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Generating series of permutations and matchings
1 [Representation theory of the symmetric group]

∑
θ

t|θ|
|θ|!

dim(θ)
sθ(p)sθ(q)sθ(r) =

∑
n≥0

tn
∑

λ,µ,ν⊢n

γλ
µ,ν

zλ
pλqµrν ,

sθ : the Schur function associated to the partition θ, expressed in the power-sum bases
p := (pi)i≥1;q := (qi)i≥1; r := (ri)i≥1.
zλ :=

|λ|!
|Cλ| .

γλ
µ,ν := |{(σ1, σ2) of type (µ, ν) such that σ1 · σ2 = σλ}|, where σλ is a fixed

permutation of type λ.

Proof:
▶ sθ(p) =

∑
λ⊢|θ|

χθ(λ)
zλ

pλ χθ: characters of the symmetric group.

▶ γλµ,ν =
∑

θ⊢n
|θ|!

dim(θ)zµzν
χθ(λ)χθ(µ)χθ(ν)

The coefficients γλ
µ,ν also count

maps on orientable surfaces
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A map on the torus



Generating series of permutations and matchings
2 Goulden-Jackson ’96 [Representation Theory of the Gelfand

pair (S2n,Bn)]

∑
θ

t|θ|
dim(2θ)

|2θ|!
Zθ(p)Zθ(q)Zθ(r) =

∑
n≥0

tn
∑

λ,µ,ν⊢n

γ̃λ
µ,ν

zλ2ℓ(λ)
pλqµrν ,

Zθ : the zonal polynomial associated to the partition θ,
γ̃λ
µ,ν = |{matchings δ of type (µ, ν) with respect to λ}| .

The coefficients γ̃λ
µ,ν also count maps on

general surfaces (orientable or not)
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A matching of size 8.

a generalization of permutations

bipartite matchings ←→ permutations
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A matching of size 8.

a generalization of permutations

bipartite matchings ←→ permutations

A map on the Klein bottle



Jack polynomials
We consider the following deformation of the Hall scalar product ⟨., .⟩b defined
on symmetric functions by

⟨pλ, pµ⟩b = δλµzλ(1 + b)ℓ(λ).

Definition
Jack polynomials of parameter 1 + b, denoted J

(b)
θ are defined as follows :

1 Triangularity and normalisation: if θ ⊢ n, then

J
(b)
θ =

∑
µ⊢n,µ≤θ

uθµmµ,

such that uθ[1n] = n!.
(dominance order µ ≤ θ : µ1 + µ2 + ...+ µi ≤ θ1 + θ2...+ θi ∀i)

2 Orthogonality: if θ ̸= ξ then ⟨J (b)
θ , J

(b)
ξ ⟩b = 0.

For b = 0 −→ Schur functions J
(0)
θ = |θ|!

dim(θ)sθ.

For b = 1 −→ Zonal polynomials J
(1)
θ = Zθ.
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The connection coefficients cλµ,ν

∑
θ∈Y

t|θ|

j
(1+b)
θ

J
(1+b)
θ (p)J

(1+b)
θ (q)J

(1+b)
θ (r) =

∑
n≥0

tn
∑

λ,µ,ν⊢n

cλµ,ν(b)

zλ(1 + b)ℓ(λ)
pλqµrν ,

b=0
cλµ,ν(0) = |{(σ1, σ2) of type (µ, ν) such that σ1 · σ2 = σλ}|

= |{bipartite matchings δ of type (µ, ν) with respect to λ}| .

σλ: fixed permutation of type λ.

b=1
cλµ,ν(1) = |{matchings δ of type (µ, ν) with respect to λ}| .
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Matching-Jack conjecture [Goulden and Jackson ’96]
An "algebraic" formulation
The coefficients cλµ,ν are polynomial in the parameter b with
non-negative integer coefficients.

A combinatorial formulation
For every λ ⊢ n there exists a statistic ϑλ on matchings with
non-negative integer values, such that:

ϑλ(δ) = 0 iff δ is a bipartite matching.
For every µ, ν ⊢ n

cλµ,ν(b) =
∑

matchings δ of type (µ, ν)
with respect to λ

bϑλ(δ).
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Partial results and main theorem

Definition of Jack polynomials + basic properties of power-sum
functions: the coefficients cλµ,ν are rational functions in b.

Theorem (Dołęga-Féray ’15, Duke Math J.)
The coefficients cλµ,ν are polynomial in b with rational coefficients.
Moreover, deg(cλµ,ν) ≤ rk(µ) + rk(ν)− rk(λ).

where rk(λ) := |λ| − ℓ(λ).

Main theorem (BD ’22)
The coefficients cλµ,ν are polynomial in b with integer coefficients.

+new proof of the polynomiality
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Starting point of the proof: Matching-Jack conjecture for
marginal coefficients cλµ,m
Fix λ, µ ⊢ n and m ≤ n. We define

Theorem (BD ’21)
For every λ ⊢ n there exists a statistic ϑλ with non-negative integer
values, such that:

ϑλ(δ) = 0 iff δ is a bipartite matching.
For every µ ⊢ n and m ≤ n

cλµ,m(b) =
∑

matchings δ of marginal type (µ,m)
with respect to λ

bϑλ(δ)

based on the work of Chapuy and Dołęga ’20 on the b-conjecture
Houcine Ben Dali Integrality in Matching-Jack 8 / 14

cλµ,m :=
∑

ℓ(ν)=m

cλµ,ν .



Scheme of the proof

Integrality for the marginal coefficients cλµ,m

Integrality for the coefficients cλµ,ν

The associativity property

1 The associativity property: a system of linear equations
relating cλµ,ν to cλµ,m

2 The Farahat-Higman algebra: This linear system is invertible
in Z.
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The associativity property and a system of linear equations
Jack polynomials orthogonality

=⇒
∑
κ⊢n

cλµ,κc
κ
ν,ρ =

∑
θ⊢n

cλθ,ρc
θ
µ,ν for λ, µ, ν, ρ ⊢ n ≥ 1.

Fix m ≤ n. Taking the sum over ρ of length m we get:∑
κ⊢n

cλµ,κ c
κ
ν,m =

∑
θ⊢n

cλθ,m cθµ,ν , λ, µ, ν ⊢ n and m ≤ n.

We prove by induction on the rank of κ that cλµ,κ has integer
coefficients for λ, µ ⊢ n :

We fix a rank r and two partitions λ and µ.

We choose (ν,m) in order to select partitions κ of rank ≤ r.

Recall:
deg(cκν,m) ≤ n−m+ rk(ν)− rk(κ).
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The associativity property and a system of linear
equations
We denote by T (n, r) the set of such pairs (ν,m):

T (n, r) := {(ν,m) such that rk(ν) + n−m = r and rk(ν) < r} .

For (ν,m) ∈ T (n, r):∑
rk(κ)=r

cλµ,κc
κ
ν,m{

→
{

top connection coefficients
independent from b

is a polynomial in b with integer coefficients.

=⇒ A linear system
{

cλµ,κ are the "unknowns".
cκν,m are the coefficients of the system.

Step 2: We prove that this linear system is invertible in Z using a
new connection with the the Farahat-Higman algebra.
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=⇒ cκν,m(b) = cκν,m(0)
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The Farahat Higman algebra
For ν ⊢ n

Cν =
∑

σ ∈ Sn
type(σ) = ν

σ ∈ Z (C[Sn]) .

{Cν ; ν ⊢ n} form a basis of Z (C[Sn]).

Recall:
Cν · Cρ =

∑
κ ⊢ n

rk(κ) ≤ rk(ν) + rk(ρ)

cκν,ρ(0)Cκ

We pass to the graded algebra Zn, spanned by {Cν ; ν ⊢ n} and in which the
multiplication is given by

Cν ∗ Cρ =
∑
κ ⊢ n

rk(κ)=rk(ν) + rk(ρ)

cκν,ρ(0)Cρ.

Z(r)
n : the vector space spanned by {Cν ; ν ⊢ n and rk(ν) = r}.
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The Farahat-Higman algebra
Fact: The marginal coefficients cκν,m encoding the linear system are structure
coefficients/change of basis coeffcients in Zn:

for (ν,m) ∈ T (n, r) and κ of rank r

cκν,m = [Cκ]Cν ∗
( ∑

ℓ(ρ)=m

Cρ
)

Theorem (BD ’21)
The family Cν ∗

(∑
ℓ(ρ)=m Cρ

)
for (ν,m) ∈ T (n, r) is a Z-spanning family of

Z(r)
n . By consequence, the system encoded by (cκν,m) is invertible in Z.

(Farahat-Higman) Stability by adding parts of size 1:
cκν,m = cκ∪1n

ν∪1n,m+n, for n ≥ 1

=⇒ we pass to the projective limit Z(r)
∞ := lim←−Z

(r)
n

(the graded Farahat-Higman algebra).

Use two other bases of Z(r)
n introduced by Farahat-

Higman and Matsumoto-Novak.
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Thank You!
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