(O) =

{
`/αi, if x ∈ Bi,

δO, if x = 0̂.

(c) We have

χ(O) = δO +
n∑
i=1

`

αi
(αi − 1).

Thus χ is homometric but not homomesic.
(d) For any x ∈ S

χ̂x(O) =

{
j`/αi if x = xi,j
` if x = 0̂.

(e) We have

χ̂(O) = `+
n∑
i=1

`

αi

(
αi
2

)
.

Thus χ̂ is homometric but not homomesic.

Proof. (a) Consider the tiling τ = τ(O). For all i ∈ [n] the corresponding interval I = [i, i]
has #I = 1. So, by condition (t1) in Definition 2.1, each black tile in that row is followed
by a yellow tile. And this pair of tiles has length βi + 1 = αi.

Now consider the case when 0̂ 6∈ O. So no tile spans more than one row. Now the previous
paragraph and (t2) imply that the black and yellow tiles alternate in row i. So the length of
that row is divisible by αi. Since this is true for all i, we must have that ` divides #O. But
since ` is the least common multiple, a given column will recur after ` steps. So we must
have #O = `. When 0̂ ∈ O, then the same reasoning as above applies to the tiling once the
column for 0̂ is removed. So in this case #O = `+ 1.
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Now let k be the number of orbits. From what we have just proved, #A(S) = 1+k`. Also,
it follows easily from Lemma 1.1 that #A(S) = 1 + α1 · · ·αn. Equating the two expressions
results in the desired count.

(b) We will consider the case x ∈ Bi as the other is trivial. Consider the tiling τ = τ(O).
From the proof of (a), we see that row i has ` columns which are tiled by a pair of consecutive
black and yellow tiles of combined length αi. So the number of black tiles in that row is

(2) mi = `/αi.

We are now done by Corollary 2.3 (a).

(c) Using part (b) and Corollary 2.3 (b) we obtain

χ(O) = β[n]m[n] +
n∑
i=1

βimi = δO +
n∑
i=1

`

αi
(αi − 1).

(d) Again, this is easy to see if x = 0̂. If x = xi,j, then there is no J ⊂ [i, i] in I(S). So
by Corollary 2.3 (c) and equation (2)

χ̂x(O) = j ·mi = j`/αi.

(e) It suffices to calculate the terms in the sum of Corollary 2.3 (d). We will do the case
when 0̂ 6∈ O as the unique orbit when 0̂ ∈ O is done similarly. We first look at the term for
I = [n]. In this case β[n] = 1 and m[n] = 0 by the choice of O. Since [i, i] ⊂ [n] for all i and
there is no column for the empty antichain, we have c[n] = `, the number of columns of the
tiling. So the term for I = [n] reduces to `. Now consider the summand for [i, i]. We have
βi + 1 = αi and mi = `/αi by equation (2). Furthermore, there is no J ⊂ [i, i], so ci = 0.
Thus the term for I = [i, i] is the ith one in the sum given in (e), as desired. �

Stars exhibit a number of homomesies. The following results are all gotten by simple
manipulation of the formulas for χ and χ̂ in the previous theorem, so we suppress the
demonstration.

Corollary 3.2. Consider the star S = S(α1, . . . , αn).

(a) If x ∈ Bi, then αiχx + χ0̂ is 1-mesic.
(b) If x ∈ Bi and y ∈ Bj, then αiχx − αjχy is 0-mesic.
(c) If x = xi,k, then αiχ̂x − kχ̂0̂ is 0-mesic.
(d) If x = xi,k and y = xj,k, then αiχ̂x − αjχ̂y is 0-mesic. �

It is easy to generalize Theorem 3.1 to the case where b[n] > 1 so that one has a fatter

[n]-tile. More generally, we will describe what happens to any tree where 0̂ is covered by a
single element. An example can be obtained by comparing Figures 3 and 4.

Proposition 3.3. Suppose T \{0̂} = T ′ is a rooted tree with n leaves. Let the I(T )-tilings be
τ1, τ2, . . . , τk, where τ1 is the tiling for the orbit of 0̂. Then the I(T ′)-tilings are τ ′1, τ2, . . . , τk,
where τ ′1 is obtained from τ1 by widening the [n]-tile by one column.

Proof. Since T \ {0̂} = T ′, the intervals of T and T ′ are the same. Also

βI(T
′) =

{
βI(T ) if I 6= [n],
β[n](T ) + 1 if I = [n].

Definition 2.1 now shows that the tilings transform as desired. �
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Figure 4. The extended star S2(3, 3, 2) and its tilings

For a positive integer b the b-extended star, Sb(α1, . . . , αn), is the rooted tree with

I(Sb) = {([1, 1], β1), . . . , ([n, n], βn), ([n], b)}

and αi = βi + 1 for i ∈ [n]. So we recover ordinary stars when b = 1. We see S2(3, 3, 2) in
Figure 4. The next result follows easily from Theorem 3.1 and Proposition 3.3 and so the
proof is omitted.

Corollary 3.4. Consider the extended star Sb = Sb(α1, . . . , αn) and an orbit O of rowmotion
on Sb. Let ` = lcm(α1, . . . , αn).

(a) We have

#O = `+ δOb,

and the number of orbits is α1 · · ·αn/`.
(b) For any x ∈ S,

χx(O) =

{
`/αi, if x ∈ Bi,

δO, if x ∈ B[n].

(c) We have

χ(O) = δOb+
n∑
i=1

`

αi
(αi − 1).

Thus χ is homometric but not homomesic.
(d) For any x ∈ S

χ̂x(O) =

{
j`/αi if x = xi,j
`+ δO(j − 1) if x = x[n],j.

(e) We have

χ̂(O) = `b+ δO

(
b

2

)
+

n∑
i=1

`

αi

(
αi
2

)
.

Thus χ̂ is homometric but not homomesic. �
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T ′ = T ′′ τ ′1 = τ ′′1 τ ′2 = τ ′′2

T

τ 1,11 τ 1,12 τ 1,13 τ 2,21 τ 2,22

τ 1,21 τ 2,11

Figure 5. The trees T ′, T ′′, T and their tilings

4. Trees with three leaves

The special case n = 3 of Corollary 3.4 gives information about the rowmotion orbits on
trees that have three leaves whose branches have minimal elements covering a single vertex
of the tree. Up to isomorphism, there is only one other arrangement of branches in a tree
with three leaves and this section is devoted to studying this case. First, we will prove a
result about removing the branch containing 0̂ from a certain type of tree.

Proposition 3.3 describes the tilings of a tree T whose 0̂ is covered by a single element. We
will determine what happens when it is covered by two elements or, more generally, when
removing the branch of 0̂ leaves exactly two rooted trees remaining. It is possible to derive
a similar result for any number of rooted subtrees, but the notation becomes cumbersome
and we will only need the case of two subtrees in the sequel.

In order to state our result we will need some notation. Let T be a rooted tree such that
T \B = T ′]T ′′ where B is the branch of 0̂ and T ′, T ′′ are rooted trees. Suppose that T ′ has
n′ leaves and tilings τ ′1, . . . , τ

′
s where τ ′1 is corresponds to the orbit containing 0̂′, the minimal

element of T ′. Further, let c′i be the number of columns of τ ′i for i ∈ [s]. Notation used
previously for T will be given a single prime when applied to T ′. Similarly, let T ′′ have n′′

leaves and tilings τ ′′1 , . . . , τ
′′
t with the same conventions about the tilings and other notation

except with a double prime. An example of this construction can be found in Figure 5.

Theorem 4.1. Let T be a rooted tree with T \B = T ′ ] T ′′ as above.

(a) The tilings of T can be described as follows. For all (i, j) ∈ [n′]× [n′′] there are tilings
τ i,jm for 1 ≤ m ≤ gi,j := gcd(c′i, c

′′
j ). Unless i = j = m = 1, we have that τ i,jm consists

of consecutive copies of τ ′i in the first n′ rows, consecutive copies of τ ′′j in the last n′′

rows, and has `i,j := lcm(c′i, c
′′
j ) columns. Tiling τ 1,11 is as in the previous sentence

except that one copy of τ ′1 and one of τ ′′1 align so that their columns of all yellow tiles
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coincide, and an [n′ + n′′]× b black tile is inserted directly after that column to make
the total length of the orbit `1,1 + b where b = #B.

(b) Let O′i, O′′j , and O = Oi,jm be the orbits corresponding to tilings τ ′i , τ
′′
j , and τ i,jm ,

respectively. For any x ∈ T

χx(Oi,jm ) =


`i,jχx(O′i)/c′i, if x ∈ T ′,
`i,jχx(O′′j )/c′′j , if x ∈ T ′′,
δO, if x ∈ B.

(c) We have

χ(Oi,jm ) = δOb+ `i,jχ(O′i)/c′i + `i,jχ(O′′j )/c′′j .
(d) For any x ∈ T

χ̂x(Oi,jm ) =


`i,jχ̂x(O′i)/c′i, if x ∈ T ′,
`i,jχ̂x(O′′j )/c′′j , if x ∈ T ′′,
`i,j + δO(j − 1), if x = x[n′+n′′],j.

(e) We have

χ̂(Oi,jm ) = `i,jb+ δO

(
b

2

)
+ `i,jχ̂(O′i)/c′i + `i,jχ̂(O′′j )/c′′j .

Proof. We will only prove (a), as once this is established then the other parts of the theorem
follow from straight-forward computations similar to those already seen in Theorem 3.1. Let
O be an antichain orbit of T . Pick an antichain A in O which does not contain an element
of B, so that it can be written as A = A′ ]A′′ where A′ = A ∩ T ′ and A′′ = A ∩ T ′′. Let O′
and O′′ be the orbits of A′ and A′′ in T ′ and T ′′, respectively.

First consider the case when (at least) one of O′ and O′′ does not contain the empty
antichain. It follows that as ρ is applied to A, the antichains A′ and A′′ will describe their
respective orbits O′ and O′′ in T ′ and T ′′. If c′ = #O′ and c′′ = #O′′ then, in order for both
orbits to return to A′ and A′′ at the same time, we must have #O = lcm(c′, c′′). And since
there are c′c′′ ways to pair an antichain in O′ with one in O′′, the total number of orbits
obtained from such pairs is c′c′′/ lcm(c′, c′′) = gcd(c′, c′′). This description matches the one
given for the tilings τ i,jk for as long as we do not have i = j = 1.

In the case when both O′ and O′′ contain the empty antichain, the argument of the
previous paragraph goes through with one exception. Suppose the elements of O′ and O′′
are repeated in O in such a way that at some point the empty antichain of T is reached.
Then ∅ will be followed by the elements of B in increasing order. This, in turn, will be
followed by the antichain {0̂′, 0̂′′} which will cause the orbits O′ and O′′ to continue. This
orbit corresponds to the tiling τ 1,11 and completes our description of the orbits and their
tilings. �

Now consider a tree T with three leaves which is not an extended star. It follows that,
using a suitable embedding, we will have

I(T ) = {([3], a), ([2], b), ([1, 1], c), ([2, 2], d), ([3, 3], e)}

for a, b, c, d, e ≥ 1. A particular tree of this form is shown in Figure 6. Although we can use
the previous theorem to calculate the orbits and their statistic values for arbitrary a, b, c, d, e
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1 2

3

T3

Figure 6. The tree T3

the resulting formulas are not very enlightening. So we will concentrate on a specific tree of
this type. Define the three-leaf tree Tk to be the one with

I(T ) = {([3], k), ([2], k), ([1, 1], k − 1), ([2, 2], k − 1), ([3, 3], k − 1)}.
The tree in Figure 6 is T3.

Theorem 4.2. The orbits of rowmotion on Tk can be partitioned by length into three sets S
(for small), M (for medium), and L (for large) with the following properties.

(a) We have
#S = k(k − 1), #M = k − 1, #L = 1,

and

#O =


k, if O ∈ S,
2k, if O ∈M,

3k, if O ∈ L.
(b) We have

χ(O) =


3k − 3, if O ∈ S,
5k − 4, if O ∈M,

6k − 4, if O ∈ L.
Thus χ is homometric but not homomesic.

(c) We have

χ̂(O) =


7
2
k2 − 3

2
k, if O ∈ S,

11
2
k2 − 5

2
k, if O ∈M,

6k2 − 3k, if O ∈ L.
Thus χ̂ is homometric but not homomesic.
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1 2

3

4

C3

1 2

3

4

C3,2

Figure 7. The comb C3 and extended comb C3,2

Proof. (a) Let B = B[3] and b = #B = k. Then Tk \ B = Sk(k, k) ] S(k) is a disjoint

union of two (extended) stars. Clearly, T ′′ = S(k) has only one orbit which contains 0̂. By
Corollary 3.4, T ′ = Sk(k, k) has orbits of size lcm(k, k) = k and the total number of orbits
is (k · k)/k = k. So one of these orbits contains 0̂ and the other k − 1 do not, and they will
have lengths given by k+ δOk. It follows that the latter will be of length k, while the former
is of length 2k. Applying Theorem 4.1, Tk will have k(k−1) orbits Oi,1m with i 6= 1 and these
will have length lcm(k, k) = k. These are the orbits in S. There will also be the orbits O1,1

m

for m ∈ [2, k], which gives k − 1 possible values for m. Here, the length is lcm(2k, k) = 2k.
These are the orbits inM. Finally, the unique orbit O1,1

1 is of length 2k + b = 2k + k = 3k,
and this describes L.

(b) We will do the case ofO1,1
1 , the unique element of L, as the others are similar. Applying

Corollary 3.4 (c) to orbit O′1 of T ′ = Sk(k, k) gives

χ(O′1) = k +
2∑
i=1

k

k
(k − 1) = 3k − 2.

Similarly, for O′′1 in T ′′ = S(k) we have

χ(O′′1) = k − 1.

Now applying Theorem 4.1 (c) with l1,1 = lcm(2k, k) = 2k yields

χ(O1,1
1 ) = k + 2k(3k − 2)/(2k) + 2k(k − 1)/k = 6k − 4.

(c) The computations are like those in (b) except using Theorem 4.1 (e), so the details
are omitted. �

5. Combs and zippers

Combs are a particularly simple type of binary tree. They are useful in understanding the
structure of the free Lie algebra as shown, for example, in the work of Wachs [Wac98]. In
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this section we will compute the orbit structure of combs, combs with an extended backbone,
and zippers which are constructed by pasting together combs.

It will be convenient to consider combs which have n + 1 leaves. Specifically, the comb,
Cn, is the rooted tree with

I(Cn) = {([n+ 1], 1), ([n], 1), . . . , ([2], 1), ([1, 1], 1), ([2, 2], 1), . . . , ([n+ 1, n+ 1], 1)}.

The comb C3 is shown on the left in Figure 7.

Theorem 5.1. The orbits of rowmotion on Cn can be partitioned into two sets S and L
having the following properties.

(a) We have

#S = 2n−1, #L = 1,

and

#O =

{
2, if O ∈ S,
2n+1 − 1, if O ∈ L.

(b) We have

χ(O) =

{
n+ 1, if O ∈ S,
(2n+ 1)2n−1, if O ∈ L.

Thus χ is homometric but not homomesic.
(c) We have

χ̂(O) =

{
3n+ 1, if O ∈ S,
2n−1(6n− 5) + 3, if O ∈ L.

Thus χ̂ is homometric, but not homomesic.

Proof. (a) We induct on n, where the result is easy to check if n = 1. Assume the orbits
are as stated for Cn and that the unique orbit in L is the one containing 0̂. We see that
Cn+1 \ {0̂} = Cn ] {v} where v is the leaf labeled n + 2. We will subscript notation with n
or n+ 1 to make it clear which comb is meant.

Now, T ′′ = {v} has only one orbit of length 2. By Theorem 4.1, this combines with each
of the orbits in Sn to give orbits of length lcm(2, 2) = 2. Also, there will be gcd(2, 2) = 2
orbits in Sn+1 for every one in Sn for a total of 2 · 2n−1 = 2n orbits. Thus the information
about Sn+1 is as desired.

The one orbit in Ln will combine with the one for {v} to give gcd(2, 2n+1 − 1) = 1 orbit
which must be the one containing 0̂. So its length will be lcm(2, 2n+1 − 1) + 1 = 2n+2 − 1,
which finishes the induction.

(b) Again, we induct, only providing details for the orbit of 0̂ in L. Using the notation for
Theorem 4.1, we have c′1 = 2n+1 − 1 and c′′1 = 2. So l1,1 = c′1c

′′
1, and the formula in part (c)

of that theorem becomes

χ(O) = 1 + 2(2n+ 1)2n−1 + (2n+1 − 1) · 1 = (2n+ 3)2n

as it should be.

(c) This demonstration is similar to that of (b) above using Theorem 4.1 (d) and so is
omitted. �
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We can generalize these comb results as follows. The backbone of a comb is the set of
elements which are not leaves. So Cn has an n-element backbone, and each element is an
interval in I(Cn). We will extend each of these intervals, except for the one corresponding
to 0̂, so that they have k elements. Formally, the extended comb, Cn,k, is defined as the tree
with

I(Cn) = {([n+ 1], 1), ([n], k), . . . , ([2], k), ([1, 1], 1), ([2, 2], 1), . . . , ([n+ 1, n+ 1], 1)}.

On the right in Figure 7 is the extended comb C3,2. Note that Cn,1 = Cn.

Theorem 5.2. The orbits of the extended comb Cn,k can be partitioned into two sets S and
L when k is odd, and into n + 1 sets S1,S2, . . . ,Sn and L when k is even. The orbits have
properties given by the following tables for k odd:

k odd S L
#O 2 (k + 1)2n − 2k + 1

number of O 2n−1 1
χ(O) n+ 1 ((k + 1)n+ 1)2n−1 − k + 1
χ̂(O) (2k + 1)n− 2k + 3 (2k + 1)(k + 1)n2n−1 − (5k2 + 3k − 3)2n−1 + 3k2

and for k even:

k even Si for i ∈ [n] L
#O k(i− 1) + 2 k(n− 1) + 3

number of O 2n−i 1

χ(O) k(i−1)+2
2

n− k
4
(i2 − 5i+ 4) + 1 k

4
n2 + 3k+4

4
n− k + 2

χ̂(O) (2k+1)(k(i−1)+2)
2

n− k(2k+1)
4

i2 + 3k
4
i+
(
k−2
2

) k(2k+1)
4

n2 − 4k2−9k−4
4

n+
(
k−2
2

)
Thus χ and χ̂ are homometric on Cn,k.

Proof. We will just verify the orbit structure as, once that is done, the calculation of χ and
χ̂ are routine using Proposition 3.3 and Theorem 4.1. We will induct on n where the base
case is easy. Note that Cn+1,k \ {0̂} = C ′n,k ] {v} where v is the leaf labeled n + 2 and C ′n,k
is Cn,k with its 0̂-interval replaced by one with k elements. It follows from Proposition 3.3

that the orbits of these two posets are identical except for the orbit of 0̂ whose [n + 1]-tile
has been widened by adding k − 1 columns.

We now consider what happens when k is odd. The orbits of length 2 for C ′n,k combine
with the orbit of length 2 for {v} in exactly the same way as in the proof of Theorem 5.1.
As far as the orbit containing 0̂ in C ′n,k, by induction and the last sentence of the previous
paragraph it has length

[(k + 1)2n − 2k + 1] + k − 1 = (k + 1)2n − k,

which is odd by the parity of k. So, by Theorem 4.1, the orbit containing 0̂ in Cn+1,k has
length

lcm((k + 1)2n − k, 2) + 1 = 2[(k + 1)2n − k] + 1 = (k + 1)2n+1 − 2k + 1,

which is the desired quantity.
When k is even we have, by induction, that all the orbits of Cn,k have even length except

for the orbit of 0̂ whose length is odd. It follows that all the orbits of C ′n,k are of even length.

So, when each non-0̂ is combined with v’s orbit of length 2, this will result in two orbits of
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Figure 8. The zipper Z3

the same length. This accounts for the orbits in Si of Cn+1,k for i < n. The 0̂-orbit of C ′n,k
will have length

[k(n− 1) + 3] + k − 1 = kn+ 2.

Since this is even, when it combines with v’s orbit it will produce gcd(kn + 2, 2) = 2 orbits
for Cn+1,k. One of these will be of size lcm(kn + 2, 2) = kn + 2 and that one will take care
of Sn. The other will have length one more and will be the orbit in L. �

Another way to modify combs is by combining them together. If T is a rooted tree and
T \ {0̂} = T ′ ] T ′′, then we will also write T = T ′ ⊕ T ′′. Define the zipper, Zn, to be

Zn = Cn ⊕ Cn.
A picture of Z3 will be found in Figure 8.

Theorem 5.3. The orbits of Zn can be partitioned into four sets S, M, L, and G (for
gigantic). The properties of the orbits is summarized in the following table:

S M L G
#O 2 2n+1 − 1 2n+1 2n+2 − 2

number of O 22n−1 2n+1 − 2 1 2n

χ(O) 2n+ 2 2n(2n+ 1) 2n(2n+ 1) + 1 2n(4n+ 3)− n− 1

χ̂(O) 6n+ 4 3 · 2n(2n− 1) + 5 3 · 2n(2n− 1) + 5 2n−1(51n− 25) + 3

Thus χ and χ̂ are homometric on Zn.

Proof. As usual, we will just give details about the orbit structure. Since Zn\{0̂} is a disjoint
union of two copies of Cn, we use Theorems 5.1 and 4.1. Let S ′ and L′ refer to the orbit
partition of Cn and use unprimed notation for Zn.

Combining two orbits from S ′ gives gcd(2, 2) = 2 orbits of Zn of length lcm(2, 2) = 2.
Since #S ′ = 2n−1, the total number of orbits formed in this way is

2 · 2n−1 · 2n−1 = 22n−1.

These are the orbits of S.
Putting together an orbit from S ′ with the unique orbit in L′ results in gcd(2, 2n+1−1) = 1

orbit of size lcm(2, 2n+1 − 1) = 2n+2 − 2. Now the total number of orbits is

2 · 2n−1 · 1 = 2n,

and they are the orbits in G.
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x y

z

Figure 9. A complete binary tree

Finally, the combination of the orbit in L′ with itself gives gcd(2n+1−1, 2n+1−1) = 2n+1−1
orbits. All of these orbits will have length lcm(2n+1− 1, 2n+1− 1) = 2n+1− 1, except for the
one containing 0̂, which will have one more element. These orbits are precisely the ones in
M]L, and so we are done. �

6. Comments and open questions

6.1. Other trees. The trees considered in the previous section had such nice homometry
properties that one might ask if the same is true for other binary trees. In particular, one
could consider the complete binary trees which are those all of whose leaves are at the same
rank. Such a tree is displayed in Figure 9. Unfortunately, homometry fails for this example
tree. Consider the orbit O which contains the antichain {x, y} as well as the one O′ which
contains {z}. Then it is easy to verify that #O = #O′ = 4. But

χ(O) = 15 6= 14 = χ(O′) and χ̂(O) = 35 6= 26 = χ̂(O′).
As mentioned in the introduction, Elizalde et al. [EPRS23] considered fences whose Hasse

diagrams are paths with any number of minimal elements. Here we have concentrated on
arbitrary trees, but insisted that there be a unique minimal element. It would be interesting
to study trees which are not paths and also not rooted.

6.2. Piecewise-linear and birational rowmotion. There are two generalizations of row-
motion, called piecewise linear and birational rowmotion, which have also been studied. In
particular, for certain trees which are called graded, these actions have finite order. A num-
ber of the trees which we have considered are not graded but still have nice homomesy and
homometry properties. This raises the question of whether the piecewise linear and bira-
tional orbits of these trees could be finite and so possibly also exhibit interesting statistical
properties. To make this precise, we first need to describe rowmotion in terms of toggles. In
the discussion which follows we will just write ideal for lower order ideal.

If (P,≤P ) is a finite poset and x ∈ P , then the corresponding toggle map is tx : L(P ) →
L(P ) defined by

tx(L) =

{
L4{x} if L4{x} ∈ L(P ),
L else

where 4 denotes symmetric difference of sets. A linear extension of P is a listing of P ’s
elements x1, x2, . . . , xp such that xi ≤P xj implies xi is weakly left of xj in the sequence, that
is, i ≤ j. Cameron and Fon-Der-Flaass showed that rowmotion on ideals can be broken into
a sequence of toggles. In what follows we compose functions right to left.
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Theorem 6.1 ([CFDF95]). For any finite poset P and any linear extension x1, x2, . . . , xp of
P we have

ρ̂ = tx1tx2 · · · txp . �

Stanley [Sta86] introduced the order polytope as a way to use geometry to study posets.
Poset P = {x1, . . . , xp} has order polytope

Π(P ) = {(f(x1), . . . , f(xp)) ∈ [0, 1]p | xi ≤P xj implies f(x) ≤ f(y)}.

So Π(P ) is a subpolytope of the p-dimensional unit cube. Also note that every ideal L of P
has a corresponding point of Π(P ) defined by the function

f(x) =

{
0 if x 6∈ P ,
1 if x ∈ P .

Einstein and Propp [EP14, EP21] extended rowmotion to Π(P ). Write xl y if x is covered
by y in P , that is x <P y and there is no z with x <P z <P y. If f ∈ Π(P ) and x ∈ P , then
define the piecewise-linear toggle σx of f at x to be g = σxf ∈ Π(P ) where

(3) g(v) =

{
M +m− f(x) if v = x,
f(v) if v 6= x

using the notation

(4) M = max
ylx

f(y) and m = min
zmx

f(z).

It is not hard to verify from the definitions that g ∈ Π(P ). One can also show that σx is
an involution just like tx, and σx is also piecewise-linear as a function. Finally, one defines
piecewise-linear rowmotion, ρPL : Π(P )→ Π(P ), by

ρPL = σx1σx2 · · ·σxp
where x1, x2, . . . , xp is a linear extension of P . It is true, but not obvious from the equation
just given, that ρPL is well defined in that it does not depend on the chosen linear extension.
Since Π(P ) has an infinite number of points, it is very possible for orbits of ρPL to be infinite.
However, in certain cases the orbits are nice. Take, for example, the poset [p]× [q] which is
the poset product of a p-element chain and a q-element chain.

Theorem 6.2 ([EP14, EP21, GR15]). The order of ρPL on [p]× [q] is p+ q. �

One can extend piecewise-linear rowmotion even further to the birational realm by detrop-
icalizing as done by Grinberg and Roby [GR15, GR16]. This means that in equations (3)
and (4) sum becomes product, difference becomes quotient, and maximum become sum. To
take care of the minimum, we use the previous dictionary and the fact that for any set S of
real numbers minS = −max(−S) where −S = {−s | s ∈ S}. Now let P be a finite poset

and let P̂ be P with a minimum element 0̂ and a maximum element 1̂ added. Let F be a
field and consider a function f : P̂ → F. The birational toggle of f at x ∈ P is g = Txf
where

g(v) =


∑

ylx f(y)

f(x)
∑

zmx f(z)−1
if v = x,

f(v) if v 6= x.
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One can verify that Tx is an involution, is a birational function, and that the following is
well defined. Define birational rowmotion on functions f : P̂ → F as

ρB = Tx1Tx2 · · ·Txp

where, as usual, x1, x2, . . . , xp is a linear extension of P . It is even more surprising when
birational orbits are finite. Indeed, ρB being of finite order implies this is true for ρPL. Again,
everything works well for rectangular posets

Theorem 6.3 ([GR15]). The order of ρB on [p]× [q] is p+ q. �

Call a poset P graded if all chains from a minimal element of P to a maximal element have
the same length. Grinberg and Roby consider a class of inductively defined posets which
they call skeletal and includes graded rooted forests, that is, disjoint unions of rooted trees
such that all leaves have the same rank. In this context, they prove the following result.

Theorem 6.4 ([GR16]). If P is a skeletal poset, then ρB has finite order.

They also give a formula for order of ρB in the case that P is a graded rooted forest which
agrees with the results in Corollary 3.4 for graded extended stars. As stated above, a natural
question is whether ρB has finite order for any rooted trees which are not graded. Computer
experiments suggest that this is not the case, although we have not been able to provide a
proof. Specifically, 200 trials were run on 16 posets, and in all but one case the orbit had
not repeated after 1, 000, 000 iterations of rowmotion.

Acknowledgement. We thank the two referees as well as our editor, Volker Strehl, for
comments which improved the exposition.
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