A family of equivariant bijections between noncrossing and nonnesting partitions of type A
joint work (in progress) with
B. Dequène, G. Frieden, A. Iraci, H. Thomas, N. Williams

A family of equivariant bijections between noncrossing and nonnesting partitions of type A

joint work (in progress) with
B. Dequène, G. Frieden, A. Iraci, H. Thomas, N. Williams

Noncrossing partitions $\quad N C(n)$
(there is a Coxeter group definition)
Combinatorially:
place integers $1, \ldots, n$ on a circle, form polygons of integers in the same block,
polygons are not allowed to cross.

$$
\{1,9\}\{2,4,7,8\} \quad\{3\} \quad\{5,6\}
$$

A family of equivariant bijections between noncrossing and nonnesting partitions of type A

joint work (in progress) with
B. Dequène, G. Frieden, A. Iraci, H. Thomas, N. Williams

Noncrossing partitions $\quad N C(n)$

(there is a Coxeter group definition)
Combinatorially:
place integers 1,..., n on a circle, form polygons of integers in the same block, polygons are not allowed to cross.

$$
\{1,9\} \quad\{2,4,7,8\} \quad\{3\} \quad\{5,6\}
$$

Nonnesting partitions $\quad N N(n)$

- order ideals of the root poset of type A_{n-1}
positive roots: $(i, j)=e_{i, j}=e_{j}-e_{i} \quad i<j$ $(1, n)$
$(1, n-1) \quad(2, n)$.
$(1,2)(2,3) \cdots(n-1, n)$

A family of equivariant bijections between noncrossing and nonnesting partitions of type A

joint work (in progress) with
B. Dequène, G. Frieden, A. Iraci, H. Thomas, N. Williams

Noncrossing partitions $\quad N C(n)$

(there is a Coxeter group definition)
Combinatorially:
place integers 1,..., n on a circle, form polygons of integers in the same block, polygons are not allowed to cross.

$$
\{1,9\}\{2,4,7,8\} \quad\{3\} \quad\{5,6\}
$$

Nonnesting partitions $\quad N N(n)$

- order ideals of the root poset of type A_{n-1}
positive roots: $(i, j)=e_{i, j}=e_{j}-e_{i} \quad i<j$ $(1, n)$ $(1, n-1) \quad(2, n)$ $(1,2)(2,3) \cdots(n-1, n)$

A family of equivariant bijections between noncrossing and nonnesting partitions of type A

joint work (in progress) with
B. Dequène, G. Frieden, A. Iraci, H. Thomas, N. Williams

Noncrossing partitions $\quad N C(n)$

(there is a Coxeter group definition)
Combinatorially:
place integers 1,..., n on a circle, form polygons of integers in the same block, polygons are not allowed to cross.

$$
\{1,9\}\{2,4,7,8\} \quad\{3\} \quad\{5,6\}
$$

Nonnesting partitions $\quad N N(n)$

- order ideals of the root poset of type A_{n-1}
positive roots: $(i, j)=e_{i, j}=e_{j}-e_{i} \quad i<j$ $(1, n)$ $(1, n-1) \quad(2, n)$ $(1,2)(2,3) \cdots(n-1, n)$

A family of equivariant bijection between noncrossing and nonnesting partitions of type A joint work (in progress) with
B. Dequène, G. Frieden, A. Iraci, H. Thomas, N. Williams

Noncrossing partitions $\quad N C(n)$
(there is a Coxeter group definition)
combinatorially:
place integers $1, \ldots, n$ on a circle, form polygons of integers in the same block, polygons are not allowed to cross.
$\{1,9\}\{2,4,7,8\}\{3\}\{5,6\}$

Nonnesting partitions $\quad N N(n)$

- order ideals of the root posed of type A_{n-1}

$$
\begin{aligned}
& \text { positive roots: }(i, j)=e_{i, j}=e_{j}-e_{i} \quad i<j \\
& (1, n) \\
& (1, n-1)(2, n) \\
& (1,2) \quad(2,3) \cdots(n-1, n)
\end{aligned}
$$

A family of equivariant bijections between

 noncrossing and nonnesting partitions of type Ajoint work (in progress) with
B. Dequène, G. Frieden, A. Iraci, H. Thomas, N. Williams

Noncrossing partitions $N C(n)$
(there is a Coxeter group definition)
Combinatorially:
place integers 1,..., n on a circle,
form polygons of integers in the same block,
polygons are not allowed to cross.

$$
\{1,9\}\{2,4,7,8\} \quad\{3\} \quad\{5,6\}
$$

- order ideals of the root poset of type A_{n-1}
positive roots: $(i, j)=e_{i, j}=e_{j}-e_{i} \quad i<j$ $(1, n)$
$\begin{array}{ll}(1, n-1) \quad(2, n) \\ \because & \\ \quad .\end{array}$
$(1,2)(2,3) \cdots(n-1, n)$

A family of equivariant bijections between

 noncrossing and nonnesting partitions of type Ajoint work (in progress) with
B. Dequène, G. Frieden, A. Iraci, H. Thomas, N. Williams

Noncrossing partitions $\quad N C(n)$

(there is a Coxeter group definition) Combinatorially:
place integers 1,..., n on a circle, form polygons of integers in the same block, polygons are not allowed to cross.

$$
\{1,9\}\{2,4,7,8\} \quad\{3\} \quad\{5,6\}
$$

Nonnesting partitions $N N(n)$

- order ideals of the root poset of type A_{n-1}
positive roots: $(i, j)=e_{i, j}=e_{j}-e_{i} \quad i<j$
$(1, n)$
$\begin{array}{ll}(1, n-1) \quad(2, n) \\ \therefore & \\ \therefore\end{array}$
$(1,2)(2,3) \cdots(n-1, n)$

A family of equivariant bijections between

 noncrossing and nonnesting partitions of type Ajoint work (in progress) with
B. Dequène, G. Frieden, A. Iraci, H. Thomas, N. Williams

Noncrossing partitions $\quad N C(n)$

(there is a Coxeter group definition) Combinatorially:
place integers 1,..., n on a circle, form polygons of integers in the same block, polygons are not allowed to cross.

$$
\{1,9\} \quad\{2,4,7,8\} \quad\{3\} \quad\{5,6\}
$$

- order ideals of the root poset of type A_{n-1}
positive roots: $(i, j)=e_{i, j}=e_{j}-e_{i} \quad i<j$
$(1, n)$
$\begin{array}{ll}(1, n-1) \quad(2, n) & \\ \therefore\end{array}$
$(1,2)(2,3) \cdots(n-1, n)$

Kreweras Complement Kr

1) Double numbers in clockwise direction.

Kreweras Complement Kr

1) Double numbers in clockwise direction.
2) Take the coarsest partition on the new numbers which is noncrossing w.r.t. all numbers.

Kreweras Complement Kr

1) Double numbers in clockwise direction.
2) Take the coarsest partition on the new numbers which is noncrossing w.r.t. all numbers.
3) Forget the original partition.

Kreweras Complement Kr

1) Double numbers in clockwise direction.
2) Take the coarsest partition on the new numbers which is noncrossing w.r.t. all numbers.
3) Forget the original partition.

Promotion

- Toggling t_{r} at root r :
add / remove r whenever possible
- Toggle along SE-diagonals from left to right

Kreweras Complement Kr

1) Double numbers in clockwise direction.
2) Take the coarsest partition on the new numbers which is noncrossing w.r.t. all numbers.
3) Forget the original partition.

5

Promotion

- Toggling t_{r} at root r :
add / remove r whenever possible
- Toggle along SE-diagonals from left to right

Kreweras Complement Kr

1) Double numbers in clockwise direction.
2) Take the coarsest partition on the new numbers which is noncrossing w.r.t. all numbers.
3) Forget the original partition.

5

Promotion

- Toggling t_{r} at root r :
add / remove r whenever possible
- Toggle along SE-diagonals from left to right

Kreweras Complement Kr

1) Double numbers in clockwise direction.
2) Take the coarsest partition on the new numbers which is noncrossing w.r.t. all numbers.
3) Forget the original partition.

5

Promotion

- Toggling t_{r} at root r :
add / remove r whenever possible
- Toggle along SE-diagonals from left to right

Kreweras Complement Kr

1) Double numbers in clockwise direction.
2) Take the coarsest partition on the new numbers which is noncrossing w.r.t. all numbers.
3) Forget the original partition.

5

Promotion

- Toggling t_{r} at root r :
add / remove r whenever possible
- Toggle along SE-diagonals from left to right

Kreweras Complement Kr

1) Double numbers in clockwise direction.
2) Take the coarsest partition on the new numbers which is noncrossing w.r.t. all numbers.
3) Forget the original partition.

5

Promotion

- Toggling t_{r} at root r :
add / remove r whenever possible
- Toggle along SE-diagonals from left to right

Kreweras Complement Kr

1) Double numbers in clockwise direction.
2) Take the coarsest partition on the new numbers which is noncrossing w.r.t. all numbers.
3) Forget the original partition.

5

Promotion

- Toggling t_{r} at root r :
add / remove r whenever possible
- Toggle along SE-diagonals from left to right

Kreweras Complement Kr

1) Double numbers in clockwise direction.
2) Take the coarsest partition on the new numbers which is noncrossing w.r.t. all numbers.
3) Forget the original partition.

Promotion ρ

- Toggling t_{r} at root r :
add / remove r whenever possible
- Toggle along SE-diagonals from left to right

Theorem

Let \varnothing denote the above presented bijection between $N C(n)$ and $N N(n)$.
Then the following diagram commutes.

Kreweras Complement Kr

1) Double numbers in clockwise direction.
2) Take the coarsest partition on the new numbers which is noncrossing w.r.t. all numbers.
3) Forget the original partition.

5

Promotion

- Toggling t_{r} at root r :
add / remove r whenever possible
- Toggle along SE-diagonals from left to right

Theorem

Let \varnothing denote the above presented bijection between $N C(n)$ and $N N(n)$.
Then the following diagram commutes.

Denote by s_{i} the transposition ($i, i+1$).
A coxeter element c is a product of the $s_{1}, s_{2}, \ldots, s_{n}$ in some order.

$$
\begin{aligned}
\Leftrightarrow c & =\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots, a_{n}\right) \text { with } \\
& 1=a_{1}\left\langle a_{2}\left\langle\ldots\left\langle a_{k}=n\right\rangle \ldots\right\rangle a_{n} .\right.
\end{aligned}
$$

$c=s_{2} s_{1} s_{3} s_{6} s_{5} s_{4} s_{8} s_{7}=(134798652)$

Denote by s_{i} the transposition ($i, i+1$).
A coxeter element c is a product of the $s_{1}, s_{2}, \ldots, s_{n}$ in some order.

$$
\begin{aligned}
\Longleftrightarrow & c=\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots, a_{n}\right) \text { with } \\
1 & =a_{1}<a_{2}<\ldots<a_{k}=n>\ldots>a_{n} .
\end{aligned}
$$

$c=S_{2} S_{1} S_{3} S_{6} S_{5} S_{4} S_{8} S_{7}=\left(\begin{array}{llllll}1 & 3 & 4 & 7 & 9 & 8 \\ \hline\end{array}\right)$
c-Noncrossing 'partitions $\quad N C(n, c)$

- place integers a_{1}, \ldots, a_{n} on a circle,
- form polygons of integers in the same block,
- polygons are not allowed to cross.

Define Kreweras complement Kr_{c} "as before".

Denote by s_{i} the transposition ($i, i+1$).
A coxeter element c is a product of the $s_{1}, s_{2}, \ldots, s_{n}$ in some order.

$$
\begin{aligned}
\Longleftrightarrow & c=\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots, a_{n}\right) \text { with } \\
1 & =a_{1}<a_{2}<\ldots<a_{k}=n>\ldots>a_{n} .
\end{aligned}
$$

$$
c=s_{2} s_{1} s_{3} s_{6} s_{5} s_{4} s_{8} s_{7}=\left(\begin{array}{llll}
1 & 3 & 4 & 98652
\end{array}\right)
$$

c-Noncrossing partitions $\quad N C(n, c)$

- place integers a_{1}, \ldots, a_{n} on a circle,
- form polygons of integers in the same block,
- polygons are not allowed to cross.

Define Kreweras complement Kr_{c} "as before".

$$
c \text {-Promotion } \rho_{c}
$$

- Each coxeter element c defines a linear order on the positive roots.
- We define the c-promotion ρ_{c} as toggling all roots w.r.t to this order.

Denote by s_{i} the transposition ($i, i+1$).
A coxeter element c is a product of the $s_{1}, s_{2}, \ldots, s_{n}$ in some order.

$$
\begin{aligned}
\Longleftrightarrow c & =\left(a_{1}, a_{2}, \ldots, a_{k}, \ldots, a_{n}\right) \text { with } \\
1 & =a_{1}<a_{2}<\ldots<a_{k}=n>\ldots>a_{n} .
\end{aligned}
$$

$c=s_{2} s_{1} s_{3} s_{6} S_{5} S_{4} S_{8} s_{7}=\left(\begin{array}{lllll}1 & 3 & 4 & 7 & 9652\end{array}\right)$

c-Noncrossing partitions $\quad N C(n, c)$

- place integers a_{1}, \ldots, a_{n} on a circle,
- form polygons of integers in the same block,
- polygons are not allowed to cross.

Define Kreweras complement $K r_{c}$ "as before".

c-Promotion ρ_{c}

- Each coxeter element c defines a linear order on the positive roots.
- We define the c-promotion ρ_{c} as toggling all roots w.r.t to this order.

Question:

Which map ϕ_{c} lets the following diagram commute?

Need to deal with crossings !

Outgoing set O : set of integers connected to a larger integer.
Incoming set 1 :
smaller integer.

$$
\begin{aligned}
& O=\{1,2,4,5,7\} \\
& I=\{4,6,7,8,9\}
\end{aligned}
$$

We can reconstruct the nc matching from O and I.

Need to deal with crossings !

Outgoing set O : set of integers connected to a larger integer. Incoming set 1 : smaller integer.

$$
\begin{aligned}
& O=\{1,2,4,5,7\} \\
& I=\{4,6,7,8,9\}
\end{aligned}
$$

We can reconstruct the nc matching from O and 1 .

Need to deal with crossings !

We mark a root (i, j) in the root poset (by \quad)
if (i, j) crosses $(i-1, j+1)$

Outgoing set O : set of integers connected to a larger integer. Incoming set 1 :

$$
\begin{aligned}
& O=\{1,2,4,5,7\} \\
& I=\{4,6,7,8,9\}
\end{aligned}
$$

We can reconstruct the nc matching from O and 1 .

Need to deal with crossings !

Outgoing set O : set of integers connected to a larger integer. Incoming set 1 :

$$
\begin{aligned}
& O=\{1,2,4,5,7\} \\
& I=\{4,6,7,8,9\}
\end{aligned}
$$

We can reconstruct the nc matching from O and 1 .

Need to deal with crossings!

> We mark a root (i, j) in the root poset $($ by $\square)$
> if (i, j) crosses $(i-1, j+1)$

Outgoing set O : set of integers connected to a larger integer. Incoming set 1 :

$$
\begin{aligned}
& O=\{1,2,4,5,7\} \\
& I=\{4,6,7,8,9\}
\end{aligned}
$$

We can reconstruct the nc matching from O and 1 .

Need to deal with crossings!

Idea: construct certain families of paths in the marked root lattice.

Consider families of kissing paths with the follwing forbidden local configurations:

- crossing of two paths in an unmarked root
- an up and down step of a path at a marked root without crossing another path

Consider families of kissing paths with the follwing forbidden local configurations:

- crossing of two paths in an unmarked root
- an up and down step of a path at a marked root without crossing another path

We call such a family of paths minimal, if:

- each unmarked root lies either on a path or above all paths,
- if a marked root is a peak of a path, then it is either part of another path, or there is no other path "above" it.

Consider families of kissing paths with the follwing forbidden local configurations:

- crossing of two paths in an unmarked root
- an up and down step of a path at a marked root without crossing another path

We call such a family of paths minimal, if:

- each unmarked root lies either on a path or above all paths,
- if a marked root is a peak of a path, then it is either part of another path, or there is no other path "above" it.

Theorem

The bijection ϕ_{c} is given by constructing the minimal family of kissing paths with starting points O and endpoints 1 .

Consider families of kissing paths with the follwing forbidden local configurations:

- crossing of two paths in an unmarked root
- an up and down step of a path at a marked root without crossing another path

We call such a family of paths minimal, if:

- each unmarked root lies either on a path or above all paths,
- if a marked root is a peak of a path, then it is either part of another path, or there is no other path "above" it.

Theorem

The bijection ϕ_{c} is given by constructing the minimal family of kissing paths with starting points O and endpoints 1 .

$$
\begin{aligned}
& O=\{1,2,4,5,7\} \\
& 1=\{4,6,7,8,9\}
\end{aligned}
$$

Consider families of kissing paths with the follwing forbidden local configurations:

- crossing of two paths in an unmarked root
- an up and down step of a path at a marked root without crossing another path

We call such a family of paths minimal, if:

- each unmarked root lies either on a path or above all paths,
- if a marked root is a peak of a path, then it is either part of another path, or there is no other path "above" it.

Theorem

The bijection ϕ_{c} is given by constructing the minimal family of kissing paths with starting points O and endpoints 1 .

$$
\begin{aligned}
& O=\{1,2,4,5,7\} \\
& I=\{4,6,7,8,9\}
\end{aligned}
$$

- Construct a parenthesis word.

Consider families of kissing paths with the follwing forbidden local configurations:

- crossing of two paths in an unmarked root
- an up and down step of a path at a marked root without crossing another path

We call such a family of paths minimal, if:

- each unmarked root lies either on a path or above all paths,
- if a marked root is a peak of a path, then it is either part of another path, or there is no other path "above" it.

Theorem

The bijection ϕ_{c} is given by constructing the minimal family of kissing paths with starting points O and endpoints 1 .

$$
\begin{aligned}
& O=\{1,2,4,5,7\} \\
& I=\{4,6,7,8,9\}
\end{aligned}
$$

- Construct a parenthesis word.
- "Replace" two neighbouring parenthesis ()
by a path, s.t. the resulting family is minimal.

Consider families of kissing paths with the follwing forbidden local configurations:

- crossing of two paths in an unmarked root
- an up and down step of a path at a marked root without crossing another path

We call such a family of paths minimal, if:

- each unmarked root lies either on a path or above all paths,
- if a marked root is a peak of a path, then it is either part of another path, or there is no other path "above" it.

Theorem

The bijection ϕ_{c} is given by constructing the minimal family of kissing paths with starting points O and endpoints 1 .

$$
\begin{aligned}
& O=\{1,2,4,5,7\} \\
& I=\{4,6,7,8,9\}
\end{aligned}
$$

- Construct a parenthesis word.
- "Replace" two neighbouring parenthesis ()
by a path, s.t. the resulting family is minimal.

Consider families of kissing paths with the follwing forbidden local configurations:

- crossing of two paths in an unmarked root
- an up and down step of a path at a marked root without crossing another path

We call such a family of paths minimal, if:

- each unmarked root lies either on a path or above all paths,
- if a marked root is a peak of a path, then it is either part of another path, or there is no other path "above" it.

Theorem

The bijection ϕ_{c} is given by constructing the minimal family of kissing paths with starting points O and endpoints 1 .

$$
\begin{aligned}
& O=\{1,2,4,5,7\} \\
& I=\{4,6,7,8,9\}
\end{aligned}
$$

- Construct a parenthesis word.
- "Replace" two neighbouring parenthesis ()
by a path, s.t. the resulting family is minimal.

Consider families of kissing paths with the follwing forbidden local configurations:

- crossing of two paths in an unmarked root
- an up and down step of a path at a marked root without crossing another path

We call such a family of paths minimal, if:

- each unmarked root lies either on a path or above all paths,
- if a marked root is a peak of a path, then it is either part of another path, or there is no other path "above" it.

Theorem

The bijection ϕ_{c} is given by constructing the minimal family of kissing paths with starting points O and endpoints 1 .

$$
\begin{aligned}
& O=\{1,2,4,5,7\} \\
& I=\{4,6,7,8,9\}
\end{aligned}
$$

- Construct a parenthesis word.
- "Replace" two neighbouring parenthesis ()
by a path, s.t. the resulting family is minimal.

Consider families of kissing paths with the follwing forbidden local configurations:

- crossing of two paths in an unmarked root
- an up and down step of a path at a marked root without crossing another path

We call such a family of paths minimal, if:

- each unmarked root lies either on a path or above all paths,
- if a marked root is a peak of a path, then it is either part of another path, or there is no other path "above" it.

Theorem

The bijection ϕ_{c} is given by constructing the minimal family of kissing paths with starting points O and endpoints 1 .

$$
\begin{aligned}
& O=\{1,2,4,5,7\} \\
& I=\{4,6,7,8,9\}
\end{aligned}
$$

- Construct a parenthesis word.
- "Replace" two neighbouring parenthesis ()
by a path, s.t. the resulting family is minimal.

Consider families of kissing paths with the follwing forbidden local configurations:

- crossing of two paths in an unmarked root
- an up and down step of a path at a marked root without crossing another path

We call such a family of paths minimal, if:

- each unmarked root lies either on a path or above all paths,
- if a marked root is a peak of a path, then it is either part of another path, or there is no other path "above" it.

Theorem

The bijection ϕ_{c} is given by constructing the minimal family of kissing paths with starting points O and endpoints 1 .

$$
\begin{aligned}
& O=\{1,2,4,5,7\} \\
& I=\{4,6,7,8,9\}
\end{aligned}
$$

- Construct a parenthesis word.
- "Replace" two neighbouring parenthesis ()
by a path, s.t. the resulting family is minimal.

Consider families of kissing paths with the follwing forbidden local configurations:

- crossing of two paths in an unmarked root
- an up and down step of a path at a marked root without crossing another path

We call such a family of paths minimal, if:

- each unmarked root lies either on a path or above all paths,
- if a marked root is a peak of a path, then it is either part of another path, or there is no other path "above" it.

Theorem

The bijection ϕ_{c} is given by constructing the minimal family of kissing paths with starting points O and endpoints 1 .

$$
\begin{aligned}
& O=\{1,2,4,5,7\} \\
& 1=\{4,6,7,8,9\}
\end{aligned}
$$

- Construct a parenthesis word.
- "Replace" two neighbouring parenthesis ()

by a path, s.t. the resulting family is minimal.
- Take the order ideal of roots included / below a path.

Remark

- Marking / unmarking roots along the upper boundary of the poset does not change the bijection.

Remark

- Marking / unmarking roots along the upper boundary of the poset does not change the bijection.
- For each choice of marking the "interior" roots, we obtain a different bijection of the above kind.

Remark

- Marking / unmarking roots along the upper boundary of the poset does not change the bijection.
- For each choice of marking the "interior" roots, we obtain a different bijection of the above kind.
"Proof sketch"

Remark

- Marking / unmarking roots along the upper boundary of the poset does not change the bijection.
- For each choice of marking the "interior" roots, we obtain a different bijection of the above kind.

```
"Proof sketch"
```

1) Show that the above map is a bijection.

Remark

- Marking / unmarking roots along the upper boundary of the poset does not change the bijection.
- For each choice of marking the "interior" roots, we obtain a different bijection of the above kind.

"Proof sketch"

1) Show that the above map is a bijection.
2) For the commuting statement, we have the following strategy:

- We know that the theorem is true for $c=(12 \ldots n)$.

Remark

- Marking / unmarking roots along the upper boundary of the poset does not change the bijection.
- For each choice of marking the "interior" roots, we obtain a different bijection of the above kind.

"Proof sketch"

1) Show that the above map is a bijection.
2) For the commuting statement, we have the following strategy:

- We know that the theorem is true for $c=(12 \ldots n)$.
- We say that c^{\prime} is obtained from c by mutating at k, if k is a left-descent of c, i.e., $I\left(s_{k} c\right)<I(c)$,

$$
c^{\prime}=s_{k} c s_{k}
$$

Remark

- Marking / unmarking roots along the upper boundary of the poset does not change the bijection.
- For each choice of marking the "interior" roots, we obtain a different bijection of the above kind.

"Proof sketch"

1) Show that the above map is a bijection.
2) For the commuting statement, we have the following strategy:

- We know that the theorem is true for $c=(12 \ldots n)$.
- We say that c^{\prime} is obtained from c by mutating at k, if
k is a left-descent of c, i.e., $I\left(s_{k} c\right)<I(c)$,

$$
c^{\prime}=s_{k} c s_{k}
$$

Two coxeter elements are related by a sequence of mutations.
Show that if the theorem holds for c, then it also holds for c^{\prime} (Cambrian induction).

