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c- Promotion          
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We can reconstruct the  nc matching from O and I.
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Idea: construct certain families of paths
      in the marked root lattice.
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Construct a parenthesis word.
"Replace" two neighbouring parenthesis ( )
by a path, s.t. the resulting family is minimal.
Take the order ideal of roots included / below a path.
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Remark

Marking / unmarking roots along the upper boundary of the poset does not change the bijection. 

For each choice of marking the "interior" roots, we obtain a different bijection of the above kind.

1) Show that the above map is a bijection.

2) For the commuting statement, we have the following strategy:

We know that the theorem is true for c = (1 2 ... n ).

k

k k

We say that c' is obtained from c by mutating at k, if
      k is a left-descent of c, i.e., l(s c) < l(c),
      c' = s c s  

Two coxeter elements are related by a sequence of mutations.

Show that if the theorem holds for c, then it also holds for c'  ( Cambrian induction).


