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Set Partitions

For a finite set S the set-partitions of S , endowed with the
refinement order (π1 ≤ π2 if π1 is finer than π2) is a lattice PS .
It has a largest element 1S (the partition with one part) and a
smallest element 0S , whose parts have cardinal 1.
One has

|PS | = B|S|

where the Bn are the Bell numbers with exponential generating
function ∑ Bn

n!
zn = ee

z−1
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Every interval [π1, π2] is canonically isomorphic to a product lattice∏
i

PSi

where the number of terms in the product is the number of parts
of π2 and Si is the set of parts of π1 included in the i th part of π2.
The Möbius function on PS is given by

µ([π1, π2]) =
∏
i

(−1)|Si |−1(|Si | − 1)!
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Non-crossing Partitions

Let S = {1, 2, . . . , n} and π a set-partition of S . A crossing of π is
a quadruple (i , j , k , l) with

i < j < k < l

and
i ∼ k , j ∼ l

but i , j not in the same part of π. A partition is non-crossing if it
has no crossing.
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Example

{1, 4, 5} ∪ {2} ∪ {3} ∪ {6, 8} ∪ {7}

is non-crossing.
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NC (n) is the set of non-crossing partitions of {1, 2, . . . , n}. It is a
lattice for the refinement order with largest element 1n and
smallest element 0n.
One has

|NC (n)| = Cn (nth Catalan number)

Every interval [π1, π2] is canonically isomorphic to a product lattice∏
i

NC (ki )

where the number of terms in the product is the number of parts
of π2.
The Möbius function on NC (n) is given by

µ([π1, π2]) =
∏
i

(−1)ki−1Cki−1
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Interval partitions

I (n) is the set of interval partitions of {1, 2, . . . , n}, whose parts
are intervals [i , j ]. It is a lattice for the refinement order with
largest element 1n and smallest element 0n.
One has

|I (n)| = 2n−1

Every interval [π1, π2] is canonically isomorphic to a product lattice∏
i

I (ki )

where the number of terms in the product is the number of parts
of π2.
The Möbius function on I (n) is given by

µ([π1, π2]) =
∏
i

(−1)ki−1
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I (4) ⊂ NC (4) ⊂ P(4)
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One has
I (n) ⊂ NC (n) ⊂ Pn

For π ∈ Pn let π∗ be the smallest non-crossing partition with
π ≤ π∗.

Analogously let π∗∗ be the smallest interval partition with π ≤ π∗∗.
One has

π ≤ π∗ ≤ π∗∗
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Cumulants

Let A be a k-algebra with 1 ∈ A and a linear form

ϕ : A → k, ϕ(1) = 1

In most applications A is an algebra of random variables (possibly
non-commutative like random matrices) over C or R.
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The cumulants are n-linear forms Kn (classical) Rn (non-crossing),
Bn (Boolean) n = 1, 2, . . . defined implicitly by:

ϕ(a1a2 . . . an) =
∑
π∈Pn

Kπ(a1, . . . , an)

ϕ(a1a2 . . . an) =
∑

π∈NC(n)

Rπ(a1, . . . , an)

ϕ(a1a2 . . . an) =
∑
π∈I (n)

Bπ(a1, . . . , an)

here
Xπ(a1, a2 . . . , an) =

∏
p∈π

X|p|(ai1 , . . . , ai|p|)

p are the parts of π and p = {i1, i2, . . . , i|p|}
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Examples with non-crossing free cumulants

ϕ(a1) = R1(a1) {1}

ϕ(a1a2) = R2(a1, a2) {1, 2}
+R1(a1)R1(a2) {1} ∪ {2}

thus

R1(a) = ϕ(a)
R2(a1, a2) = ϕ(a1a2)− ϕ(a1)ϕ(a2)
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ϕ(a1a2a3) = R3(a1, a2, a3) {1, 2, 3}
+R1(a1)R2(a2, a3) {1} ∪ {2, 3}
+R2(a1, a3)R1(a2) {1, 3} ∪ {2}
+R2(a1, a2)R1(a3) {1, 2} ∪ {3}

+R1(a1)R1(a2)R1(a3) {1} ∪ {2} ∪ {2}

R3(a1, a2, a3) = ϕ(a1a2a3)− ϕ(a1a2)ϕ(a3)− ϕ(a1a3)ϕ(a2)
−ϕ(a1)ϕ(a2a3) + 2ϕ(a1)ϕ(a2)τ(a3)
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Inversion formula

Kn(a1, a2, . . . , an) =
∑

π∈Pn
ϕπ(a1, . . . , an)µP([π, 1n])

Rn(a1, a2, . . . , an) =
∑

π∈NC(n) ϕπ(a1, . . . , an)µNC ([π, 1n])

Bn(a1, a2, . . . , an) =
∑

π∈I (n) ϕπ(a1, . . . , an)µB([π, 1n])
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The case of one variable

Consider a ∈ A and its moments

ϕ(an); n = 0, 1, 2, . . .

with exponential generating series

F (z) = 1 +
∞∑
n=1

zn

n!
ϕ(an)

and ordinary generating series

M(z) = 1 +
∞∑
n=1

znϕ(an)
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The generating series

K (z) :=
∑∞

n=1
zn

n!Kn(a, a, a . . . , a)

R(z) :=
∑∞

n=1 z
nRn(a, a, a . . . , a)

B(z) :=
∑∞

n=1 z
nBn(a, a, a . . . , a)

satisfy the relations:

K (z) = log F (z)

1 + R(zM(z)) = M(z)

M(z) = 1
1−B(z)
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There is a multivariable extension for commuting variables:

logϕ(e
∑

i Xi ) =
∑
i1,i2,...

Kn(X
(i1)
1 ,X

(i2)
2 , . . .)

i1!i2! . . .

Here X
(j)
i means that the variable Xi is repeated j times
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What are cumulants useful for?

Cumulants are useful for probability theory, they encode
independence of random variables:

If
∏
Ai ⊂ A are subalgebras they are independent if and only if

mixed cumulants vanish:

Kn(a1, . . . , an) = 0

if each aj belongs to one of the Ai and at least two subalgebras
occur.

Independence means that they they commute and

ϕ(a1a2 . . . an) =
∏

ϕ(ai )

if a1 ∈ Ai1 , a2 ∈ Ai2 . . . all ik distinct
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Cumulants are ubiquituous in statistical physics by virtue of the
formula for the expansion of the free energy

logϕ(e
∑

i Xi ) =
∑
i1,i2,...

Kn(X
(i1)
1 ,X

i2)
2 , . . .)

i1!i2! . . .
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Using non-crossing cumulants one can define the notion of freness
of subalgebras by the vanishing of mixed non-crossing cumulants.
If Ai ⊂ A are subalgebras they are free if and only if mixed
non-crossing cumulants vanish.
Here free means that for any sequence a1, a2, . . . , an such that

I ϕ(ai ) = 0;

I ai ∈ Aki with k1 6= k2, k2 6= k3, etc

one has
ϕ(a1a2 . . . an) = 0

This is the original definition of Voiculescu (1983). The definition
of non-crossing cumulants and the connection to freeness is due to
Speicher (1990).
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The notion of freeness has many applications to operator algebra
theory and to random matrix theory. Indeed large independent
random matrices give natural models for free random variables.

A notion of Boolean independence is defined similarly using
Boolean cumulants but it is less useful (no natural model for
Boolean independent variables).
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Gaussianity and cumulants

For classical gaussian random variables all cumulants of order ≥ 3
vanish. One can similarly define a notion of gaussianity for free
and Boolean cumulants. In the case of non-crossing cumulants the
role played by the gaussian law is played by the semi-circle law,
which is also the limit law of spectral distribution of large gaussian
random matrices.
This leads to the notion of semi-circular systems a
non-commutative analogue of gaussian family.
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Free cumulants also appear (somewhat unexpectedly) in some
enumerative problems:

Enumeration of braids (B., Dehornoy, 2014)

The enumeration of Eulerian orientations of planar maps
(Bousquet-Mélou, Elvey-Price 2018)
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Asymptotic relations between free and classical cumulants 1:
non-crossing cumulants and random matrices:

Take a N × N hermitian diagonal matrix D with eigenvalues
λ1, . . . , λN and M = UDU∗ with U random unitary matrix with
Haar measure.
Let N →∞ and

1

N

∑
i

δλi → µ(dx)

Then the classical cumulants of M11 satisfy

Nq−1Kq(M11)→ (q − 1)Rq(µ)

as N →∞.
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Asymptotic relations between free anc classical cumulants 2:
QSSEP

The QSSEP (quantum symmetric simple exclusion process) is a
model of quantum particles hopping on a finite discrete interval
[1,N]. It is characterized by a random matrix

Gij = Tr(cic
†
j Ω); 1 ≤ i , j ≤ N

giving the correlation between sites (ci , ci† are fermionic creation
and annihilation, and Ω a steady state fermionic correlation
matrix).
Let N →∞ and i1/N → x1, i2/N → x2 . . . , in/N → xn for some
x1, x2, . . . , xn ∈ [0, 1] then

lim
N→∞

Nk−1Kn(Gi1i2 ,Gi2i3 , . . . ,Gini1) = Rn(κx1 , . . . , κxn)

where κx = 1[0,x] considered as a random variable on the space
[0, 1] with Lebesgue measure.
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Free cumulants and characters of symmetric groups

The irreducible representations of SN (symmetric goup) are
indexed by integer partitions of N:

N = λ1 + λ2 + . . .

It will be convenient to represent partitions in the Russian way.
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The partition 4, 3, 1 represented as a piecewise linear function:

x1 y1 x2 y2 x3 y3 x4
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TRANSITION MEASURE

x1 y1 x2 y2 x3 y3 x4

S.Kerov: there exists a unique probability measure mλ such that

mλ =
n∑

k=1

µkδxk µk =

∏n−1
i=1 (xk − yi )∏
i 6=k(xk − xi )
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The measure mλ has moments

Mn =

∫
xnmλ(dx)

and non-crossing cumulants

Rn(λ)
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ASYMPTOTIC EVALUATION OF CHARACTERS

λ = Young diagram with q boxes

Number of rows and columns = O(
√
q).

χλ = normalized character of λ.

χλ(σ) ∼ q−|σ|
∏
c|σ

q−1R|c|+2(λ)

|σ|= length of σ w.r.t generating set of all transpositions,
the product is over cycles of σ.
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Kerov’s formula for characters
Let Kk = (q)kχλ(ck), ck=cycle of order k . There exist universal
polynomials (independent of q) such that

Σk = Pk(Rk+1, . . .R2)

Σ1 = R2

Σ2 = R3

Σ3 = R4 + R2

Σ4 = R5 + 5R3

Σ5 = R6 + 15R4 + 5R2
2 + 8R2

Σ6 = R7 + 35R5 + 35R3R2 + 84R3

Σ7 = R8 + 70R6 + 84R4R2 + 56R2
3 + 14R3

2 + 469R4 + 224R2
2 + 180R2

Σ8 = R9 + 126R7 + 169R5R2 + 252R4R3 + 30R3R
2
2

+1869R5 + 3392R3R2 + 3044R3
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Theorem (Féray 2009) Kerov’s polynomials have nonnegative
coefficients.

Doleǵa, Féray, Śniady: found an explicit combinatorial formula for
Kerov’s polynomials counting certain factorizations in the
symmetric groups.
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THANK YOU!
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