Integrality in the Matching-Jack conjecture and the Farahat-Higman algebra

Houcine Ben Dali

Université de Lorraine, CNRS, IECL, France Université de Paris, CNRS, IRIF, France

88th Séminaire Lotharingien de Combinatoire, Strobl

September 5, 2022

Generating series of permutations and matchings

(1) [Representation theory of the symmetric group]

$$
\sum_{\theta} t^{|\theta|} \frac{|\theta|!}{\operatorname{dim}(\theta)} s_{\theta}(\mathbf{p}) s_{\theta}(\mathbf{q}) s_{\theta}(\mathbf{r})=\sum_{n \geq 0} t^{n} \sum_{\lambda, \mu, \nu \vdash n} \frac{\gamma_{\mu, \nu}^{\lambda}}{z_{\lambda}} p_{\lambda} q_{\mu} r_{\nu}
$$

s_{θ} : the Schur function associated to the partition θ, expressed in the power-sum bases $\mathbf{p}:=\left(p_{i}\right)_{i \geq 1} ; \mathbf{q}:=\left(q_{i}\right)_{i \geq 1} ; \mathbf{r}:=\left(r_{i}\right)_{i \geq 1}$.
$z_{\lambda}:=\frac{|\lambda|!}{\left|\mathcal{C}_{\lambda}\right|}$.
$\gamma_{\mu, \nu}^{\lambda}:=\mid\left\{\left(\sigma_{1}, \sigma_{2}\right)\right.$ of type (μ, ν) such that $\left.\sigma_{1} \cdot \sigma_{2}=\sigma_{\lambda}\right\} \mid$, where σ_{λ} is a fixed permutation of type λ.

Generating series of permutations and matchings

(1) [Representation theory of the symmetric group]

$$
\sum_{\theta} t^{|\theta|} \frac{|\theta|!}{\operatorname{dim}(\theta)} s_{\theta}(\mathbf{p}) s_{\theta}(\mathbf{q}) s_{\theta}(\mathbf{r})=\sum_{n \geq 0} t^{n} \sum_{\lambda, \mu, \nu \vdash n} \frac{\gamma_{\mu, \nu}^{\lambda}}{z_{\lambda}} p_{\lambda} q_{\mu} r_{\nu}
$$

s_{θ} : the Schur function associated to the partition θ, expressed in the power-sum bases $\mathbf{p}:=\left(p_{i}\right)_{i \geq 1} ; \mathbf{q}:=\left(q_{i}\right)_{i \geq 1} ; \mathbf{r}:=\left(r_{i}\right)_{i \geq 1}$.
$z_{\lambda}:=\frac{|\lambda|!}{\left|\mathcal{C}_{\lambda}\right|}$.
$\gamma_{\mu, \nu}^{\lambda}:=\mid\left\{\left(\sigma_{1}, \sigma_{2}\right)\right.$ of type (μ, ν) such that $\left.\sigma_{1} \cdot \sigma_{2}=\sigma_{\lambda}\right\} \mid$, where σ_{λ} is a fixed permutation of type λ.
Proof:

- $s_{\theta}(\mathbf{p})=\sum_{\lambda \vdash|\theta|} \frac{\chi^{\theta}(\lambda)}{z_{\lambda}} p_{\lambda} \quad \chi^{\theta}$: characters of the symmetric group.
- $\gamma_{\mu, \nu}^{\lambda}=\sum_{\theta \vdash n} \frac{|\theta|!}{\operatorname{dim}(\theta) z_{\mu} z_{\nu}} \chi^{\theta}(\lambda) \chi^{\theta}(\mu) \chi^{\theta}(\nu)$

Generating series of permutations and matchings

(1) [Representation theory of the symmetric group]

$$
\sum_{\theta} t^{|\theta|} \frac{|\theta|!}{\operatorname{dim}(\theta)} s_{\theta}(\mathbf{p}) s_{\theta}(\mathbf{q}) s_{\theta}(\mathbf{r})=\sum_{n \geq 0} t^{n} \sum_{\lambda, \mu, \nu \vdash n} \frac{\gamma_{\mu, \nu}^{\lambda}}{z_{\lambda}} p_{\lambda} q_{\mu} r_{\nu}
$$

s_{θ} : the Schur function associated to the partition θ, expressed in the power-sum bases $\mathbf{p}:=\left(p_{i}\right)_{i \geq 1} ; \mathbf{q}:=\left(q_{i}\right)_{i \geq 1} ; \mathbf{r}:=\left(r_{i}\right)_{i \geq 1}$.
$z_{\lambda}:=\frac{|\lambda|!}{\left|\mathcal{C}_{\lambda}\right|}$.
$\gamma_{\mu, \nu}^{\lambda}:=\mid\left\{\left(\sigma_{1}, \sigma_{2}\right)\right.$ of type (μ, ν) such that $\left.\sigma_{1} \cdot \sigma_{2}=\sigma_{\lambda}\right\} \mid$, where σ_{λ} is a fixed permutation of type λ.
Proof:

- $s_{\theta}(\mathbf{p})=\sum_{\lambda \vdash|\theta|} \frac{\chi^{\theta}(\lambda)}{z_{\lambda}} p_{\lambda} \quad \chi^{\theta}$: characters of the symmetric group.
- $\gamma_{\mu, \nu}^{\lambda}=\sum_{\theta \vdash n} \frac{|\theta|!}{\operatorname{dim}(\theta) z_{\mu} z_{\nu}} \chi^{\theta}(\lambda) \chi^{\theta}(\mu) \chi^{\theta}(\nu)$

The coefficients $\gamma_{\mu, \nu}^{\lambda}$ also count maps on orientable surfaces

A map on the torus

Generating series of permutations and matchings

(2) Goulden-Jackson '96 [Representation Theory of the Gelfand pair $\left(\mathfrak{S}_{2 n}, \mathfrak{B}_{n}\right)$]

$$
\sum_{\theta} t^{|\theta|} \frac{\operatorname{dim}(2 \theta)}{|2 \theta|!} Z_{\theta}(\mathbf{p}) Z_{\theta}(\mathbf{q}) Z_{\theta}(\mathbf{r})=\sum_{n \geq 0} t^{n} \sum_{\lambda, \mu, \nu \vdash n} \frac{\widetilde{\gamma}_{\mu, \nu}^{\lambda}}{z_{\lambda} \lambda^{\ell(\lambda)}} p_{\lambda} q_{\mu} r_{\nu},
$$

Z_{θ} : the zonal polynomial associated to the partition θ, $\widetilde{\gamma}_{\mu, \nu}^{\lambda}=\mid\{$ matchings δ of type (μ, ν) with respect to $\lambda\} \mid$.

Generating series of permutations and matchings

(2) Goulden-Jackson '96 [Representation Theory of the Gelfand pair $\left(\mathfrak{S}_{2 n}, \mathfrak{B}_{n}\right)$]

$$
\sum_{\theta} t^{|\theta|} \frac{\operatorname{dim}(2 \theta)}{|2 \theta|!} Z_{\theta}(\mathbf{p}) Z_{\theta}(\mathbf{q}) Z_{\theta}(\mathbf{r})=\sum_{n \geq 0} t^{n} \sum_{\lambda, \mu, \nu \vdash-n} \frac{\widetilde{\gamma}_{\mu, \nu}^{\lambda}}{z_{\lambda} e^{\ell(\lambda)}} p_{\lambda} q_{\mu} r_{\nu},
$$

Z_{θ} : the zonal polynomial associated to the partition θ, $\widetilde{\gamma}_{\mu, \nu}^{\lambda}=\mid\{$ matchings δ of type (μ, ν) with respect to $\lambda\} \mid$.

A matching of size 8 .

Generating series of permutations and matchings

(2) Goulden-Jackson '96 [Representation Theory of the Gelfand pair $\left(\mathfrak{S}_{2 n}, \mathfrak{B}_{n}\right)$]

$$
\sum_{\theta} t^{|\theta|} \frac{\operatorname{dim}(2 \theta)}{|2 \theta|!} Z_{\theta}(\mathbf{p}) Z_{\theta}(\mathbf{q}) Z_{\theta}(\mathbf{r})=\sum_{n \geq 0} t^{n} \sum_{\lambda, \mu, \nu \vdash n} \frac{\widetilde{\gamma}_{\mu, \nu}^{\lambda}}{z_{\lambda} 2^{\ell(\lambda)}} p_{\lambda} q_{\mu} r_{\nu}
$$

Z_{θ} : the zonal polynomial associated to the partition θ, $\widetilde{\gamma}_{\mu, \nu}^{\lambda}=\mid\{$ matchings δ of type (μ, ν) with respect to $\lambda\} \mid$.

$78 \quad$ a generalization of permutations

bipartite matchings \longleftrightarrow permutations

A matching of size 8 .
The coefficients $\widetilde{\gamma}_{\mu, \nu}^{\lambda}$ also count maps on general surfaces (orientable or not)

A map on the Klein bottle

Jack polynomials

We consider the following deformation of the Hall scalar product $\langle., .\rangle_{b}$ defined on symmetric functions by

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle_{b}=\delta_{\lambda \mu} z_{\lambda}(1+b)^{\ell(\lambda)}
$$

Definition

Jack polynomials of parameter $1+b$, denoted $J_{\theta}^{(b)}$ are defined as follows :
(1) Triangularity and normalisation: if $\theta \vdash n$, then

$$
J_{\theta}^{(b)}=\sum_{\mu \vdash n, \mu \leq \theta} u_{\theta \mu} m_{\mu}
$$

such that $u_{\theta\left[1^{n}\right]}=n!$.
(dominance order $\mu \leq \theta: \mu_{1}+\mu_{2}+\ldots+\mu_{i} \leq \theta_{1}+\theta_{2} \ldots+\theta_{i} \forall i$)
(2) Orthogonality: if $\theta \neq \xi$ then $\left\langle J_{\theta}^{(b)}, J_{\xi}^{(b)}\right\rangle_{b}=0$.

Jack polynomials

We consider the following deformation of the Hall scalar product $\langle., .\rangle_{b}$ defined on symmetric functions by

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle_{b}=\delta_{\lambda \mu} z_{\lambda}(1+b)^{\ell(\lambda)}
$$

Definition

Jack polynomials of parameter $1+b$, denoted $J_{\theta}^{(b)}$ are defined as follows :
(1) Triangularity and normalisation: if $\theta \vdash n$, then

$$
J_{\theta}^{(b)}=\sum_{\mu \vdash n, \mu \leq \theta} u_{\theta \mu} m_{\mu}
$$

such that $u_{\theta\left[1^{n}\right]}=n!$.
(dominance order $\mu \leq \theta: \mu_{1}+\mu_{2}+\ldots+\mu_{i} \leq \theta_{1}+\theta_{2} \ldots+\theta_{i} \forall i$)
(2) Orthogonality: if $\theta \neq \xi$ then $\left\langle J_{\theta}^{(b)}, J_{\xi}^{(b)}\right\rangle_{b}=0$.

- For $b=0 \longrightarrow$ Schur functions $J_{\theta}^{(0)}=\frac{|\theta|!}{\operatorname{dim}(\theta)} s_{\theta}$.
- For $b=1 \longrightarrow$ Zonal polynomials $J_{\theta}^{(1)}=Z_{\theta}$.

The connection coefficients $c_{\mu, \nu}^{\lambda}$

$$
\sum_{\theta \in \mathbb{Y}} \frac{t^{|\theta|}}{j_{\theta}^{(1+b)}} J_{\theta}^{(1+b)}(\mathbf{p}) J_{\theta}^{(1+b)}(\mathbf{q}) J_{\theta}^{(1+b)}(\mathbf{r})=\sum_{n \geq 0} t^{n} \sum_{\lambda, \mu, \nu \vdash n} \frac{c_{\mu, \nu}^{\lambda}(b)}{z_{\lambda}(1+b)^{\ell(\lambda)}} p_{\lambda} q_{\mu} r_{\nu}
$$

The connection coefficients $c_{\mu, \nu}^{\lambda}$

$$
\sum_{\theta \in \mathbb{Y}} \frac{t^{|\theta|}}{j_{\theta}^{(1+b)}} J_{\theta}^{(1+b)}(\mathbf{p}) J_{\theta}^{(1+b)}(\mathbf{q}) J_{\theta}^{(1+b)}(\mathbf{r})=\sum_{n \geq 0} t^{n} \sum_{\lambda, \mu, \nu \vdash n} \frac{c_{\mu, \nu}^{\lambda}(b)}{z_{\lambda}(1+b)^{\ell(\lambda)}} p_{\lambda} q_{\mu} r_{\nu},
$$

$$
\mathrm{b}=0
$$

$$
c_{\mu, \nu}^{\lambda}(0)=\mid\left\{\left(\sigma_{1}, \sigma_{2}\right) \text { of type }(\mu, \nu) \text { such that } \sigma_{1} \cdot \sigma_{2}=\sigma_{\lambda}\right\} \mid
$$

$$
=\mid\{\text { bipartite matchings } \delta \text { of type }(\mu, \nu) \text { with respect to } \lambda\} \mid \text {. }
$$

σ_{λ} : fixed permutation of type λ.

$$
b=1
$$

$c_{\mu, \nu}^{\lambda}(1)=\mid\{$ matchings δ of type (μ, ν) with respect to $\lambda\} \mid$.

Matching-Jack conjecture [Goulden and Jackson '96]

An "algebraic" formulation
The coefficients $c_{\mu, \nu}^{\lambda}$ are polynomial in the parameter b with non-negative integer coefficients.

Matching-Jack conjecture [Goulden and Jackson '96]

An "algebraic" formulation
The coefficients $c_{\mu, \nu}^{\lambda}$ are polynomial in the parameter b with non-negative integer coefficients.

A combinatorial formulation

For every $\lambda \vdash n$ there exists a statistic ϑ_{λ} on matchings with non-negative integer values, such that:

- $\vartheta_{\lambda}(\delta)=0$ iff δ is a bipartite matching.
- For every $\mu, \nu \vdash n$

$$
c_{\mu, \nu}^{\lambda}(b)=\sum_{\substack{\text { matchings } \delta \text { of type }(\mu, \nu) \\ \text { with respect to } \lambda}} b^{\vartheta_{\lambda}(\delta)}
$$

Partial results and main theorem

Definition of Jack polynomials + basic properties of power-sum functions: the coefficients $c_{\mu, \nu}^{\lambda}$ are rational functions in b.

Partial results and main theorem

Definition of Jack polynomials + basic properties of power-sum functions: the coefficients $c_{\mu, \nu}^{\lambda}$ are rational functions in b.

Theorem (Dołęga-Féray '15, Duke Math J.)

The coefficients $c_{\mu, \nu}^{\lambda}$ are polynomial in b with rational coefficients. Moreover, $\operatorname{deg}\left(c_{\mu, \nu}^{\lambda}\right) \leq \operatorname{rk}(\mu)+\operatorname{rk}(\nu)-\operatorname{rk}(\lambda)$.
where $\operatorname{rk}(\lambda):=|\lambda|-\ell(\lambda)$.

Partial results and main theorem

Definition of Jack polynomials + basic properties of power-sum functions: the coefficients $c_{\mu, \nu}^{\lambda}$ are rational functions in b.

Theorem (Dołęga-Féray '15, Duke Math J.)

The coefficients $c_{\mu, \nu}^{\lambda}$ are polynomial in b with rational coefficients. Moreover, $\operatorname{deg}\left(c_{\mu, \nu}^{\lambda}\right) \leq \operatorname{rk}(\mu)+\operatorname{rk}(\nu)-\operatorname{rk}(\lambda)$.
where $\operatorname{rk}(\lambda):=|\lambda|-\ell(\lambda)$.
Main theorem (BD '22)
The coefficients $c_{\mu, \nu}^{\lambda}$ are polynomial in b with integer coefficients.
+new proof of the polynomiality

Starting point of the proof: Matching-Jack conjecture for marginal coefficients $\bar{c}_{\mu, m}^{\lambda}$
Fix $\lambda, \mu \vdash n$ and $m \leq n$. We define

$$
\bar{c}_{\mu, m}^{\lambda}:=\sum_{\ell(\nu)=m} c_{\mu, \nu}^{\lambda} .
$$

Theorem (BD '21)

For every $\lambda \vdash n$ there exists a statistic ϑ_{λ} with non-negative integer values, such that:

- $\vartheta_{\lambda}(\delta)=0$ iff δ is a bipartite matching.
- For every $\mu \vdash n$ and $m \leq n$

$$
\bar{c}_{\mu, m}^{\lambda}(b)=\sum_{\text {matchings } \delta \text { of marginal type }(\mu, m)} b^{\vartheta_{\lambda}(\delta)}
$$

based on the work of Chapuy and Dołęga ' 20 on the b-conjecture

Scheme of the proof

Integrality for the marginal coefficients $\bar{c}_{\mu, m}^{\lambda}$

The associativity property

Integrality for the coefficients $c_{\mu, \nu}^{\lambda}$
(1) The associativity property: a system of linear equations relating $c_{\mu, \nu}^{\lambda}$ to $\bar{c}_{\mu, m}^{\lambda}$

Scheme of the proof

Integrality for the marginal coefficients $\bar{c}_{\mu, m}^{\lambda}$

The associativity property
The Farahat-Higman algebra
Integrality for the coefficients $c_{\mu, \nu}^{\lambda}$
(1) The associativity property: a system of linear equations relating $c_{\mu, \nu}^{\lambda}$ to $\bar{c}_{\mu, m}^{\lambda}$
(2) The Farahat-Higman algebra: This linear system is invertible in \mathbb{Z}.

The associativity property and a system of linear equations Jack polynomials orthogonality

$$
\Longrightarrow \sum_{\kappa \vdash n} c_{\mu, \kappa}^{\lambda} c_{\nu, \rho}^{\kappa}=\sum_{\theta \vdash n} c_{\theta, \rho}^{\lambda} c_{\mu, \nu}^{\theta} \quad \text { for } \lambda, \mu, \nu, \rho \vdash n \geq 1 .
$$

The associativity property and a system of linear equations

 Jack polynomials orthogonality$$
\Longrightarrow \sum_{\kappa \vdash n} c_{\mu, \kappa}^{\lambda} c_{\nu, \rho}^{\kappa}=\sum_{\theta \vdash n} c_{\theta, \rho}^{\lambda} c_{\mu, \nu}^{\theta} \quad \text { for } \lambda, \mu, \nu, \rho \vdash n \geq 1
$$

Combinatorial interpretation for $b=0:$ Fix σ_{λ} of type λ. Two ways to enumerate the decompositions $\sigma_{\lambda}=\sigma_{1} \cdot \sigma_{2} \cdot \sigma_{3}$ of type (μ, ν, ρ) :

$$
\sigma_{\lambda}=\sigma_{1} \cdot \underbrace{\left(\sigma_{2} \cdot \sigma_{3}\right)}_{\text {of type } \kappa}=\underbrace{\left(\sigma_{1} \cdot \sigma_{2}\right)}_{\text {of type } \theta} \cdot \sigma_{3}
$$

The associativity property and a system of linear equations

 Jack polynomials orthogonality$$
\Longrightarrow \sum_{\kappa \vdash n} c_{\mu, \kappa}^{\lambda} c_{\nu, \rho}^{\kappa}=\sum_{\theta \vdash n} c_{\theta, \rho}^{\lambda} c_{\mu, \nu}^{\theta} \quad \text { for } \lambda, \mu, \nu, \rho \vdash n \geq 1
$$

Fix $m \leq n$. Taking the sum over ρ of length m we get:

$$
\sum_{\kappa \vdash n} c_{\mu, \kappa}^{\lambda} \bar{c}_{\nu, m}^{\kappa}=\sum_{\theta \vdash n} \bar{c}_{\theta, m}^{\lambda} c_{\mu, \nu}^{\theta}, \quad \lambda, \mu, \nu \vdash n \text { and } m \leq n .
$$

The associativity property and a system of linear equations Jack polynomials orthogonality

$$
\Longrightarrow \sum_{\kappa \vdash n} c_{\mu, \kappa}^{\lambda} \kappa_{\nu, \rho}^{\kappa}=\sum_{\theta \vdash n} c_{\theta, \rho}^{\lambda} c_{\mu, \nu}^{\theta} \quad \text { for } \lambda, \mu, \nu, \rho \vdash n \geq 1 \text {. }
$$

Fix $m \leq n$. Taking the sum over ρ of length m we get:

$$
\sum_{\kappa \vdash n} c_{\mu, \kappa}^{\lambda} \bar{c}_{\nu, m}^{\kappa}=\sum_{\theta \vdash n} \bar{c}_{\theta, m}^{\lambda} c_{\mu, \nu}^{\theta}, \quad \lambda, \mu, \nu \vdash n \text { and } m \leq n .
$$

We prove by induction on the rank of κ that $c_{\mu, \kappa}^{\lambda}$ has integer coefficients for $\lambda, \mu \vdash n$:

- We fix a rank r and two partitions λ and μ.
- We choose (ν, m) in order to select partitions κ of rank $\leq \mathrm{r}$.

The associativity property and a system of linear equations Jack polynomials orthogonality

$$
\Longrightarrow \sum_{\kappa \vdash n} c_{\mu, \kappa}^{\lambda} \kappa_{\nu, \rho}^{\kappa}=\sum_{\theta \vdash n} c_{\theta, \rho}^{\lambda} c_{\mu, \nu}^{\theta} \quad \text { for } \lambda, \mu, \nu, \rho \vdash n \geq 1 \text {. }
$$

Fix $m \leq n$. Taking the sum over ρ of length m we get:

$$
\sum_{\kappa \vdash n} c_{\mu, \kappa}^{\lambda} \bar{c}_{\nu, m}^{\kappa}=\sum_{\theta \vdash n} \bar{c}_{\theta, m}^{\lambda} c_{\mu, \nu}^{\theta}, \quad \lambda, \mu, \nu \vdash n \text { and } m \leq n
$$

We prove by induction on the rank of κ that $c_{\mu, \kappa}^{\lambda}$ has integer coefficients for $\lambda, \mu \vdash n$:

- We fix a rank r and two partitions λ and μ.
- We choose (ν, m) in order to select partitions κ of rank $\leq \mathrm{r}$.

Recall:

$\operatorname{deg}\left(\bar{c}_{\nu, m}^{\kappa}\right) \leq n-m+\operatorname{rk}(\nu)-\operatorname{rk}(\kappa)$.

The associativity property and a system of linear

 equationsWe denote by $\mathcal{T}(n, r)$ the set of such pairs (ν, m) :

$$
\mathcal{T}(n, r):=\{(\nu, m) \text { such that } \operatorname{rk}(\nu)+n-m=r \text { and } \operatorname{rk}(\nu)<r\} .
$$

For $(\nu, m) \in \mathcal{T}(n, r)$:

$$
\begin{gathered}
\sum_{\operatorname{rk}(\kappa)=r} c_{\mu, \kappa}^{\lambda} \underbrace{\square} \bar{c}_{\nu, m}^{\kappa} \text { is a polynomial in } b \text { with integer coefficients. } \\
\quad \begin{array}{l}
\text { top connection coefficients } \\
\text { independent from } b
\end{array}
\end{gathered}
$$

The associativity property and a system of linear

 equationsWe denote by $\mathcal{T}(n, r)$ the set of such pairs (ν, m) :

$$
\mathcal{T}(n, r):=\{(\nu, m) \text { such that } \operatorname{rk}(\nu)+n-m=r \text { and } \operatorname{rk}(\nu)<r\} .
$$

For $(\nu, m) \in \mathcal{T}(n, r)$:

$$
\begin{aligned}
& \sum_{\operatorname{rk}(\kappa)=r} c_{\mu, \kappa}^{\lambda} \underbrace{\square} \bar{c}_{\nu, m}^{\kappa} \text { is a polynomial in } b \text { with integer coefficients. } \\
& \rightarrow\left\{\begin{array}{l}
\text { top connection coefficients } \\
\text { independent from } b
\end{array}\right.
\end{aligned}
$$

\Longrightarrow A linear system $\left\{\begin{array}{l}c_{\mu, \kappa}^{\lambda} \text { are the "unknowns". } \\ \bar{c}_{\nu, m}^{\kappa}\end{array}\right.$ are the coefficients of the system.

The associativity property and a system of linear

 equationsWe denote by $\mathcal{T}(n, r)$ the set of such pairs (ν, m) :

$$
\mathcal{T}(n, r):=\{(\nu, m) \text { such that } \operatorname{rk}(\nu)+n-m=r \text { and } \operatorname{rk}(\nu)<r\} .
$$

For $(\nu, m) \in \mathcal{T}(n, r)$:

$$
\begin{aligned}
\sum_{\operatorname{rk}(\kappa)=r} c_{\mu, \kappa}^{\lambda} \underbrace{\bar{c}_{\nu, m}^{\kappa}} \text { is a polynomial in } b \text { with integer coefficients. } \\
\quad \rightarrow\left\{\begin{array}{l}
\text { top connection coefficients } \\
\text { independent from } b \Longrightarrow \bar{c}_{\nu, m}^{\kappa}(b)=\bar{c}_{\nu, m}^{\kappa}(0)
\end{array}\right.
\end{aligned}
$$

\Longrightarrow A linear system $\left\{\begin{array}{l}c_{\mu, \kappa}^{\lambda} \text { are the "unknowns". } \\ \bar{c}_{\nu, m}^{\kappa}\end{array}\right.$ are the coefficients of the system.

The associativity property and a system of linear

 equationsWe denote by $\mathcal{T}(n, r)$ the set of such pairs (ν, m) :

$$
\mathcal{T}(n, r):=\{(\nu, m) \text { such that } \operatorname{rk}(\nu)+n-m=r \text { and } \operatorname{rk}(\nu)<r\} .
$$

For $(\nu, m) \in \mathcal{T}(n, r)$:

$$
\begin{aligned}
\sum_{\operatorname{rk}(\kappa)=r} c_{\mu, \kappa}^{\lambda} \underbrace{\bar{c}_{\nu, m}^{\kappa}} \text { is a polynomial in } b \text { with integer coefficients. } \\
\xrightarrow{\longrightarrow}\left\{\begin{array}{l}
\text { top connection coefficients } \\
\text { independent from } b \Longrightarrow \bar{c}_{\nu, m}^{\kappa}(b)=\bar{c}_{\nu, m}^{\kappa}(0)
\end{array}\right.
\end{aligned}
$$

\Longrightarrow A linear system $\left\{\begin{array}{l}c_{\mu, \kappa}^{\lambda} \text { are the "unknowns". } \\ \bar{c}_{\nu, m}^{\kappa}\end{array}\right.$ are the coefficients of the system.
Step 2: We prove that this linear system is invertible in \mathbb{Z} using a new connection with the the Farahat-Higman algebra.

The Farahat Higman algebra

For $\nu \vdash n$

$$
\mathcal{C}_{\nu}=\sum_{\substack{\left.\sigma \in \mathfrak{S}_{n} \\ \text { type } \sigma\right)=\nu}} \sigma \in Z\left(\mathbb{C}\left[\mathfrak{S}_{n}\right]\right) .
$$

$\left\{\mathcal{C}_{\nu} ; \nu \vdash n\right\}$ form a basis of $Z\left(\mathbb{C}\left[\mathfrak{S}_{n}\right]\right)$.

The Farahat Higman algebra

For $\nu \vdash n$

$$
\mathcal{C}_{\nu}=\sum_{\substack{\left.\sigma \in \mathfrak{S}_{n} \\ \text { type(}\right)=\nu}} \sigma \quad \in Z\left(\mathbb{C}\left[\mathfrak{S}_{n}\right]\right) .
$$

$\left\{\mathcal{C}_{\nu} ; \nu \vdash n\right\}$ form a basis of $Z\left(\mathbb{C}\left[\mathfrak{S}_{n}\right]\right)$.
Recall:

$$
\mathcal{C}_{\nu} \cdot \mathcal{C}_{\rho}=\sum_{\substack{\kappa \vdash n \\ \operatorname{rk}(\kappa) \leq \operatorname{rk}(\nu)+\operatorname{rk}(\rho)}} c_{\nu, \rho}^{\kappa}(0) \mathcal{C}_{\kappa}
$$

The Farahat Higman algebra

For $\nu \vdash n$

$$
\mathcal{C}_{\nu}=\sum_{\substack{\left.\sigma \in \mathfrak{S}_{n} \\ \text { type } \sigma\right)=\nu}} \sigma \in Z\left(\mathbb{C}\left[\mathfrak{S}_{n}\right]\right) .
$$

$\left\{\mathcal{C}_{\nu} ; \nu \vdash n\right\}$ form a basis of $Z\left(\mathbb{C}\left[\mathfrak{S}_{n}\right]\right)$.
Recall:

$$
\mathcal{C}_{\nu} \cdot \mathcal{C}_{\rho}=\sum_{\substack{\kappa \vdash n \\ \operatorname{rk}(\kappa) \leq \operatorname{rk}(\nu)+\operatorname{rk}(\rho)}} c_{\nu, \rho}^{\kappa}(0) \mathcal{C}_{\kappa}
$$

We pass to the graded algebra \mathcal{Z}_{n}, spanned by $\left\{\mathcal{C}_{\nu} ; \nu \vdash n\right\}$ and in which the multiplication is given by

$$
\mathcal{C}_{\nu} * \mathcal{C}_{\rho}=\sum_{\substack{\kappa \vdash n \\ \operatorname{rkk}(\kappa)=\operatorname{rk}(\nu)+\operatorname{rk}(\rho)}} c_{\nu, \rho}^{\kappa}(0) \mathcal{C}_{\rho} .
$$

$\mathcal{Z}_{n}^{(r)}$: the vector space spanned by $\left\{\mathcal{C}_{\nu} ; \nu \vdash n\right.$ and $\left.\operatorname{rk}(\nu)=r\right\}$.

The Farahat-Higman algebra

Fact: The marginal coefficients $\bar{c}_{\nu, m}^{\kappa}$ encoding the linear system are structure coefficients/change of basis coeffcients in \mathcal{Z}_{n} :
for $(\nu, m) \in \mathcal{T}(n, r)$ and κ of rank r

$$
\bar{c}_{\nu, m}^{\kappa}=\left[\mathcal{C}_{\kappa}\right] \mathcal{C}_{\nu} *\left(\sum_{\ell(\rho)=m} \mathcal{C}_{\rho}\right)
$$

The Farahat-Higman algebra

Fact: The marginal coefficients $\bar{c}_{\nu, m}^{\kappa}$ encoding the linear system are structure coefficients/change of basis coeffcients in \mathcal{Z}_{n} :
for $(\nu, m) \in \mathcal{T}(n, r)$ and κ of $\operatorname{rank} r$

$$
\bar{c}_{\nu, m}^{\kappa}=\left[\mathcal{C}_{\kappa}\right] \mathcal{C}_{\nu} *\left(\sum_{\ell(\rho)=m} \mathcal{C}_{\rho}\right)
$$

Theorem (BD '21)

The family $\mathcal{C}_{\nu} *\left(\sum_{\ell(\rho)=m} \mathcal{C}_{\rho}\right)$ for $(\nu, m) \in \mathcal{T}(n, r)$ is a \mathbb{Z}-spanning family of $\mathcal{Z}_{n}^{(r)}$. By consequence, the system encoded by $\left(\bar{c}_{\nu, m}^{\kappa}\right)$ is invertible in \mathbb{Z}.

The Farahat-Higman algebra

Fact: The marginal coefficients $\bar{c}_{\nu, m}^{\kappa}$ encoding the linear system are structure coefficients/change of basis coeffcients in \mathcal{Z}_{n} :
for $(\nu, m) \in \mathcal{T}(n, r)$ and κ of $\operatorname{rank} r$

$$
\bar{c}_{\nu, m}^{\kappa}=\left[\mathcal{C}_{\kappa}\right] \mathcal{C}_{\nu} *\left(\sum_{\ell(\rho)=m} \mathcal{C}_{\rho}\right)
$$

Theorem (BD '21)

The family $\mathcal{C}_{\nu} *\left(\sum_{\ell(\rho)=m} \mathcal{C}_{\rho}\right)$ for $(\nu, m) \in \mathcal{T}(n, r)$ is a \mathbb{Z}-spanning family of $\mathcal{Z}_{n}^{(r)}$. By consequence, the system encoded by $\left(\bar{c}_{\nu, m}^{\kappa}\right)$ is invertible in \mathbb{Z}.

- (Farahat-Higman) Stability by adding parts of size 1:
$\bar{c}_{\nu, m}^{\kappa}=\bar{c}_{\nu \cup 1^{n}, m+n}^{\kappa \cup 1^{n}}$, for $n \geq 1$
\Longrightarrow we pass to the projective limit $\mathcal{Z}_{\infty}^{(r)}:=\lim _{\rightleftharpoons} \mathcal{Z}_{n}^{(r)}$
(the graded Farahat-Higman algebra).

The Farahat-Higman algebra

Fact: The marginal coefficients $\bar{c}_{\nu, m}^{\kappa}$ encoding the linear system are structure coefficients/change of basis coeffcients in \mathcal{Z}_{n} :
for $(\nu, m) \in \mathcal{T}(n, r)$ and κ of $\operatorname{rank} r$

$$
\bar{c}_{\nu, m}^{\kappa}=\left[\mathcal{C}_{\kappa}\right] \mathcal{C}_{\nu} *\left(\sum_{\ell(\rho)=m} \mathcal{C}_{\rho}\right)
$$

Theorem (BD '21)

The family $\mathcal{C}_{\nu} *\left(\sum_{\ell(\rho)=m} \mathcal{C}_{\rho}\right)$ for $(\nu, m) \in \mathcal{T}(n, r)$ is a \mathbb{Z}-spanning family of
$\mathcal{Z}_{n}^{(r)}$. By consequence, the system encoded by $\left(\bar{c}_{\nu, m}^{\kappa}\right)$ is invertible in \mathbb{Z}.

- (Farahat-Higman) Stability by adding parts of size 1:
$\bar{c}_{\nu, m}^{\kappa}=\bar{c}_{\nu \cup 1^{n}, m+n}^{\kappa \cup 1^{n}}$, for $n \geq 1$
\Longrightarrow we pass to the projective limit $\mathcal{Z}_{\infty}^{(r)}:=\lim _{\Longleftarrow} \mathcal{Z}_{n}^{(r)}$ (the graded Farahat-Higman algebra).
- Use two other bases of $\mathcal{Z}_{n}^{(r)}$ introduced by FarahatHigman and Matsumoto-Novak.

Thank You!

