Cumulants

I. Overview

Philippe Biane

CNRS, LIGM

Séminaire Lotharingien de Combinatoire
Strobl, 04-08/09/2022

Set Partitions

For a finite set S the set-partitions of S, endowed with the refinement order ($\pi_{1} \leq \pi_{2}$ if π_{1} is finer than π_{2}) is a lattice \mathcal{P}_{S}. It has a largest element 1_{S} (the partition with one part) and a smallest element 0_{S}, whose parts have cardinal 1. One has

$$
\left|\mathcal{P}_{S}\right|=B_{|S|}
$$

where the B_{n} are the Bell numbers with exponential generating function

$$
\sum \frac{B_{n}}{n!} z^{n}=e^{e^{z}-1}
$$

Every interval $\left[\pi_{1}, \pi_{2}\right.$] is canonically isomorphic to a product lattice

$$
\prod_{i} \mathcal{P}_{S_{i}}
$$

where the number of terms in the product is the number of parts of π_{2} and S_{i} is the set of parts of π_{1} included in the $i^{t h}$ part of π_{2}. The Möbius function on \mathcal{P}_{S} is given by

$$
\mu\left(\left[\pi_{1}, \pi_{2}\right]\right)=\prod_{i}(-1)^{\left|S_{i}\right|-1}\left(\left|S_{i}\right|-1\right)!
$$

Non-crossing Partitions

Let $S=\{1,2, \ldots, n\}$ and π a set-partition of S. A crossing of π is a quadruple (i, j, k, l) with

$$
i<j<k<1
$$

and

$$
i \sim k, \quad j \sim 1
$$

but i, j not in the same part of π. A partition is non-crossing if it has no crossing.

Example

$$
\{1,4,5\} \cup\{2\} \cup\{3\} \cup\{6,8\} \cup\{7\}
$$

is non-crossing.

$N C(n)$ is the set of non-crossing partitions of $\{1,2, \ldots, n\}$. It is a lattice for the refinement order with largest element 1_{n} and smallest element 0_{n}.
One has

$$
|N C(n)|=C_{n} \quad\left(n^{\text {th }} \text { Catalan number }\right)
$$

Every interval $\left[\pi_{1}, \pi_{2}\right.$] is canonically isomorphic to a product lattice

$$
\prod_{i} N C\left(k_{i}\right)
$$

where the number of terms in the product is the number of parts of π_{2}.
The Möbius function on $N C(n)$ is given by

$$
\mu\left(\left[\pi_{1}, \pi_{2}\right]\right)=\prod_{i}(-1)^{k_{i}-1} C_{k_{i}-1}
$$

Interval partitions

$I(n)$ is the set of interval partitions of $\{1,2, \ldots, n\}$, whose parts are intervals $[i, j]$. It is a lattice for the refinement order with largest element 1_{n} and smallest element 0_{n}.
One has

$$
|I(n)|=2^{n-1}
$$

Every interval $\left[\pi_{1}, \pi_{2}\right.$] is canonically isomorphic to a product lattice

$$
\prod_{i} I\left(k_{i}\right)
$$

where the number of terms in the product is the number of parts of π_{2}.
The Möbius function on $I(n)$ is given by

$$
\mu\left(\left[\pi_{1}, \pi_{2}\right]\right)=\prod_{i}(-1)^{k_{i}-1}
$$

$$
I(4) \subset N C(4) \subset \mathcal{P}(4)
$$

Philippe Biane CUMULANTS

One has

$$
I(n) \subset N C(n) \subset \mathcal{P}_{n}
$$

For $\pi \in \mathcal{P}_{n}$ let π^{*} be the smallest non-crossing partition with $\pi \leq \pi^{*}$.

Analogously let $\pi^{* *}$ be the smallest interval partition with $\pi \leq \pi^{* *}$. One has

$$
\pi \leq \pi^{*} \leq \pi^{* *}
$$

Cumulants

Let \mathcal{A} be a k-algebra with $1 \in \mathcal{A}$ and a linear form

$$
\varphi: \mathcal{A} \rightarrow k, \quad \varphi(1)=1
$$

In most applications \mathcal{A} is an algebra of random variables (possibly non-commutative like random matrices) over C or R .

The cumulants are n-linear forms K_{n} (classical) R_{n} (non-crossing), B_{n} (Boolean) $n=1,2, \ldots$ defined implicitly by:

$$
\begin{aligned}
\varphi\left(a_{1} a_{2} \ldots a_{n}\right) & =\sum_{\pi \in \mathcal{P}_{n}} K_{\pi}\left(a_{1}, \ldots, a_{n}\right) \\
\varphi\left(a_{1} a_{2} \ldots a_{n}\right) & =\sum_{\pi \in N C(n)} R_{\pi}\left(a_{1}, \ldots, a_{n}\right) \\
\varphi\left(a_{1} a_{2} \ldots a_{n}\right) & =\sum_{\pi \in I(n)} B_{\pi}\left(a_{1}, \ldots, a_{n}\right)
\end{aligned}
$$

here

$$
X_{\pi}\left(a_{1}, a_{2} \ldots, a_{n}\right)=\prod_{p \in \pi} X_{|p|}\left(a_{i_{1}}, \ldots, a_{||p|}\right)
$$

p are the parts of π and $p=\left\{i_{1}, i_{2}, \ldots, i_{|p|}\right\}$

Examples with non-crossing free cumulants

$$
\begin{gathered}
\varphi\left(a_{1}\right)=R_{1}\left(a_{1}\right) \\
\varphi\left(a_{1} a_{2}\right)=\begin{array}{cc}
R_{2}\left(a_{1}, a_{2}\right) & \{1,2\} \\
+R_{1}\left(a_{1}\right) R_{1}\left(a_{2}\right) & \{1\} \cup\{2\}
\end{array}
\end{gathered}
$$

thus

$$
\begin{aligned}
R_{1}(a) & =\varphi(a) \\
R_{2}\left(a_{1}, a_{2}\right) & =\varphi\left(a_{1} a_{2}\right)-\varphi\left(a_{1}\right) \varphi\left(a_{2}\right)
\end{aligned}
$$

$$
\begin{array}{ccc}
\varphi\left(a_{1} a_{2} a_{3}\right)= & R_{3}\left(a_{1}, a_{2}, a_{3}\right) & \{1,2,3\} \\
& +R_{1}\left(a_{1}\right) R_{2}\left(a_{2}, a_{3}\right) & \{1\} \cup\{2,3\} \\
& +R_{2}\left(a_{1}, a_{3}\right) R_{1}\left(a_{2}\right) & \{1,3\} \cup\{2\} \\
+R_{2}\left(a_{1}, a_{2}\right) R_{1}\left(a_{3}\right) & \{1,2\} \cup\{3\} \\
& +R_{1}\left(a_{1}\right) R_{1}\left(a_{2}\right) R_{1}\left(a_{3}\right) & \{1\} \cup\{2\} \cup\{2\} \\
& \\
R_{3}\left(a_{1}, a_{2}, a_{3}\right)= & \varphi\left(a_{1} a_{2} a_{3}\right)-\varphi\left(a_{1} a_{2}\right) \varphi\left(a_{3}\right)-\varphi\left(a_{1} a_{3}\right) \varphi\left(a_{2}\right) \\
& -\varphi\left(a_{1}\right) \varphi\left(a_{2} a_{3}\right)+2 \varphi\left(a_{1}\right) \varphi\left(a_{2}\right) \tau\left(a_{3}\right)
\end{array}
$$

Inversion formula

$$
\begin{aligned}
& K_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{\pi \in \mathcal{P}_{n}} \varphi_{\pi}\left(a_{1}, \ldots, a_{n}\right) \mu^{\mathcal{P}}\left(\left[\pi, 1_{n}\right]\right) \\
& R_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{\pi \in N C(n)} \varphi_{\pi}\left(a_{1}, \ldots, a_{n}\right) \mu^{N C}\left(\left[\pi, 1_{n}\right]\right) \\
& B_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{\pi \in I(n)} \varphi_{\pi}\left(a_{1}, \ldots, a_{n}\right) \mu^{B}\left(\left[\pi, 1_{n}\right]\right)
\end{aligned}
$$

The case of one variable

Consider $a \in \mathcal{A}$ and its moments

$$
\varphi\left(a^{n}\right) ; \quad n=0,1,2, \ldots
$$

with exponential generating series

$$
F(z)=1+\sum_{n=1}^{\infty} \frac{z^{n}}{n!} \varphi\left(a^{n}\right)
$$

and ordinary generating series

$$
M(z)=1+\sum_{n=1}^{\infty} z^{n} \varphi\left(a^{n}\right)
$$

The generating series

$$
\begin{aligned}
K(z) & :=\sum_{n=1}^{\infty} \frac{z^{n}}{n!} K_{n}(a, a, a \ldots, a) \\
R(z) & :=\sum_{n=1}^{\infty} z^{n} R_{n}(a, a, a \ldots, a) \\
B(z) & :=\sum_{n=1}^{\infty} z^{n} B_{n}(a, a, a \ldots, a)
\end{aligned}
$$

satisfy the relations:

$$
\begin{aligned}
K(z) & =\log F(z) \\
1+R(z M(z)) & =M(z) \\
M(z) & =\frac{1}{1-B(z)}
\end{aligned}
$$

There is a multivariable extension for commuting variables:

$$
\log \varphi\left(e^{\sum_{i} X_{i}}\right)=\sum_{i_{1}, i_{2}, \ldots} \frac{K_{n}\left(X_{1}^{\left(i_{1}\right)}, X_{2}^{\left(i_{2}\right)}, \ldots\right)}{i_{1}!i_{2}!\ldots}
$$

Here $X_{i}^{(j)}$ means that the variable X_{i} is repeated j times

What are cumulants useful for?

Cumulants are useful for probability theory, they encode independence of random variables:

If $\prod \mathcal{A}_{i} \subset \mathcal{A}$ are subalgebras they are independent if and only if mixed cumulants vanish:

$$
K_{n}\left(a_{1}, \ldots, a_{n}\right)=0
$$

if each a_{j} belongs to one of the \mathcal{A}_{i} and at least two subalgebras occur.

Independence means that they they commute and

$$
\varphi\left(a_{1} a_{2} \ldots a_{n}\right)=\prod \varphi\left(a_{i}\right)
$$

if $a_{1} \in \mathcal{A}_{i_{1}}, a_{2} \in \mathcal{A}_{i_{2}} \ldots$ all i_{k} distinct

Cumulants are ubiquituous in statistical physics by virtue of the formula for the expansion of the free energy

$$
\log \varphi\left(e^{\sum_{i} x_{i}}\right)=\sum_{i_{1}, i_{2}, \ldots} \frac{K_{n}\left(X_{1}^{\left(i_{1}\right)}, X_{2}^{\left.i_{2}\right)}, \ldots\right)}{i_{1}!i_{2}!\ldots}
$$

Using non-crossing cumulants one can define the notion of freness of subalgebras by the vanishing of mixed non-crossing cumulants. If $\mathcal{A}_{i} \subset \mathcal{A}$ are subalgebras they are free if and only if mixed non-crossing cumulants vanish.
Here free means that for any sequence $a_{1}, a_{2}, \ldots, a_{n}$ such that

- $\varphi\left(a_{i}\right)=0$;
- $a_{i} \in \mathcal{A}_{k_{i}}$ with $k_{1} \neq k_{2}, k_{2} \neq k_{3}$, etc
one has

$$
\varphi\left(a_{1} a_{2} \ldots a_{n}\right)=0
$$

This is the original definition of Voiculescu (1983). The definition of non-crossing cumulants and the connection to freeness is due to Speicher (1990).

The notion of freeness has many applications to operator algebra theory and to random matrix theory. Indeed large independent random matrices give natural models for free random variables.

A notion of Boolean independence is defined similarly using Boolean cumulants but it is less useful (no natural model for Boolean independent variables).

Gaussianity and cumulants

For classical gaussian random variables all cumulants of order ≥ 3 vanish. One can similarly define a notion of gaussianity for free and Boolean cumulants. In the case of non-crossing cumulants the role played by the gaussian law is played by the semi-circle law, which is also the limit law of spectral distribution of large gaussian random matrices.
This leads to the notion of semi-circular systems a non-commutative analogue of gaussian family.

Free cumulants also appear (somewhat unexpectedly) in some enumerative problems:

Enumeration of braids (B., Dehornoy, 2014)
The enumeration of Eulerian orientations of planar maps
(Bousquet-Mélou, Elvey-Price 2018)

Asymptotic relations between free and classical cumulants 1:

 non-crossing cumulants and random matrices:Take a $N \times N$ hermitian diagonal matrix D with eigenvalues
$\lambda_{1}, \ldots, \lambda_{N}$ and $M=U D U^{*}$ with U random unitary matrix with Haar measure.
Let $N \rightarrow \infty$ and

$$
\frac{1}{N} \sum_{i} \delta_{\lambda_{i}} \rightarrow \mu(d x)
$$

Then the classical cumulants of M_{11} satisfy

$$
N^{q-1} K_{q}\left(M_{11}\right) \rightarrow(q-1) R_{q}(\mu)
$$

as $N \rightarrow \infty$.

Asymptotic relations between free anc classical cumulants 2: QSSEP

The QSSEP (quantum symmetric simple exclusion process) is a model of quantum particles hopping on a finite discrete interval $[1, N]$. It is characterized by a random matrix

$$
G_{i j}=\operatorname{Tr}\left(c_{i} c_{j}^{\dagger} \Omega\right) ; 1 \leq i, j \leq N
$$

giving the correlation between sites ($c_{i}, c_{i} \dagger$ are fermionic creation and annihilation, and Ω a steady state fermionic correlation matrix).
Let $N \rightarrow \infty$ and $i_{1} / N \rightarrow x_{1}, i_{2} / N \rightarrow x_{2} \ldots, i_{n} / N \rightarrow x_{n}$ for some $x_{1}, x_{2}, \ldots, x_{n} \in[0,1]$ then

$$
\lim _{N \rightarrow \infty} N^{k-1} K_{n}\left(G_{i_{1} i_{2}}, G_{i_{2} i_{3}}, \ldots, G_{i_{n} i_{1}}\right)=R_{n}\left(\kappa_{x_{1}}, \ldots, \kappa_{x_{n}}\right)
$$

where $\kappa_{x}=1_{[0, x]}$ considered as a random variable on the space $[0,1]$ with Lebesgue measure.

Free cumulants and characters of symmetric groups

The irreducible representations of S_{N} (symmetric goup) are indexed by integer partitions of N :

$$
N=\lambda_{1}+\lambda_{2}+\ldots
$$

It will be convenient to represent partitions in the Russian way.

The partition 4, 3,1 represented as a piecewise linear function:

TRANSITION MEASURE

S.Kerov: there exists a unique probability measure m_{λ} such that

$$
m_{\lambda}=\sum_{k=1}^{n} \mu_{k} \delta_{x_{k}} \quad \mu_{k}=\frac{\prod_{i=1}^{n-1}\left(x_{k}-y_{i}\right)}{\prod_{i \neq k}\left(x_{k}-x_{i}\right)}
$$

The measure m_{λ} has moments

$$
M_{n}=\int x^{n} m_{\lambda}(d x)
$$

and non-crossing cumulants

$$
R_{n}(\lambda)
$$

ASYMPTOTIC EVALUATION OF CHARACTERS

$\lambda=$ Young diagram with q boxes
Number of rows and columns $=O(\sqrt{q})$.
$\chi_{\lambda}=$ normalized character of λ.

$$
\chi_{\lambda}(\sigma) \sim q^{-|\sigma|} \prod_{c \mid \sigma} q^{-1} R_{|c|+2}(\lambda)
$$

$|\sigma|=$ length of σ w.r.t generating set of all transpositions, the product is over cycles of σ.

Let $K_{k}=(q)_{k} \chi_{\lambda}\left(c_{k}\right), c_{k}=$ cycle of order k. There exist universal polynomials (independent of q) such that

$$
\begin{aligned}
& \quad \Sigma_{k}=P_{k}\left(R_{k+1}, \ldots R_{2}\right) \\
& \Sigma_{1}=R_{2} \\
& \Sigma_{2}=R_{3} \\
& \Sigma_{3}=R_{4}+R_{2} \\
& \Sigma_{4}=R_{5}+5 R_{3} \\
& \Sigma_{5}=R_{6}+15 R_{4}+5 R_{2}^{2}+8 R_{2} \\
& \Sigma_{6}=R_{7}+35 R_{5}+35 R_{3} R_{2}+84 R_{3} \\
& \Sigma_{7}=R_{8}+70 R_{6}+84 R_{4} R_{2}+56 R_{3}^{2}+14 R_{2}^{3}+469 R_{4}+224 R_{2}^{2}+180 R_{2}
\end{aligned}
$$

Theorem (Féray 2009) Kerov's polynomials have nonnegative coefficients.

Doleǵa, Féray, Śniady: found an explicit combinatorial formula for Kerov's polynomials counting certain factorizations in the symmetric groups.

THANK YOU!

