LAVER TABLES

Philippe Biane CNRS, LIGM

Séminaire Lotharingien de Combinatoire

Strobl, 04-08/09/2022

・日・ ・ ヨ・ ・ ヨ・

臣

An interesting sequence

A098820

Not a moment sequence...

The Laver table of size 8×8

*	1	2	3	4	5	6	7	8
1	2	4	6	8	2	4	6	8
2	3	4	7	8	3	4	7	8
3	4	8	4	8	4	8	4	8
4	5	6	7	8	5	6	7	8
5	6	8	6	8	6	8	6	8
6	7	8	7	8	7	8	7	8
7	8	8	8	8	8	8	8	8
8	1	2	3	4	5	6	7	8

<ロ> <四> <ヨ> <ヨ>

2

On [1, N] there exists a unique binary law

$$\star: [1, N] \times [1, N] \rightarrow [1, N]$$

such that, for all p, q

$$p \star 1 = p + 1 \mod (N)$$

$$p \star (q \star 1) = (p \star q) \star (p \star 1)$$

Theorem (R. Laver) If (and only if) $N = 2^n$ is some power of 2 then \star is *left-distributive*: for all p, q, r

$$p \star (q \star r) = (p \star q) \star (p \star r)$$

The Laver Table of order 2^n is the left-distributive system generated by 1 with the relation

$$(\dots (1 \star 1) \star 1) \star 1) \dots \star 1) = 1^{[2^n + 1]} = 1$$
 $(2^n + 1 \text{ terms})$

Analogue of $Z/2^{n}Z$.

A very simple definition but a great complexity.

Some properties

- ► The projection [1,2ⁿ⁺¹] → [1,2ⁿ] is a homomorphism. Consequently there exists a projective limit.
- ▶ $p \rightarrow p + 2^n : [1, 2^n] \rightarrow [1, 2^{n+1}]$ is a homomorphism. One can take an inductive limit by using the law p * q = N (N p) * (N q)

*	1	2	3	4	5	6	7	8	π
1	2	4	6	8	2	4	6	8	4
2	3	4	7	8	3	4	7	8	4
3	4	8	4	8	4	8	4	8	2
4	5	6	7	8	5	6	7	8	4
5	6	8	6	8	6	8	6	8	2
6	7	8	7	8	7	8	7	8	2
7	8	8	8	8	8	8	8	8	1
8	1	2	3	4	5	6	7	8	8

- Each line p ★ q; q = 1, 2, ... is periodic with period π_n(p) = 2^m.
- $p \star q$; $q = 1, 2, \dots, \pi(p) 1$ is increasing

•
$$\pi_{n+1}(p) = \pi_n(p)$$
 or $2\pi_n(p)$.

 $\blacktriangleright p \sqsubset p \star q - 1$

 $a \sqsubset b$ if the binary expansion of a is contained in that of b.

▶ ★ E ▶ ★ E ▶ E

*	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	0	0	0	0	0	0	0	0
2	0	1	0	1	0	1	0	1
3	0	2	0	2	0	2	0	2
4	0	1	2	3	0	1	2	3
5	0	4	0	4	0	4	0	4
6	0	1	4	5	0	1	4	5
7	0	2	4	6	0	2	4	6

(ロ) (回) (目) (目) (日) (の)

The law * is determined by

It satisfies

$$p * q \sqsubset p - 1$$

◆□ → ◆□ → ◆ □ → ◆ □ →

æ

The relation \square

The Laver table of size 256

Philippe Biane

Tables de Laver

글 🛌 글

Computing p * q

How to compute row p + 1 knowing rows $0, 1, 2, \ldots, p$:

7 * 7 = 6; 7 * 6 = 6 * 6 = 4; 7 * 5 = 4 * 6 = 2; 7 * 4 = 2 * 6 = 0.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

3

In general computing p * q is time consuming: one has to compute the rows of a large part of the r < p.

Laver tables are very recursive combinatorial objects quite different from usual structures in algebraic or enumerative combinatorics.

In general computing p * q is time consuming: one has to compute the rows of a large part of the r < p.

Laver tables are very recursive combinatorial objects quite different from usual structures in algebraic or enumerative combinatorics. They have some similarity with the Mandelbrot set $z \rightarrow z^2 + c$

Some properties: I. Homomorphisms

Left multiplication $\lambda_x : y \mapsto x * y$ is a homomorphism:

$$\lambda_x(y * z) = \lambda_x(y) * \lambda_x(z)$$

Lemma:

Every homomorphism of * is of the form λ_x .

In particular $\lambda_x \circ \lambda_y = \lambda_{x \circ y}$ for some unique $x \circ y$. The law \circ is associative and one has

$$x \circ y = x * (y - 1) + 1$$

It is convenient to consider

$$x \bar{\circ} y = (x + 1) \circ (y + 1) - 1 = (x + 1) * y$$

The law [◦]

this is just the table for * where the left column has been shifted by 1. It is an associative law.

Some properties: II. Thresholds

For fixed $p < 2^n$ the sequence p * q; q = 1, 2, ... is increasing for $q < \pi(p)$.

The sequence $(p + 2^n) * q$; q = 1, 2, ... is also increasing and reduces to p * q modulo 2^n .

 \rightarrow there exists $\theta(p)$ such that

$$p*q = (p+2^n)*q$$
 for $q < \pi_n(p) - \theta(p)$ and $p*q = (p+2^n)*q + 2^n$ fo $q \ge \pi_n(p) - \theta(p)$

 $\theta(p)$ is the *threshold of p*. knowing $\theta(p)$; $p \le 2^n$ allows to recover the whole Laver table of order 2^n . As an example we compute the row p * q for $p = 494 = 2^1 + 2^2 + 2^3 + 2^5 + 2^6 + 2^7 + 2^8$. The first column shows the partial sums p_i the thresholds are in the second column

The knowledge of all Laver tables is equivalent to the knowledge of the sequence $\theta(p)$; p = 1, 2, 3, ...Repartition of thresholds and periods for $p \leq 2^{12}$

	2	4	8	16	32	64	128	256	512	1024	2048	4096	
1	12	2103											
2		66		30									
3			398	213									
4			58	761									
7				63									
8				121									
16					12	110							
32						34							
48							19	6					
64							22	26					
112								1					
128								25					
256									4	2			
512										6			
1024											2		
2048												1	

Conjecture The numbers $\theta(p)$ all have the form 2^{j}_{∂} , 2^{j}_{∂} ,

 $\{(x,g(x))\} \{(x,f(x))\}$

One can compose f and g

$$\{(x,g(x))\} \to \{(x,f(g(x)))\}$$

One can also "apply" ' f to the graph of g:

$$\{(x,g(x))\} \to \{(f(x),f(g(x)))\}$$

It is a graph only if f is invertible

$$f \star g = f \circ g \circ f^{-1}$$

 \star is left-distributive.

In fact for any group G the conjugation

$$a \star b = aba^{-1}$$

is left-distributive

Let λ be an infinite ordinal and V_{λ} the associated rank $(V_{\lambda+1} = 2^{V_{\lambda}}, V_{\lambda} = \bigcup_{\mu < \lambda} V_{\mu}$ if λ is a limit ordinal). An elementary embedding

$$j: V_{\lambda} \to V_{\lambda}$$

is an injection which preserves the truth of every first order formula.

Laver's axiom is that there exists an ordinal λ and a non trivial elementary embedding $j: V_{\lambda} \rightarrow V_{\lambda}$. This axiom cannot be proved in ZFC.

This is analogous to the axiom of infinity but stronger.

An elementary embedding fixes all finite sets, countable sets, and all sets obtained from these by taking subsets, sets of subsets and increasing unions.

If j is a nontrivial elementary embedding then there exists a smallest ordinal κ with $j(\kappa) > \kappa$.

Then κ is inaccessible: if $\mu < \kappa$ then $2^{\mu} < \kappa$.

Two elementary embeddings j and k can be composed $j \circ k$, but one can also "apply" j to k to get $j \star k$: one takes the image by jof the graph of k.

This operation is left-distributive:

$$j \star (k \star l) = (j \star k) \star (j \star l)$$

The critical ordinals of the iterates of j form an increasing sequence κ_i ; i = 1, 2, ...

The Laver table is obtained by taking the quotient of j by equivalence modulo κ_n .

Laver tables were born from the theory of large cardinals.

Asymptotics of periods and set theory

The periods $\pi_n(1)$ (for the \star law; they are the numbers $\pi(2^n - 1)$ for the \star law) form an increasing sequence which is A098820 in and starts asOEIS

"Theorem" (Laver) $\pi_n(1) o \infty$ as $n o \infty$.

The proof uses Laver's axiom. No proof inside ZFC is known. In fact no number n is known such that $\pi_n(1) \ge 32$.

Dougherty's lower bound is a HUGE number

回 とくほとくほとう ほ

Ackerman function

・ロト・日本・日本・日本・日本・日本

Dougherty's bound

If
$$\pi_n(1) \ge 32$$
 then $n > f_9(f_8(f_8(254)))$

Philippe Biane Tables de Laver

Asymptotic frequencies

 $\Omega_n(k)$ = number of elements in the Laver table of order 2ⁿ with period k.

 $\omega_n(k) = \Omega_n(k)/2^n$ the corresponding frequency

Theorem The numbers $\omega_n(k)$ converge as $n \to \infty$ to $\omega(k)$.

Question : what is the value of $\omega(k)$?

• (1) • (

Some values of the frequencies:

k	2	4	8	16	32
<i>n</i> = 22	0.000572	52.936697	10.196733	30.197978	0.002623
n = 28	0.000011	52.936601	10.193098	30.202101	0.001456
n = 31	0.000002	52.936599	10.193012	30.202195	0.001429

Question: do these numbers appear in other problems of mathematics and/or physics?

A 1

Maximal elements

One has $p * q \sqsubset p - 1$.

p is maximal if the numbers p * q are all the numbers $r \sqsubset p - 1$.

These are the numbers where the blue and red columns are identical.

Theorem *p* is maximal if and only if it is of the form

$$10^{b_0}1^{2^{a_1}}0^{b_12^{a_1}}1^{2^{a_2}}0^{b_22^{a_2}}\dots 1^{2^{a_r}}0^{b_r2^{a_r}}$$
(0.1)

with $b_i \ge 0$ and $a_1 < a_2 < a_3 \dots$ The number of maximal p in $[2^{n-2} + 2^{n-1}, 2^n]$ is equal to the number of *binary partitions* of n - 2:

$$n-2=\sum_i\lambda_i\qquad \lambda_i\in\{1,2,4,8,\ldots\}$$

Theoreme If p and q are maximal then p * q is maximal. Computing p * q for p maximal is very easy. Finding a formula for general p, q seems very difficult.

THANK YOU!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

E.