Integrality in the Matching-Jack conjecture and the Farahat-Higman algebra

Houcine Ben Dali

Université de Lorraine, CNRS, IECL, France Université de Paris, CNRS, IRIF, France

88th Séminaire Lotharingien de Combinatoire, Strobl

September 5, 2022

• [Representation theory of the symmetric group]

$$\sum_{\theta} t^{|\theta|} \frac{|\theta|!}{\dim(\theta)} s_{\theta}(\mathbf{p}) s_{\theta}(\mathbf{q}) s_{\theta}(\mathbf{r}) = \sum_{n \geq 0} t^n \sum_{\lambda, \mu, \nu \vdash n} \frac{\gamma_{\mu, \nu}^{\lambda}}{z_{\lambda}} p_{\lambda} q_{\mu} r_{\nu},$$

 s_{θ} : the Schur function associated to the partition θ , expressed in the power-sum bases $\mathbf{p} := (p_i)_{i>1}$; $\mathbf{q} := (q_i)_{i>1}$; $\mathbf{r} := (r_i)_{i>1}$.

$$z_{\lambda} := \frac{|\lambda|!}{|\mathcal{C}_{\lambda}|}.$$

 $\gamma_{\mu,\nu}^{\lambda} := |\{(\sigma_1, \sigma_2) \text{ of type } (\mu, \nu) \text{ such that } \sigma_1 \cdot \sigma_2 = \sigma_{\lambda}\}|, \text{ where } \sigma_{\lambda} \text{ is a fixed permutation of type } \lambda.$

Representation theory of the symmetric group

$$\sum_{\theta} t^{|\theta|} \frac{|\theta|!}{\dim(\theta)} s_{\theta}(\mathbf{p}) s_{\theta}(\mathbf{q}) s_{\theta}(\mathbf{r}) = \sum_{n \geq 0} t^n \sum_{\lambda, \mu, \nu \vdash n} \frac{\gamma_{\mu, \nu}^{\lambda}}{z_{\lambda}} p_{\lambda} q_{\mu} r_{\nu},$$

 s_{θ} : the Schur function associated to the partition θ , expressed in the power-sum bases $\mathbf{p} := (p_i)_{i>1}; \mathbf{q} := (q_i)_{i>1}; \mathbf{r} := (r_i)_{i>1}.$

$$z_{\lambda} := \frac{|\lambda|!}{|\mathcal{C}_{\lambda}|}.$$

 $\gamma_{\mu,\nu}^{\lambda} := |\{(\sigma_1,\sigma_2) \text{ of type } (\mu,\nu) \text{ such that } \sigma_1 \cdot \sigma_2 = \sigma_{\lambda}\}|, \text{ where } \sigma_{\lambda} \text{ is a fixed}$ permutation of type λ .

Proof:

- ▶ $s_{\theta}(\mathbf{p}) = \sum_{\lambda \vdash |\theta|} \frac{\chi^{\theta}(\lambda)}{z_{\lambda}} p_{\lambda}$ χ^{θ} : characters of the symmetric group. ▶ $\gamma^{\lambda}_{\mu,\nu} = \sum_{\theta \vdash n} \frac{|\theta|!}{\dim(\theta)z_{\mu}z_{\nu}} \chi^{\theta}(\lambda) \chi^{\theta}(\mu) \chi^{\theta}(\nu)$

Representation theory of the symmetric group

$$\sum_{\theta} t^{|\theta|} \frac{|\theta|!}{\dim(\theta)} s_{\theta}(\mathbf{p}) s_{\theta}(\mathbf{q}) s_{\theta}(\mathbf{r}) = \sum_{n \geq 0} t^n \sum_{\lambda, \mu, \nu \vdash n} \frac{\gamma_{\mu, \nu}^{\lambda}}{z_{\lambda}} p_{\lambda} q_{\mu} r_{\nu},$$

 s_{θ} : the Schur function associated to the partition θ , expressed in the power-sum bases $\mathbf{p} := (p_i)_{i>1}; \mathbf{q} := (q_i)_{i>1}; \mathbf{r} := (r_i)_{i>1}.$

$$z_{\lambda} := \frac{|\lambda|!}{|\mathcal{C}_{\lambda}|}.$$

 $\gamma_{\mu,\nu}^{\lambda} := |\{(\sigma_1,\sigma_2) \text{ of type } (\mu,\nu) \text{ such that } \sigma_1 \cdot \sigma_2 = \sigma_{\lambda}\}|, \text{ where } \sigma_{\lambda} \text{ is a fixed}$ permutation of type λ .

Proof:

▶ $s_{\theta}(\mathbf{p}) = \sum_{\lambda \vdash |\theta|} \frac{\chi^{\theta}(\lambda)}{z_{\lambda}} p_{\lambda}$ χ^{θ} : characters of the symmetric group. ▶ $\gamma^{\lambda}_{\mu,\nu} = \sum_{\theta \vdash n} \frac{|\theta|!}{\dim(\theta) z_{\mu} z_{\nu}} \chi^{\theta}(\lambda) \chi^{\theta}(\mu) \chi^{\theta}(\nu)$

The coefficients $\gamma_{\mu\nu}^{\lambda}$ also count maps on orientable surfaces

A map on the torus

2 Goulden-Jackson '96 [Representation Theory of the Gelfand pair $(\mathfrak{S}_{2n}, \mathfrak{B}_n)$]

$$\sum_{\theta} t^{|\theta|} \frac{\dim(2\theta)}{|2\theta|!} \mathbf{Z}_{\theta}(\mathbf{p}) \mathbf{Z}_{\theta}(\mathbf{q}) \mathbf{Z}_{\theta}(\mathbf{r}) = \sum_{n \geq 0} t^{n} \sum_{\lambda, \mu, \nu \vdash n} \frac{\widetilde{\gamma}_{\mu, \nu}^{\lambda}}{z_{\lambda} 2^{\ell(\lambda)}} p_{\lambda} q_{\mu} r_{\nu},$$

 Z_{θ} : the zonal polynomial associated to the partition θ , $\widetilde{\gamma}_{\mu,\nu}^{\lambda} = |\{\text{matchings } \delta \text{ of type } (\mu,\nu) \text{ with respect to } \lambda\}|$.

2 Goulden-Jackson '96 [Representation Theory of the Gelfand pair $(\mathfrak{S}_{2n}, \mathfrak{B}_n)$]

$$\sum_{\theta} t^{|\theta|} \frac{\dim(2\theta)}{|2\theta|!} \mathbf{Z}_{\theta}(\mathbf{p}) \mathbf{Z}_{\theta}(\mathbf{q}) \mathbf{Z}_{\theta}(\mathbf{r}) = \sum_{n \geq 0} t^n \sum_{\lambda, \mu, \nu \vdash n} \frac{\widetilde{\gamma}_{\mu, \nu}^{\lambda}}{z_{\lambda} 2^{\ell(\lambda)}} p_{\lambda} q_{\mu} r_{\nu},$$

 Z_{θ} : the zonal polynomial associated to the partition θ , $\widetilde{\gamma}_{\mu,\nu}^{\lambda} = |\{\text{matchings } \delta \text{ of type } (\mu,\nu) \text{ with respect to } \lambda\}|$.

A matching of size 8.

② Goulden-Jackson '96 [Representation Theory of the Gelfand pair $(\mathfrak{S}_{2n}, \mathfrak{B}_n)$]

$$\sum_{\theta} t^{|\theta|} \frac{\dim(2\theta)}{|2\theta|!} \mathbf{Z}_{\theta}(\mathbf{p}) \mathbf{Z}_{\theta}(\mathbf{q}) \mathbf{Z}_{\theta}(\mathbf{r}) = \sum_{n \geq 0} t^n \sum_{\lambda, \mu, \nu \vdash n} \frac{\widetilde{\gamma}_{\mu, \nu}^{\lambda}}{z_{\lambda} 2^{\ell(\lambda)}} p_{\lambda} q_{\mu} r_{\nu},$$

 Z_{θ} : the zonal polynomial associated to the partition θ , $\widetilde{\gamma}_{\mu,\nu}^{\lambda} = |\{\text{matchings } \delta \text{ of type } (\mu,\nu) \text{ with respect to } \lambda\}|$.

A matching of size 8.

The coefficients $\widetilde{\gamma}_{\mu,\nu}^{\lambda}$ also count maps on general surfaces (orientable or not)

A map on the Klein bottle

Jack polynomials

We consider the following deformation of the Hall scalar product $\langle .,. \rangle_b$ defined on symmetric functions by $\langle p_{\lambda}, p_{\mu} \rangle_b = \delta_{\lambda \mu} z_{\lambda} (1+b)^{\ell(\lambda)}$.

Definition

Jack polynomials of parameter 1+b, denoted $J_{\theta}^{(b)}$ are defined as follows:

1 Triangularity and normalisation: if $\theta \vdash n$, then

$$J_{\theta}^{(b)} = \sum_{\mu \vdash n, \mu \le \theta} u_{\theta\mu} m_{\mu},$$

such that $u_{\theta[1^n]} = n!$. (dominance order $\mu \leq \theta : \mu_1 + \mu_2 + ... + \mu_i \leq \theta_1 + \theta_2 ... + \theta_i \ \forall i$)

② Orthogonality: if $\theta \neq \xi$ then $\langle J_{\theta}^{(b)}, J_{\xi}^{(b)} \rangle_b = 0$.

Jack polynomials

We consider the following deformation of the Hall scalar product $\langle .,. \rangle_b$ defined on symmetric functions by $\langle p_{\lambda}, p_{\mu} \rangle_b = \delta_{\lambda \mu} z_{\lambda} (1+b)^{\ell(\lambda)}$.

Definition

Jack polynomials of parameter 1+b, denoted $J_{\theta}^{(b)}$ are defined as follows :

1 Triangularity and normalisation: if $\theta \vdash n$, then

$$J_{\theta}^{(b)} = \sum_{\mu \vdash n, \mu \le \theta} u_{\theta\mu} m_{\mu},$$

such that $u_{\theta[1^n]} = n!$. (dominance order $\mu \leq \theta : \mu_1 + \mu_2 + ... + \mu_i \leq \theta_1 + \theta_2 ... + \theta_i \ \forall i$)

- ② Orthogonality: if $\theta \neq \xi$ then $\langle J_{\theta}^{(b)}, J_{\xi}^{(b)} \rangle_b = 0$.
- For $b = 0 \longrightarrow \text{Schur functions } J_{\theta}^{(0)} = \frac{|\theta|!}{\dim(\theta)} s_{\theta}$.
- For $b = 1 \longrightarrow \text{Zonal polynomials } J_{\theta}^{(1)} = Z_{\theta}$.

The connection coefficients $c_{\mu,\nu}^{\lambda}$

$$\sum_{\theta \in \mathbb{Y}} \frac{t^{|\theta|}}{j_{\theta}^{(1+b)}} J_{\theta}^{(1+b)}(\mathbf{p}) J_{\theta}^{(1+b)}(\mathbf{q}) J_{\theta}^{(1+b)}(\mathbf{r}) = \sum_{n \geq 0} t^n \sum_{\lambda, \mu, \nu \vdash n} \frac{c_{\mu, \nu}^{\lambda}(b)}{z_{\lambda}(1+b)^{\ell(\lambda)}} p_{\lambda} q_{\mu} r_{\nu},$$

The connection coefficients $c_{\mu,\nu}^{\lambda}$

$$\sum_{\theta \in \mathbb{Y}} \frac{t^{|\theta|}}{j_{\theta}^{(1+b)}} J_{\theta}^{(1+b)}(\mathbf{p}) J_{\theta}^{(1+b)}(\mathbf{q}) J_{\theta}^{(1+b)}(\mathbf{r}) = \sum_{n \geq 0} t^n \sum_{\lambda,\mu,\nu \vdash n} \frac{c_{\mu,\nu}^{\lambda}(b)}{z_{\lambda}(1+b)^{\ell(\lambda)}} p_{\lambda} q_{\mu} r_{\nu},$$

$$b=0$$

$$\begin{split} c_{\mu,\nu}^{\lambda}(0) &= |\{(\sigma_1,\sigma_2) \text{ of type } (\mu,\nu) \text{ such that } \sigma_1 \cdot \sigma_2 = \sigma_{\lambda}\}| \\ &= |\{\text{bipartite matchings } \delta \text{ of type } (\mu,\nu) \text{ with respect to } \lambda\}|\,. \end{split}$$

 σ_{λ} : fixed permutation of type λ .

$$b=1$$

$$c_{\mu,\nu}^{\lambda}(1) = |\{\text{matchings } \delta \text{ of type } (\mu,\nu) \text{ with respect to } \lambda\}|$$
 .

Matching-Jack conjecture [Goulden and Jackson '96]

An "algebraic" formulation

The coefficients $c_{\mu,\nu}^{\lambda}$ are polynomial in the parameter b with non-negative integer coefficients.

Matching-Jack conjecture [Goulden and Jackson '96]

An "algebraic" formulation

The coefficients $c_{\mu,\nu}^{\lambda}$ are polynomial in the parameter b with non-negative integer coefficients.

A combinatorial formulation

For every $\lambda \vdash n$ there exists a statistic ϑ_{λ} on matchings with non-negative integer values, such that:

- $\vartheta_{\lambda}(\delta) = 0$ iff δ is a bipartite matching.
- For every $\mu, \nu \vdash n$

$$c_{\mu,\nu}^{\lambda}(b) = \sum_{\substack{\text{matchings } \delta \text{ of type } (\mu,\nu) \\ \text{with respect to } \lambda}} b^{\vartheta_{\lambda}(\delta)}.$$

Partial results and main theorem

Definition of Jack polynomials + basic properties of power-sum functions: the coefficients $c_{\mu,\nu}^{\lambda}$ are rational functions in b.

Partial results and main theorem

Definition of Jack polynomials + basic properties of power-sum functions: the coefficients $c_{\mu,\nu}^{\lambda}$ are rational functions in b.

Theorem (Dołęga-Féray '15, Duke Math J.)

The coefficients $c_{\mu,\nu}^{\lambda}$ are polynomial in b with rational coefficients. Moreover, $\deg(c_{\mu,\nu}^{\lambda}) \leq \operatorname{rk}(\mu) + \operatorname{rk}(\nu) - \operatorname{rk}(\lambda)$.

where $\operatorname{rk}(\lambda) := |\lambda| - \ell(\lambda)$.

Partial results and main theorem

Definition of Jack polynomials + basic properties of power-sum functions: the coefficients $c_{\mu,\nu}^{\lambda}$ are rational functions in b.

Theorem (Dołęga-Féray '15, Duke Math J.)

The coefficients $c_{\mu,\nu}^{\lambda}$ are polynomial in b with rational coefficients. Moreover, $\deg(c_{\mu,\nu}^{\lambda}) \leq \operatorname{rk}(\mu) + \operatorname{rk}(\nu) - \operatorname{rk}(\lambda)$.

where $\operatorname{rk}(\lambda) := |\lambda| - \ell(\lambda)$.

Main theorem (BD '22)

The coefficients $c_{\mu,\nu}^{\lambda}$ are polynomial in b with integer coefficients.

+new proof of the polynomiality

Starting point of the proof: Matching-Jack conjecture for marginal coefficients $\overline{c}_{n,m}^{\lambda}$

Fix $\lambda, \mu \vdash n$ and $m \leq n$. We define

$$\overline{c}_{\mu,m}^{\lambda} := \sum_{\ell(\nu)=m} c_{\mu,\nu}^{\lambda}.$$

Theorem (BD '21)

For every $\lambda \vdash n$ there exists a statistic ϑ_{λ} with non-negative integer values, such that:

- $\vartheta_{\lambda}(\delta) = 0$ iff δ is a bipartite matching.
- For every $\mu \vdash n$ and $m \leq n$

$$\overline{c}_{\mu,m}^{\lambda}(b) = \sum_{\substack{\text{matchings } \delta \text{ of marginal type } (\mu,m) \\ \text{with respect to } \lambda}} b^{\vartheta_{\lambda}(\delta)}$$

based on the work of Chapuy and Dołęga '20 on the b-conjecture

Scheme of the proof

Integrality for the marginal coefficients $\overline{c}_{\mu,m}^{\lambda}$ The associativity property

Integrality for the coefficients $c_{\mu,\nu}^{\lambda}$

• The associativity property: a system of linear equations relating $c_{\mu,\nu}^{\lambda}$ to $\overline{c}_{\mu,m}^{\lambda}$

Scheme of the proof

Integrality for the marginal coefficients $\overline{c}_{\mu,m}^{\lambda}$

The associativity property

The Farahat-Higman algebra

Integrality for the coefficients $c_{\mu,\nu}^{\lambda}$

- The associativity property: a system of linear equations relating $c_{\mu,\nu}^{\lambda}$ to $\overline{c}_{\mu,m}^{\lambda}$
- ② The Farahat-Higman algebra: This linear system is invertible in \mathbb{Z} .

The associativity property and a system of linear equations Jack polynomials orthogonality

$$\Longrightarrow \sum_{\kappa \vdash n} c_{\mu,\kappa}^{\lambda} c_{\nu,\rho}^{\kappa} = \sum_{\theta \vdash n} c_{\theta,\rho}^{\lambda} c_{\mu,\nu}^{\theta} \qquad \text{for } \lambda,\mu,\nu,\rho \vdash n \geq 1.$$

The associativity property and a system of linear equations Jack polynomials orthogonality

$$\Longrightarrow \sum_{\kappa \vdash n} c_{\mu,\kappa}^{\lambda} c_{\nu,\rho}^{\kappa} = \sum_{\theta \vdash n} c_{\theta,\rho}^{\lambda} c_{\mu,\nu}^{\theta} \qquad \text{for } \lambda,\mu,\nu,\rho \vdash n \geq 1.$$

Combinatorial interpretation for b = 0: Fix σ_{λ} of type λ . Two ways to enumerate the decompositions $\sigma_{\lambda} = \sigma_1 \cdot \sigma_2 \cdot \sigma_3$ of type (μ, ν, ρ) :

$$\sigma_{\lambda} = \sigma_1 \cdot \underbrace{(\sigma_2 \cdot \sigma_3)}_{\text{of type } \kappa} = \underbrace{(\sigma_1 \cdot \sigma_2)}_{\text{of type } \theta} \cdot \sigma_3$$

The associativity property and a system of linear equations Jack polynomials orthogonality

$$\Longrightarrow \sum_{\kappa \vdash n} c_{\mu,\kappa}^{\lambda} c_{\nu,\rho}^{\kappa} = \sum_{\theta \vdash n} c_{\theta,\rho}^{\lambda} c_{\mu,\nu}^{\theta} \qquad \text{for } \lambda,\mu,\nu,\rho \vdash n \geq 1.$$

Fix $m \leq n$. Taking the sum over ρ of length m we get:

$$\sum_{\kappa \vdash n} c_{\mu,\kappa}^{\lambda} \, \overline{c}_{\nu,m}^{\kappa} = \sum_{\theta \vdash n} \overline{c}_{\theta,m}^{\lambda} \, c_{\mu,\nu}^{\theta}, \quad \ \lambda,\mu,\nu \vdash n \text{ and } m \leq n.$$

The associativity property and a system of linear equations Jack polynomials orthogonality

$$\Longrightarrow \sum_{\kappa \vdash n} c_{\mu,\kappa}^{\lambda} c_{\nu,\rho}^{\kappa} = \sum_{\theta \vdash n} c_{\theta,\rho}^{\lambda} c_{\mu,\nu}^{\theta} \qquad \text{for } \lambda,\mu,\nu,\rho \vdash n \geq 1.$$

Fix $m \leq n$. Taking the sum over ρ of length m we get:

$$\sum_{\kappa \vdash n} c_{\mu,\kappa}^{\lambda} \, \overline{c}_{\nu,m}^{\kappa} = \sum_{\theta \vdash n} \overline{c}_{\theta,m}^{\lambda} \, c_{\mu,\nu}^{\theta}, \quad \ \, \lambda,\mu,\nu \vdash n \text{ and } m \leq n.$$

We prove by induction on the rank of κ that $c_{\mu,\kappa}^{\lambda}$ has integer coefficients for $\lambda, \mu \vdash n$:

- We fix a rank r and two partitions λ and μ .
- We choose (ν, m) in order to select partitions κ of rank $\leq r$.

The associativity property and a system of linear equations Jack polynomials orthogonality

$$\Longrightarrow \sum_{\kappa \vdash n} c_{\mu,\kappa}^{\lambda} c_{\nu,\rho}^{\kappa} = \sum_{\theta \vdash n} c_{\theta,\rho}^{\lambda} c_{\mu,\nu}^{\theta} \qquad \text{for } \lambda,\mu,\nu,\rho \vdash n \geq 1.$$

Fix $m \leq n$. Taking the sum over ρ of length m we get:

$$\sum_{\kappa \vdash n} c_{\mu,\kappa}^{\lambda} \, \overline{c}_{\nu,m}^{\kappa} = \sum_{\theta \vdash n} \overline{c}_{\theta,m}^{\lambda} \, c_{\mu,\nu}^{\theta}, \quad \ \, \lambda,\mu,\nu \vdash n \text{ and } m \leq n.$$

We prove by induction on the rank of κ that $c_{\mu,\kappa}^{\lambda}$ has integer coefficients for $\lambda, \mu \vdash n$:

- We fix a rank r and two partitions λ and μ .
- We choose (ν, m) in order to select partitions κ of rank $\leq r$.

Recall:

$$\deg(\overline{c}_{\nu,m}^{\kappa}) \le n - m + \operatorname{rk}(\nu) - \operatorname{rk}(\kappa).$$

We denote by $\mathcal{T}(n,r)$ the set of such pairs (ν,m) : $\mathcal{T}(n,r) := \{(\nu,m) \text{ such that } \mathrm{rk}(\nu) + n - m = r \text{ and } \mathrm{rk}(\nu) < r\}.$ For $(\nu,m) \in \mathcal{T}(n,r)$: $\sum_{\mathrm{rk}(\kappa)=r} c_{\mu,\kappa}^{\lambda} \overline{c}_{\nu,m}^{\kappa} \text{ is a polynomial in } b \text{ with integer coefficients.}$ $\left\{ \begin{array}{c} \text{top connection coefficients} \\ \text{independent from } b \end{array} \right.$

11 / 14

We denote by $\mathcal{T}(n,r)$ the set of such pairs (ν,m) : $\mathcal{T}(n,r) := \{(\nu,m) \text{ such that } \mathrm{rk}(\nu) + n - m = r \text{ and } \mathrm{rk}(\nu) < r\}.$ For $(\nu, m) \in \mathcal{T}(n, r)$: $\sum_{\mathrm{rk}(\kappa)=r} c_{\mu,\kappa}^{\lambda} \overline{c}_{\nu,m}^{\kappa} \text{ is a polynomial in } b \text{ with integer coefficients.}$ $\left\{ \begin{array}{c} \text{top connection coefficients} \\ \text{independent from } b \end{array} \right.$ \Longrightarrow A linear system $\left\{\begin{array}{l} c_{\mu,\kappa}^{\lambda} \text{ are the "unknowns".} \\ \overline{c}_{\nu,m}^{\kappa} \text{ are the coefficients of the system.} \end{array}\right.$

We denote by $\mathcal{T}(n,r)$ the set of such pairs (ν,m) : $\mathcal{T}(n,r) := \{(\nu,m) \text{ such that } \mathrm{rk}(\nu) + n - m = r \text{ and } \mathrm{rk}(\nu) < r\}.$ For $(\nu, m) \in \mathcal{T}(n, r)$: $\sum_{\mathrm{rk}(\kappa)=r} c_{\mu,\kappa}^{\lambda} \overline{c}_{\nu,m}^{\kappa} \text{ is a polynomial in } b \text{ with integer coefficients.}$ $\begin{cases} \text{ top connection coefficients} \\ \text{ independent from } b \Longrightarrow \overline{c}_{\nu,m}^{\kappa}(b) = \overline{c}_{\nu,m}^{\kappa}(0) \end{cases}$ \Longrightarrow A linear system $\left\{\begin{array}{l} c_{\mu,\kappa}^{\lambda} \text{ are the "unknowns".} \\ \overline{c}_{\nu,m}^{\kappa} \end{array}\right.$ are the coefficients of the system.

We denote by $\mathcal{T}(n,r)$ the set of such pairs (ν,m) : $\mathcal{T}(n,r) := \{(\nu,m) \text{ such that } \mathrm{rk}(\nu) + n - m = r \text{ and } \mathrm{rk}(\nu) < r\}.$ For $(\nu,m) \in \mathcal{T}(n,r)$: $\sum_{\mathrm{rk}(\kappa)=r} c_{\mu,\kappa}^{\lambda} \overline{c}_{\nu,m}^{\kappa} \text{ is a polynomial in } b \text{ with integer coefficients.}$ $\bigoplus_{\mathrm{rk}(\kappa)=r} \{ \text{ top connection coefficients} \}$ independent from $b \Longrightarrow \overline{c}_{\nu,m}^{\kappa}(b) = \overline{c}_{\nu,m}^{\kappa}(0)$

 $\Longrightarrow \text{A linear system } \left\{ \begin{array}{l} c_{\mu,\kappa}^{\lambda} \text{ are the "unknowns".} \\ \overline{c}_{\nu,\,m}^{\kappa} \text{ are the coefficients of the system.} \end{array} \right.$

Step 2: We prove that this linear system is invertible in \mathbb{Z} using a new connection with the Farahat-Higman algebra.

For $\nu \vdash n$

$$C_{\nu} = \sum_{\substack{\sigma \in \mathfrak{S}_n \\ type(\sigma) = \nu}} \sigma \quad \in Z\left(\mathbb{C}[\mathfrak{S}_n]\right).$$

 $\{C_{\nu}; \nu \vdash n\}$ form a basis of $Z(\mathbb{C}[\mathfrak{S}_n])$.

For $\nu \vdash n$

$$C_{\nu} = \sum_{\substack{\sigma \in \mathfrak{S}_n \\ type(\sigma) = \nu}} \sigma \quad \in Z\left(\mathbb{C}[\mathfrak{S}_n]\right).$$

 $\{C_{\nu}; \nu \vdash n\}$ form a basis of $Z(\mathbb{C}[\mathfrak{S}_n])$.

Recall:

$$C_{\nu} \cdot C_{\rho} = \sum_{\substack{\kappa \vdash n \\ \operatorname{rk}(\kappa) \leq \operatorname{rk}(\nu) + \operatorname{rk}(\rho)}} c_{\nu,\rho}^{\kappa}(0) C_{\kappa}$$

For $\nu \vdash n$

$$C_{\nu} = \sum_{\substack{\sigma \in \mathfrak{S}_n \\ type(\sigma) = \nu}} \sigma \quad \in Z\left(\mathbb{C}[\mathfrak{S}_n]\right).$$

 $\{C_{\nu}; \nu \vdash n\}$ form a basis of $Z(\mathbb{C}[\mathfrak{S}_n])$.

Recall:

$$C_{\nu} \cdot C_{\rho} = \sum_{\substack{\kappa \vdash n \\ \operatorname{rk}(\kappa) \leq \operatorname{rk}(\nu) + \operatorname{rk}(\rho)}} c_{\nu,\rho}^{\kappa}(0) C_{\kappa}$$

We pass to the graded algebra \mathcal{Z}_n , spanned by $\{C_{\nu}; \nu \vdash n\}$ and in which the multiplication is given by

$$C_{\nu} * C_{\rho} = \sum_{\substack{\kappa \vdash n \\ \operatorname{rk}(\kappa) = \operatorname{rk}(\nu) + \operatorname{rk}(\rho)}} c_{\nu,\rho}^{\kappa}(0) C_{\rho}.$$

 $\mathcal{Z}_n^{(r)}$: the vector space spanned by $\{\mathcal{C}_{\nu}; \nu \vdash n \text{ and } \mathrm{rk}(\nu) = r\}$.

Fact: The marginal coefficients $\overline{c}_{\nu,m}^{\kappa}$ encoding the linear system are structure coefficients/change of basis coefficients in \mathcal{Z}_n :

for $(\nu, m) \in \mathcal{T}(n, r)$ and κ of rank r

$$\overline{c}_{\nu,\,m}^{\kappa} = [\mathcal{C}_{\kappa}]\mathcal{C}_{\nu} * \left(\sum_{\ell(\rho)=m} \mathcal{C}_{\rho}\right)$$

Fact: The marginal coefficients $\overline{c}_{\nu,m}^{\kappa}$ encoding the linear system are structure coefficients/change of basis coefficients in \mathcal{Z}_n :

for $(\nu, m) \in \mathcal{T}(n, r)$ and κ of rank r

$$\overline{c}_{\nu,\,m}^{\kappa} = [\mathcal{C}_{\kappa}]\mathcal{C}_{\nu} * \left(\sum_{\ell(\rho)=m} \mathcal{C}_{\rho}\right)$$

Theorem (BD '21)

The family $C_{\nu} * \left(\sum_{\ell(\rho)=m} C_{\rho}\right)$ for $(\nu, m) \in \mathcal{T}(n, r)$ is a \mathbb{Z} -spanning family of $\mathcal{Z}_{n}^{(r)}$. By consequence, the system encoded by $(\overline{c}_{\nu,m}^{\kappa})$ is invertible in \mathbb{Z} .

Fact: The marginal coefficients $\overline{c}_{\nu,m}^{\kappa}$ encoding the linear system are structure coefficients/change of basis coefficients in \mathcal{Z}_n :

for $(\nu, m) \in \mathcal{T}(n, r)$ and κ of rank r

$$\overline{c}_{\nu,\,m}^{\kappa} = [\mathcal{C}_{\kappa}]\mathcal{C}_{\nu} * \Big(\sum_{\ell(\rho) = m} \mathcal{C}_{\rho}\Big)$$

Theorem (BD '21)

The family $C_{\nu} * \left(\sum_{\ell(\rho)=m} C_{\rho}\right)$ for $(\nu,m) \in \mathcal{T}(n,r)$ is a \mathbb{Z} -spanning family of $\mathcal{Z}_{n}^{(r)}$. By consequence, the system encoded by $(\overline{c}_{\nu,m}^{\kappa})$ is invertible in \mathbb{Z} .

• (Farahat-Higman) Stability by adding parts of size 1: $\overline{c}_{\nu,m}^{\kappa} = \overline{c}_{\nu \cup 1^{n},m+n}^{\kappa \cup 1^{n}}$, for $n \geq 1$ \Longrightarrow we pass to the projective limit $\mathcal{Z}_{\infty}^{(r)} := \varprojlim \mathcal{Z}_{n}^{(r)}$ (the graded Farahat-Higman algebra).

Fact: The marginal coefficients $\overline{c}_{\nu,m}^{\kappa}$ encoding the linear system are structure coefficients/change of basis coefficients in \mathcal{Z}_n :

for $(\nu, m) \in \mathcal{T}(n, r)$ and κ of rank r

$$\overline{c}_{\nu,\,m}^{\kappa} = [\mathcal{C}_{\kappa}]\mathcal{C}_{\nu} * \left(\sum_{\ell(\rho)=m} \mathcal{C}_{\rho}\right)$$

Theorem (BD '21)

The family $C_{\nu} * \left(\sum_{\ell(\rho)=m} C_{\rho}\right)$ for $(\nu,m) \in \mathcal{T}(n,r)$ is a \mathbb{Z} -spanning family of $\mathcal{Z}_{n}^{(r)}$. By consequence, the system encoded by $(\overline{c}_{\nu,m}^{\kappa})$ is invertible in \mathbb{Z} .

- (Farahat-Higman) Stability by adding parts of size 1: $\overline{c}_{\nu,m}^{\kappa} = \overline{c}_{\nu\cup 1^n,m+n}^{\kappa\cup 1^n}$, for $n \geq 1$ \Longrightarrow we pass to the projective limit $\mathcal{Z}_{\infty}^{(r)} := \varprojlim \mathcal{Z}_{n}^{(r)}$ (the graded Farahat-Higman algebra).
- Use two other bases of $\mathcal{Z}_n^{(r)}$ introduced by Farahat-Higman and Matsumoto-Novak.

Thank You!