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ldea: construct certain families of paths
in the marked root lattice.
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Consider families of kissing paths with the follwing forbidden local configurations:

® crossing of two paths in an unmarked root \

» an up and down step of a path at a marked root \E/
without crossing another path

We call such a family of paths minimal, if:
» cach unmarked root lies either on a path or above all paths,
s if a marked root is a peak of a path, then it is either part of another path,
or there is no other path "above" it.

Theorem

The bijection & is given by constructing the minimal family of kissing paths
with starting points O and endpoints [ .

0={1,2,4, 5 7}
= {4, 6, 7, 8, 9}

* Construct a parenthesis word.
* "Replace" two neighbouring parenthesis ()

by a path, s.t. the resulting family is minimal.
* Take the order ideal of roots included / below a path.
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Remark

* Marking / unmarking roots along the upper boundary of the poset does not change the bijection.

o For each choice of marking the "interior" roots, we obtain a different bijection of the above kind.

"Proof sketch"

1) Show that the above map is a bijection.
2) For the commuting statement, we have the following strategy:

o We know that the theorem is true for ¢ = (1 2 ... n).

o We say that c¢' is obtained from ¢ by mutating at k, if
k is a left-descent of ¢, i.e., (s.c) < I(c),
=58,

Two coxeter elements are related by a sequence of mutations.

Show that if the theorem holds for ¢, then it also holds for ¢! ( Cambrian induction).



