Proofs of Borwein Conjectures

Christian Krattenthaler and Chen Wang

Universität Wien

Prologue

Christian Krattenthaler and Chen Wang Proofs of Borwein Conjectures

Prologue

The "birth" of the Borwein Conjecture

The "birth" of the Borwein Conjecture

September 1993: Workshop on "Symbolic Computation in Combinatorics", Cornell University, USA (organised by Peter Paule and Volker Strehl)

George Andrews gave a two-part lecture on "AXIOM and the Borwein Conjecture".

Prologue

The "birth" of the Borwein Conjecture

What is "the Borwein Conjecture"?

Prologue

The "birth" of the Borwein Conjecture

What is "the Borwein Conjecture"?
Consider the product

$$
(1-q)\left(1-q^{2}\right)\left(1-q^{4}\right)\left(1-q^{5}\right) \cdots\left(1-q^{3 n-2}\right)\left(1-q^{3 n-1}\right)
$$

Then the sign pattern of the coefficients in the expansion of this polynomial is $+--+--+--\cdots$.

The "birth" of the Borwein Conjecture

What is "the Borwein Conjecture"?
Consider the product

$$
(1-q)\left(1-q^{2}\right)\left(1-q^{4}\right)\left(1-q^{5}\right) \cdots\left(1-q^{3 n-2}\right)\left(1-q^{3 n-1}\right)
$$

Then the sign pattern of the coefficients in the expansion of this polynomial is $+--+--+--\cdots$.
Example. $n=3$:

$$
\begin{aligned}
(1-q) & \left(1-q^{2}\right)\left(1-q^{4}\right)\left(1-q^{5}\right)\left(1-q^{7}\right)\left(1-q^{8}\right) \\
= & 1-q-q^{2}+q^{3}-q^{4} \quad+2 q^{6}-q^{7}-q^{8} \\
& +3 q^{9}-q^{10}-q^{11}+2 q^{12}-2 q^{13}-2 q^{14}+2 q^{15}-q^{16}-q^{17} \\
& +3 q^{18}-q^{19}-q^{20}+2 q^{21} \\
& +q^{23}
\end{aligned}
$$

Prologue

The "birth" of the Borwein Conjecture

More formally:
Let

$$
(a ; q)_{m}:=\prod_{i=0}^{m-1}\left(1-a q^{i}\right)
$$

Conjecture (Petbr Borwbin)

Let the polynomials $A_{n}(q), B_{n}(q)$ and $C_{n}(q)$ be defined by the relationship

$$
\frac{(q ; q)_{3 n}}{\left(q^{3} ; q^{3}\right)_{n}}=A_{n}\left(q^{3}\right)-q B_{n}\left(q^{3}\right)-q^{2} C_{n}\left(q^{3}\right)
$$

Then these polynomials have non-negative coefficients.

Prologue

What did we know?

Prologue

What did we know?

By the q-binomial theorem, we get

$$
\begin{aligned}
(1 & -q)\left(1-q^{2}\right)\left(1-q^{4}\right)\left(1-q^{5}\right) \cdots\left(1-q^{3 n-2}\right)\left(1-q^{3 n-1}\right) \\
& =\sum_{j=-n}^{n}(-1)^{j} q^{(3 j+1) j / 2}\left[\begin{array}{c}
2 n \\
n+j
\end{array}\right]_{q^{3}}
\end{aligned}
$$

What did we know?

By the q-binomial theorem, we get

$$
\begin{aligned}
& (1-q)\left(1-q^{2}\right)\left(1-q^{4}\right)\left(1-q^{5}\right) \cdots\left(1-q^{3 n-2}\right)\left(1-q^{3 n-1}\right) \\
& \quad=\sum_{j=-n}^{n}(-1)^{j} q^{(3 j+1) j / 2}\left[\begin{array}{c}
2 n \\
n+j
\end{array}\right]_{q^{3}} .
\end{aligned}
$$

Since the q-binomial coefficient is on base q^{3}, it is easy to separate the terms with exponent $\equiv s$ modulo $3, s=0,1,2$:

$$
\begin{aligned}
& A_{n}(q)=\sum_{j=-\infty}^{\infty}(-1)^{j} q^{j(9 j+1) / 2}\left[\begin{array}{c}
2 n \\
n+3 j
\end{array}\right]_{q}, \\
& B_{n}(q)=\sum_{j=-\infty}^{\infty}(-1)^{j} q^{j(9 j-5) / 2}\left[\begin{array}{c}
2 n \\
n+3 j-1
\end{array}\right]_{q} \\
& C_{n}(q)=\sum_{j=-\infty}^{\infty}(-1)^{j} q^{j(9 j+7) / 2}\left[\begin{array}{c}
2 n \\
n+3 j+1
\end{array}\right]_{q}
\end{aligned}
$$

Prologue

What did we know?

Compare with:

Theorem (Andrews, Baxter, Bressoud, Burge, Forrester, Viennot)

Let K be a positive integer, and m, n, α, β be non-negative integers, satisfying $\alpha+\beta<2 K$ and $\beta-K \leq n-m \leq K-\alpha$. Then the polynomial

$$
\sum_{j \in \mathbb{Z}}(-1)^{j} q^{j K \frac{j(\alpha+\beta)+\alpha-\beta}{2}}\left[\begin{array}{l}
m+n \\
n-K j
\end{array}\right]_{q}
$$

is the generating function for partitions inside an $m \times n$ rectangle that satisfy some so-called "hook difference conditions" specified by α, β and K.

Prologue

What did we know?

In order to apply this theorem to the Borwein Conjecture, we have to choose $m=n, \alpha=5 / 3, \beta=4 / 3$ and $K=3$.

Prologue

What did we know?

In order to apply this theorem to the Borwein Conjecture, we have to choose $m=n, \alpha=5 / 3, \beta=4 / 3$ and $K=3$.

Alas, α and β are not integers!

Prologue

What did we know?

In order to apply this theorem to the Borwein Conjecture, we have to choose $m=n, \alpha=5 / 3, \beta=4 / 3$ and $K=3$.

Alas, α and β are not integers!
Many people have tried to adapt the (combinatorial) arguments of Andrews et al. in order to cope with this situation, to no avail.

Prologue

What did we know?

David Bressoud extended the mystery by making the following much more general conjecture.

Conjecture (DAVID Bressoud)

Let m and n be positive integers, α and β be positive rational numbers, and K be a positive integer such that αK and βK are integers. If $1 \leq \alpha+\beta \leq 2 K+1$ (with strict inequalities if $K=2$) and $\beta-K \leq n-m \leq K-\alpha$, then the polynomial

$$
\sum_{j=-\infty}^{\infty}(-1)^{j} q^{j(K(\alpha+\beta) j+K(\alpha-\beta)) / 2}\left[\begin{array}{c}
m+n \\
m-K j
\end{array}\right]_{q}
$$

has non-negative coefficients.

What did we know?

Moderate progress on this generalised conjecture has been made. Alexander Berkovich and Ole Warnaar proved Bressoud's conjecture for several infinite families in several papers in the period 2000-2020.
However, literally no progress at all has been made on the original Borwein Conjecture, for lack of an idea how to approach it.

Prologue

What did we know?

A partial result is:

Proposition (ANDREWS)

The power series $A_{\infty}(q), B_{\infty}(q), C_{\infty}(q)$ have non-negative coefficients. More precisely, we have

$$
\begin{aligned}
A_{\infty}(q) & =\frac{\left(q^{4}, q^{5}, q^{9} ; q^{9}\right)_{\infty}}{(q ; q)_{\infty}} \\
B_{\infty}(q) & =\frac{\left(q^{2}, q^{7}, q^{9} ; q^{9}\right)_{\infty}}{(q ; q)_{\infty}} \\
C_{\infty}(q) & =\frac{\left(q^{1}, q^{8}, q^{9} ; q^{9}\right)_{\infty}}{(q ; q)_{\infty}}
\end{aligned}
$$

where we use the short notation

$$
\left(a_{1}, a_{2}, \ldots, a_{k} ; q\right)_{\infty}=\left(a_{1} ; q\right)_{\infty}\left(a_{2} ; q\right)_{\infty} \cdots\left(a_{k} ; q\right)_{\infty}
$$

Recent Developments

Recent Developments

November 2017:

Recent Developments

November 2017: Chen Wang tells me that he wants to prove the Borwein Conjecture.

Recent Developments

November 2017: Chen Wang tells me that he wants to prove the Borwein Conjecture. His plan is to use alternative expressions for $A_{n}(q), B_{n}(q), C_{n}(q)$ due to Andrews, such as

$$
B_{n}(q)=\sum_{j=0}^{(n-1) / 3} \frac{q^{3 j^{2}+3 j}\left(1-q^{3 j+2}+q^{n+1}-q^{n+3 j+2}\right)\left(q^{3} ; q^{3}\right)_{n-j-1}(q ; q)_{3 j}}{(q ; q)_{n-3 j-1}\left(q^{3} ; q^{3}\right)_{2 j+1}\left(q^{3} ; q^{3}\right)_{j}} .
$$

Recent Developments

November 2017: Chen Wang tells me that he wants to prove the Borwein Conjecture.
His plan is to use alternative expressions for $A_{n}(q), B_{n}(q), C_{n}(q)$ due to Andrews, such as
$B_{n}(q)=\sum_{j=0}^{(n-1) / 3} \frac{q^{3 j^{2}+3 j}\left(1-q^{3 j+2}+q^{n+1}-q^{n+3 j+2}\right)\left(q^{3} ; q^{3}\right)_{n-j-1}(q ; q)_{3 j}}{(q ; q)_{n-3 j-1}\left(q^{3} ; q^{3}\right)_{2 j+1}\left(q^{3} ; q^{3}\right)_{j}}$.
Wang had experimentally observed that, in this sum, the term for $j=0$ gives the main contribution to the coefficients in the polynomial, while the other terms contribute much less.

Recent Developments

November 2017: Chen Wang tells me that he wants to prove the Borwein Conjecture.
His plan is to use alternative expressions for $A_{n}(q), B_{n}(q), C_{n}(q)$ due to Andrews, such as
$B_{n}(q)=\sum_{j=0}^{(n-1) / 3} \frac{q^{3 j^{2}+3 j}\left(1-q^{3 j+2}+q^{n+1}-q^{n+3 j+2}\right)\left(q^{3} ; q^{3}\right)_{n-j-1}(q ; q)_{3 j}}{(q ; q)_{n-3 j-1}\left(q^{3} ; q^{3}\right)_{2 j+1}\left(q^{3} ; q^{3}\right)_{j}}$.
Wang had experimentally observed that, in this sum, the term for $j=0$ gives the main contribution to the coefficients in the polynomial, while the other terms contribute much less.

His idea hence was to estimate the contributions of the terms and show - at least for large n - that indeed the first term dominated the other terms.

Recent Developments

November 2017: Chen Wang tells me that he wants to prove the Borwein Conjecture.
His plan is to use alternative expressions for $A_{n}(q), B_{n}(q), C_{n}(q)$ due to Andrews, such as

$$
B_{n}(q)=\sum_{j=0}^{(n-1) / 3} \frac{q^{3 j^{2}+3 j}\left(1-q^{3 j+2}+q^{n+1}-q^{n+3 j+2}\right)\left(q^{3} ; q^{3}\right)_{n-j-1}(q ; q)_{3 j}}{(q ; q)_{n-3 j-1}\left(q^{3} ; q^{3}\right)_{2 j+1}\left(q^{3} ; q^{3}\right)_{j}} .
$$

Wang had experimentally observed that, in this sum, the term for $j=0$ gives the main contribution to the coefficients in the polynomial, while the other terms contribute much less.

His idea hence was to estimate the contributions of the terms and show - at least for large n - that indeed the first term dominated the other terms.

One and half years later, by using saddle point approximations for large n and a computer check for small n, he succeeded to fully prove the Borwein Conjecture.

Recent Developments

Theorem (Chen Wang)

Let the polynomials $A_{n}(q), B_{n}(q)$ and $C_{n}(q)$ be defined by the relationship

$$
\frac{(q ; q)_{3 n}}{\left(q^{3} ; q^{3}\right)_{n}}=A_{n}\left(q^{3}\right)-q B_{n}\left(q^{3}\right)-q^{2} C_{n}\left(q^{3}\right)
$$

Then these polynomials have non-negative coefficients.
C. Wang, An analytic proof of the Borwein Conjecture, Adv. Math. 394 (2022), Paper No. 108028, 54 pp.

Recent Developments

Theorem (Chen Wang)

Let the polynomials $A_{n}(q), B_{n}(q)$ and $C_{n}(q)$ be defined by the relationship

$$
\frac{(q ; q)_{3 n}}{\left(q^{3} ; q^{3}\right)_{n}}=A_{n}\left(q^{3}\right)-q B_{n}\left(q^{3}\right)-q^{2} C_{n}\left(q^{3}\right)
$$

Then these polynomials have non-negative coefficients.
C. Wang, An analytic proof of the Borwein Conjecture, Adv. Math. 394 (2022), Paper No. 108028, 54 pp.

However, ...

Recent Developments

Conjecture (Borwein Conjecture)

Let the polynomials $A_{n}(q), B_{n}(q)$ and $C_{n}(q)$ be defined by the relationship

$$
\frac{(q ; q)_{3 n}}{\left(q^{3} ; q^{3}\right)_{n}}=A_{n}\left(q^{3}\right)-q B_{n}\left(q^{3}\right)-q^{2} C_{n}\left(q^{3}\right)
$$

Then these polynomials have non-negative coefficients.

Recent Developments

Conjecture (First Borwein Conjecture)

Let the polynomials $A_{n}(q), B_{n}(q)$ and $C_{n}(q)$ be defined by the relationship

$$
\frac{(q ; q)_{3 n}}{\left(q^{3} ; q^{3}\right)_{n}}=A_{n}\left(q^{3}\right)-q B_{n}\left(q^{3}\right)-q^{2} C_{n}\left(q^{3}\right)
$$

Then these polynomials have non-negative coefficients.

Recent Developments

Conjecture (

Let the polynomials $A_{n}(q), B_{n}(q)$ and $C_{n}(q)$ be defined by the relationship

$$
\frac{(q ; q)_{3 n}}{\left(q^{3} ; q^{3}\right)_{n}}=A_{n}\left(q^{3}\right)-q B_{n}\left(q^{3}\right)-q^{2} C_{n}\left(q^{3}\right) .
$$

Then these polynomials have non-negative coefficients.

Conjecture (Second Borwein Conjecture)

Let the polynomials $\alpha_{n}(q), \beta_{n}(q)$ and $\gamma_{n}(q)$ be defined by the relationship

$$
\frac{(q ; q)_{3 n}^{2}}{\left(q^{3} ; q^{3}\right)_{n}^{2}}=\alpha_{n}\left(q^{3}\right)-q \beta_{n}\left(q^{3}\right)-q^{2} \gamma_{n}\left(q^{3}\right)
$$

Then these polynomials have non-negative coefficients.

Recent Developments

Conjecture (First Borwein Conjecture)

Let the polynomials $A_{n}(q), B_{n}(q)$ and $C_{n}(q)$ be defined by the relationship

$$
\frac{(q ; q)_{3 n}}{\left(q^{3} ; q^{3}\right)_{n}}=A_{n}\left(q^{3}\right)-q B_{n}\left(q^{3}\right)-q^{2} C_{n}\left(q^{3}\right)
$$

Then these polynomials have non-negative coefficients.

Recent Developments

Conjecture (First Borwein Conjecture)

Let the polynomials $A_{n}(q), B_{n}(q)$ and $C_{n}(q)$ be defined by the relationship

$$
\frac{(q ; q)_{3 n}}{\left(q^{3} ; q^{3}\right)_{n}}=A_{n}\left(q^{3}\right)-q B_{n}\left(q^{3}\right)-q^{2} C_{n}\left(q^{3}\right) .
$$

Then these polynomials have non-negative coefficients.

Conjecture (Third Borwein Conjecture)

Let the polynomials $\nu_{n}(q), \phi_{n}(q), \chi_{n}(q), \psi_{n}(q)$ and $\omega_{n}(q)$ be defined by the relationship

$$
\frac{(q ; q)_{5 n}}{\left(q^{5} ; q^{5}\right)_{n}}=\nu_{n}\left(q^{5}\right)-q \phi_{n}\left(q^{5}\right)-q^{2} \chi_{n}\left(q^{5}\right)-q^{3} \psi_{n}\left(q^{5}\right)-q^{4} \omega_{n}\left(q^{5}\right)
$$

Then these polynomials have non-negative coefficients.

Recent Developments

This is not all!

Recent Developments

This is not all!

Conjecture (Second Borwein Conjecture)

Let the polynomials $\alpha_{n}(q), \beta_{n}(q)$ and $\gamma_{n}(q)$ be defined by the relationship

$$
\frac{(q ; q)_{3 n}^{2}}{\left(q^{3} ; q^{3}\right)_{n}^{2}}=\alpha_{n}\left(q^{3}\right)-q \beta_{n}\left(q^{3}\right)-q^{2} \gamma_{n}\left(q^{3}\right)
$$

Then these polynomials have non-negative coefficients.

Recent Developments

This is not all!

Conjecture (Second Borwein Conjecture)

Let the polynomials $\alpha_{n}(q), \beta_{n}(q)$ and $\gamma_{n}(q)$ be defined by the relationship

$$
\frac{(q ; q)_{3 n}^{2}}{\left(q^{3} ; q^{3}\right)_{n}^{2}}=\alpha_{n}\left(q^{3}\right)-q \beta_{n}\left(q^{3}\right)-q^{2} \gamma_{n}\left(q^{3}\right)
$$

Then these polynomials have non-negative coefficients.

Conjecture (Chen Wang: The "Cubic Borwein

 Conjecture")Let the polynomials $\widetilde{\alpha}_{n}(q), \widetilde{\beta}_{n}(q)$ and $\widetilde{\gamma}_{n}(q)$ be defined by the relationship

$$
\frac{(q ; q)_{3 n}^{3}}{\left(q^{3} ; q^{3}\right)_{n}^{3}}=\widetilde{\alpha}_{n}\left(q^{3}\right)-q \widetilde{\beta}_{n}\left(q^{3}\right)-q^{2} \widetilde{\gamma}_{n}\left(q^{3}\right)
$$

Then these polynomials have non-negative coefficients.

Recent Developments

Question:

Recent Developments

Question:
Is Wang's proof just an isolated instance, or can similar ideas also lead to proofs of the other conjectures?

Recent Developments

Question:

Is Wang's proof just an isolated instance, or can similar ideas also lead to proofs of the other conjectures?

Problem: There are no reasonable explicit formulae for the polynomials $\alpha_{n}(q), \beta_{n}(q)$, etc. in these conjectures. In particular, there is no analogue of Andrews'
$B_{n}(q)=\sum_{j=0}^{(n-1) / 3} \frac{q^{3 j^{2}+3 j}\left(1-q^{3 j+2}+q^{n+1}-q^{n+3 j+2}\right)\left(q^{3} ; q^{3}\right)_{n-j-1}(q ; q)_{3 j}}{(q ; q)_{n-3 j-1}\left(q^{3} ; q^{3}\right)_{2 j+1}\left(q^{3} ; q^{3}\right)_{j}}$,
and it is unlikely that a formula of this kind exists for $\alpha_{n}(q)$, $\beta_{n}(q)$, etc.
Thus, it seems that we cannot even get started.

Recent Developments

Question:
Is Wang's proof just an isolated instance, or can similar ideas also lead to proofs of the other conjectures?

Recent Developments

Question:

Is Wang's proof just an isolated instance, or can similar ideas also lead to proofs of the other conjectures?

IDEA: Why not apply saddle point techniques directly to Borwein's polynomials?

Summary of Results

Summary of Results

C. Wang, C.K., An asymptotic approach to Borwein-type sign pattern theorems, ar χ iv:2201.12415.

Contains a uniform proof of:

- the First Borwein Conjecture,
- the Second Borwein Conjecture,
- "two thirds" of Wang's Cubic Borwein Conjecture.

Summary of Results

C. Wang, C.K., An asymptotic approach to Borwein-type sign pattern theorems, ar χ iv:2201.12415.

Contains a uniform proof of:

- the First Borwein Conjecture,
- the Second Borwein Conjecture,
- "two thirds" of Wang's Cubic Borwein Conjecture.

Further work will lead to a proof of (at least) "three fifth" of the Third Borwein Conjecture.

Outline of Approach

Outline of Approach

(1) show that the conjectures hold for the "first few" and the "last few" coefficients;
(2) represent the coefficients by a contour integral;
(3) divide the contour into two parts, the "peak part" (the part close to the dominant saddle points of the integrand) and the remaining part, the "tail part";
(9) for "large" n, bound the error made by approximating the "peak part" by a Gaußian integral (the "peak error");
(3) for "large" n, bound the error contributed by the "tail part" (the "tail error");
(0) verify the conjectures for "small" n;
(O) put everything together to complete the proofs.

The "Borwein polynomial"

Let

$$
\begin{aligned}
P_{n}(q) & :=\frac{(q ; q)_{3 n}}{\left(q^{3} ; q^{3}\right)_{n}} \\
& =(1-q)\left(1-q^{2}\right)\left(1-q^{4}\right)\left(1-q^{5}\right) \cdots\left(1-q^{3 n-2}\right)\left(1-q^{3 n-1}\right)
\end{aligned}
$$

Let

$$
\begin{aligned}
P_{n}(q) & :=\frac{(q ; q)_{3 n}}{\left(q^{3} ; q^{3}\right)_{n}} \\
& =(1-q)\left(1-q^{2}\right)\left(1-q^{4}\right)\left(1-q^{5}\right) \cdots\left(1-q^{3 n-2}\right)\left(1-q^{3 n-1}\right)
\end{aligned}
$$

- The First Borwein Conjecture is about $P_{n}(q)$.
- The Second Borwein Conjecture is about $P_{n}^{2}(q)$.
- Wang's Cubic Borwein Conjecture is about $P_{n}^{3}(q)$.

Step 1: the "first few" coefficients

Step 1: the "first few" coefficients

It is easy to see that the first $3 n+1$ coefficients (and hence also the last $3 n+1$ coefficients) of $P_{n}(q)^{\delta}$ and $P_{\infty}(q)^{\delta}$, for $\delta=1,2,3$, agree!

Step 1: the "first few" coefficients

It is easy to see that the first $3 n+1$ coefficients (and hence also the last $3 n+1$ coefficients) of $P_{n}(q)^{\delta}$ and $P_{\infty}(q)^{\delta}$, for $\delta=1,2,3$, agree!

- We have seen that the sign pattern $+--+--\cdots$ holds for the coefficients of

$$
P_{\infty}(q)=\frac{(q ; q)_{\infty}}{\left(q^{3} ; q^{3}\right)_{\infty}}
$$

Step 1: the "first few" coefficients

It is easy to see that the first $3 n+1$ coefficients (and hence also the last $3 n+1$ coefficients) of $P_{n}(q)^{\delta}$ and $P_{\infty}(q)^{\delta}$, for $\delta=1,2,3$, agree!

- We have seen that the sign pattern $+--+--\cdots$ holds for the coefficients of

$$
P_{\infty}(q)=\frac{(q ; q)_{\infty}}{\left(q^{3} ; q^{3}\right)_{\infty}}
$$

- A result of Kane (2004) shows the sign pattern $+--+--\cdots$ for the coefficients of

$$
\frac{(q ; q)_{\infty}^{2}}{\left(q^{3} ; q^{3}\right)_{\infty}^{2}}
$$

- Borwein, Borwein and Garvan (1994) showed the sign pattern $+--+--\cdots$ for the coefficients of

$$
\frac{(q ; q)_{\infty}^{3}}{\left(q^{3} ; q^{3}\right)_{\infty}^{3}}
$$

Step 1: the "first few" coefficients

Summary: With $\delta=1,2,3$, it "suffices" to prove that

$$
\left\langle q^{m}\right\rangle P_{n}^{\delta}(q)
$$

has the sign pattern $+--+--\cdots$ for $3 n \leq m \leq \operatorname{deg} P_{n}^{\delta}(q)-3 n$.

Step 2: the contour integral representation

Step 2: the contour integral representation

By Cauchy's formula, we have

$$
\left\langle q^{m}\right\rangle P_{n}^{\delta}(q)=\frac{1}{2 \pi i} \int_{\Gamma} P_{n}^{\delta}(q) \frac{d q}{q^{m+1}},
$$

where $\delta=1,2,3$.

Step 2: the contour integral representation

By Cauchy's formula, we have

$$
\left\langle q^{m}\right\rangle P_{n}^{\delta}(q)=\frac{1}{2 \pi i} \int_{\Gamma} P_{n}^{\delta}(q) \frac{d q}{q^{m+1}},
$$

where $\delta=1,2,3$.
We choose as contour Γ a circle of radius r, where r has to be chosen appropriately. After substitution $q=r e^{i \theta}$, we obtain

$$
\left\langle q^{m}\right\rangle P_{n}^{\delta}(q)=\frac{r^{-m}}{2 \pi} \int_{-\pi}^{\pi} P_{n}^{\delta}\left(r e^{i \theta}\right) e^{-m i \theta} d \theta
$$

Step 2: the contour integral representation

$$
\left\langle q^{m}\right\rangle P_{n}^{\delta}(q)=\frac{r^{-m}}{2 \pi} \int_{-\pi}^{\pi} P_{n}^{\delta}\left(r e^{i \theta}\right) e^{-m i \theta} d \theta,
$$

where $\delta=1,2,3$.

Step 2: the contour integral representation

$$
\left\langle q^{m}\right\rangle P_{n}^{\delta}(q)=\frac{r^{-m}}{2 \pi} \int_{-\pi}^{\pi} P_{n}^{\delta}\left(r e^{i \theta}\right) e^{-m i \theta} d \theta,
$$

where $\delta=1,2,3$.

$\left|P_{10}(q)\right|$ at $q=.95 e^{i \theta}$ at logarithmic scale

Step 3: "peak part" and "tail part"

$$
\left\langle q^{m}\right\rangle P_{n}^{\delta}(q)=\frac{r^{-m}}{2 \pi} \int_{-\pi}^{\pi} P_{n}^{\delta}\left(r e^{i \theta}\right) e^{-m i \theta} d \theta,
$$

Step 3: "peak part" and "tail part"

$$
\left\langle q^{m}\right\rangle P_{n}^{\delta}(q)=\frac{r^{-m}}{2 \pi} \int_{-\pi}^{\pi} P_{n}^{\delta}\left(r e^{i \theta}\right) e^{-m i \theta} d \theta
$$

We need to cut the integration domain into two pieces: to this end, we choose an (appropriate) cut-off θ_{0}.

- The peak part is

$$
I_{\text {peak }}:=\left[-2 \pi / 3-\theta_{0},-2 \pi / 3+\theta_{0}\right] \cup\left[2 \pi / 3-\theta_{0}, 2 \pi / 3+\theta_{0}\right]
$$

- The tail part is $I_{\text {tail }}:=[-\pi, \pi] \backslash I_{\text {peak }}$.

Step 3: "peak part" and "tail part"

$$
\left\langle q^{m}\right\rangle P_{n}^{\delta}(q)=\frac{r^{-m}}{2 \pi} \int_{-\pi}^{\pi} P_{n}^{\delta}\left(r e^{i \theta}\right) e^{-m i \theta} d \theta,
$$

We need to cut the integration domain into two pieces: to this end, we choose an (appropriate) cut-off θ_{0}.

- The peak part is

$$
I_{\text {peak }}:=\left[-2 \pi / 3-\theta_{0},-2 \pi / 3+\theta_{0}\right] \cup\left[2 \pi / 3-\theta_{0}, 2 \pi / 3+\theta_{0}\right] \text {. }
$$

- The tail part is $I_{\text {tail }}:=[-\pi, \pi] \backslash I_{\text {peak }}$.

The cut-off is chosen as

$$
\theta_{0}:=\frac{10}{81} \cdot \frac{1-r^{3}}{1-r^{3 n}},
$$

where r is chosen so as to minimise $r^{-m}\left|P_{n}^{\delta}\left(r e^{2 \pi i / 3}\right)\right|$; it is the unique solution to the approximate saddle point equation

$$
r \operatorname{Re}\left(\frac{d}{d r} \log P_{n}\left(r e^{2 \pi i / 3}\right)\right)=\frac{m}{\delta} .
$$

Step 3: "peak part" and "tail part"

$$
\left\langle q^{m}\right\rangle P_{n}^{\delta}(q)=\frac{r^{-m}}{2 \pi} \int_{-\pi}^{\pi} P_{n}^{\delta}\left(r e^{i \theta}\right) e^{-m i \theta} d \theta,
$$

Step 3: "peak part" and "tail part"

$$
\left\langle q^{m}\right\rangle P_{n}^{\delta}(q)=\frac{r^{-m}}{2 \pi} \int_{-\pi}^{\pi} P_{n}^{\delta}\left(r e^{i \theta}\right) e^{-m i \theta} d \theta,
$$

Lemma

For all integers $n \geq 1$ and $m \in\left(0, \delta \operatorname{deg} P_{n}\right)$, with $\delta \in\{1,2,3\}$, the approximate saddle point equation

$$
r \operatorname{Re}\left(\frac{d}{d r} \log P_{n}\left(r e^{2 \pi i / 3}\right)\right)=\frac{m}{\delta}
$$

has a unique solution $r=r_{m, n} \in \mathbb{R}^{+}$. Moreover, if $3 n \leq m \leq\left(\delta \operatorname{deg} P_{n}\right) / 2$, then we have $r_{0}<r \leq 1$, where

$$
r_{0}=e^{-\sqrt{4 \delta / 27 n}}
$$

Furthermore, as a function in m, the solution $r=r_{m, n}$ to the approximate saddle point equation is increasing.

Steps 4 and 5: bounding the approximation errors

$$
\left\langle q^{m}\right\rangle P_{n}^{\delta}(q)=\frac{r^{-m}}{2 \pi} \int_{-\pi}^{\pi} P_{n}^{\delta}\left(r e^{i \theta}\right) e^{-m i \theta} d \theta
$$

Steps 4 and 5: bounding the approximation errors

$$
\left\langle q^{m}\right\rangle P_{n}^{\delta}(q)=\frac{r^{-m}}{2 \pi} \int_{-\pi}^{\pi} P_{n}^{\delta}\left(r e^{i \theta}\right) e^{-m i \theta} d \theta
$$

- The peak part is estimated by a Gaußian integral. A relative error of $\varepsilon_{0, P_{n}^{\delta}}(m, r)$ occurs.
- The tail part is bounded above by a fraction of this Gaußian integral. A relative error of $\varepsilon_{1, P_{n}^{\delta}}(r)$ occurs.

$$
\left\langle q^{m}\right\rangle P_{n}^{\delta}(q)=\frac{r^{-m}}{2 \pi} \int_{-\pi}^{\pi} P_{n}^{\delta}\left(r e^{i \theta}\right) e^{-m i \theta} d \theta,
$$

The fundamental inequality that results from these considerations is:

$$
\begin{aligned}
& \left\lvert\, \begin{aligned}
& \frac{r^{m} \sqrt{2 \pi g_{Q_{n}}(r)}}{\operatorname{erf}\left(\theta_{0} \sqrt{g_{Q_{n}}(r) / 2}\right)} \frac{1}{\left|Q_{n}\left(r e^{2 \pi i / 3}\right)\right|}\left[q^{m}\right] Q_{n}(q) \\
&-2 \cos \left(\arg Q_{n}\left(r e^{2 \pi i / 3}\right)-2 m \pi / 3\right) \\
& \leq \epsilon_{0, Q_{n}}(m, r)+\epsilon_{1, Q_{n}}(r)
\end{aligned}\right.,
\end{aligned}
$$

where $Q_{n}(q)=P_{n}^{\delta}(q)$ and

$$
g_{Q_{n}}(r)=-\left.\operatorname{Re} \frac{\partial^{2}}{\partial \theta^{2}} \log Q_{n}\left(r e^{i \theta}\right)\right|_{\theta=2 \pi / 3}
$$

$$
\left\langle q^{m}\right\rangle P_{n}^{\delta}(q)=\frac{r^{-m}}{2 \pi} \int_{-\pi}^{\pi} P_{n}^{\delta}\left(r e^{i \theta}\right) e^{-m i \theta} d \theta,
$$

The fundamental inequality that results from these considerations is:

$$
\begin{aligned}
& \left\lvert\, \begin{aligned}
\frac{r^{m} \sqrt{2 \pi g_{Q_{n}}(r)}}{\operatorname{erf}\left(\theta_{0} \sqrt{g_{Q_{n}}(r) / 2}\right)} \frac{1}{\left|Q_{n}\left(r e^{2 \pi i / 3}\right)\right|}\left[q^{m}\right] Q_{n}(q) \\
-2 \cos \left(\arg Q_{n}\left(r e^{2 \pi i / 3}\right)-2 m \pi / 3\right)
\end{aligned}\right. \\
& \quad \leq \epsilon_{0, Q_{n}}(m, r)+\epsilon_{1, Q_{n}}(r)
\end{aligned}
$$

where $Q_{n}(q)=P_{n}^{\delta}(q)$ and

$$
g_{Q_{n}}(r)=-\left.\operatorname{Re} \frac{\partial^{2}}{\partial \theta^{2}} \log Q_{n}\left(r e^{i \theta}\right)\right|_{\theta=2 \pi / 3}
$$

Steps 4 and 5: bounding the approximation errors

$$
\left\langle q^{m}\right\rangle P_{n}^{\delta}(q)=\frac{r^{-m}}{2 \pi} \int_{-\pi}^{\pi} P_{n}^{\delta}\left(r e^{i \theta}\right) e^{-m i \theta} d \theta
$$

Steps 4 and 5: bounding the approximation errors

$$
\left\langle q^{m}\right\rangle P_{n}^{\delta}(q)=\frac{r^{-m}}{2 \pi} \int_{-\pi}^{\pi} P_{n}^{\delta}\left(r e^{i \theta}\right) e^{-m i \theta} d \theta
$$

Hence: there are two tasks:
(1) Bound the argument $\arg P_{n}\left(r e^{2 \pi i / 3}\right)$.
(2) Make sure that $\epsilon_{0, Q_{n}}(m, r)+\epsilon_{1, Q_{n}}(r)$ is smaller than $2 \cos \left(\arg Q_{n}\left(r e^{2 \pi i / 3}\right)-2 m \pi / 3\right)$, where $Q_{n}(q)=P_{n}^{\delta}(q)$.

Steps 4 and 5: bounding the approximation errors

$$
\left\langle q^{m}\right\rangle P_{n}^{\delta}(q)=\frac{r^{-m}}{2 \pi} \int_{-\pi}^{\pi} P_{n}^{\delta}\left(r e^{i \theta}\right) e^{-m i \theta} d \theta
$$

Hence: there are two tasks:
(1) Bound the argument $\arg P_{n}\left(r e^{2 \pi i / 3}\right)$.
(2) Make sure that $\epsilon_{0, Q_{n}}(m, r)+\epsilon_{1, Q_{n}}(r)$ is smaller than $2 \cos \left(\arg Q_{n}\left(r e^{2 \pi i / 3}\right)-2 m \pi / 3\right)$, where $Q_{n}(q)=P_{n}^{\delta}(q)$.

Lemma

For $n \in \mathbb{Z}^{+}, \arg P_{n}\left(r e^{2 \pi i / 3}\right)$ is increasing with respect to r. Moreover, for $r \in(0,1]$ and $n \in \mathbb{Z}^{+}$, we have $\arg P_{n}\left(r e^{2 \pi i / 3}\right) \in(-\pi / 18,0]$.

Steps 4 and 5: bounding the approximation errors

Together with precise bounds on the peak and tail errors $\epsilon_{0, Q_{n}}(m, r)$ and $\epsilon_{1, Q_{n}}(r)$, this leads to proofs of the sign pattern $+--+--\cdots$ for the coefficients for the following cases:

- $P_{n}(q)$ for $n \geq 5300$;
- $P_{n}^{2}(q)$ for $n \geq 7000$;
- $\left\langle q^{m}\right\rangle P_{n}^{3}(q)$ for $n \geq 3150$ and $m \equiv 0,1(\bmod 3)$.

Step 6: computer verification for "small"

By a straightforward computer programme, one can verify the sign pattern $+--+--\cdots$ for the coefficients for the following cases:

- $P_{n}(q)$ for $n<5300$;
- $P_{n}^{2}(q)$ for $n<7000$;
- $\left\langle q^{m}\right\rangle P_{n}^{3}(q)$ for $n<3150$ and $m \equiv 0,1(\bmod 3)$.

This proves the First Borwein Conjecture, the Second Borwein Conjecture, and "two thirds" of the Cubic Borwein Conjecture.

Some of the (nasty) details

Some of the (nasty) details

〈 skipped 〉

Epilogue

Epilogue

What is the problem with the Cubic Borwein Conjecture?

Epilogue

What is the problem with the Cubic Borwein Conjecture?

Recall:
One of our tasks was: make sure that $\epsilon_{0, Q_{n}}(m, r)+\epsilon_{1, Q_{n}}(r)$ is smaller than $2 \cos \left(\arg P_{n}^{3}\left(r e^{2 \pi i / 3}\right)-2 m \pi / 3\right)$.
To help us, we have:

Lemma

For $r \in(0,1]$ and $n \in \mathbb{Z}^{+}$, we have $\arg P_{n}\left(r e^{2 \pi i / 3}\right) \in(-\pi / 18,0]$.

Epilogue

What is the problem with the Cubic Borwein Conjecture?

Recall:
One of our tasks was: make sure that $\epsilon_{0, Q_{n}}(m, r)+\epsilon_{1, Q_{n}}(r)$ is smaller than $2 \cos \left(\arg P_{n}^{3}\left(r e^{2 \pi i / 3}\right)-2 m \pi / 3\right)$.
To help us, we have:

Lemma

For $r \in(0,1]$ and $n \in \mathbb{Z}^{+}$, we have $\arg P_{n}\left(r e^{2 \pi i / 3}\right) \in(-\pi / 18,0]$.
The same problem will be encountered when dealing with the Third Borwein Conjecture.

Epilogue

What else?

Epilogue

What else?

Computer experiments led us to new conjectures.

Conjecture (A modulus 4 "Borwein Conjecture")

Let n be a positive integer and $\delta \in\{1,2,3\}$. Furthermore, consider the expansion of the polynomial

$$
\frac{(q ; q)_{4 n}^{\delta}}{\left(q^{4} ; q^{4}\right)_{n}^{\delta}}=\sum_{m=0}^{D} c_{m}^{(\delta)}(n) q^{m}
$$

which has degree $D=6 \delta n^{2}$. Then

$$
c_{4 m}^{(\delta)}(n) \geq 0 \quad \text { and } \quad c_{4 m+2}^{(\delta)}(n) \leq 0, \quad \text { for all } m \text { and } n
$$

Epilogue

while

$$
c_{4 m+1}^{(\delta)}(n) \leq 0, \quad \text { for } \quad \begin{cases}0 \leq m \leq \frac{1}{8}\left(6 \delta n^{2}-8\right), & \text { if } n \text { is even }, \\ 0 \leq m \leq \frac{1}{8}\left(6 \delta n^{2}-8+2 \delta\right), & \text { if } n \text { is odd },\end{cases}
$$

and
$c_{4 m+3}^{(\delta)}(n) \geq 0$, for $\begin{cases}0 \leq m \leq \frac{1}{8}\left(6 \delta n^{2}-8\right), & \text { if } n \text { is even, } \\ 0 \leq m \leq \frac{1}{8}\left(6 \delta n^{2}-6 \delta+8 \chi(\delta=3)\right), & \text { if } n \text { is odd, }\end{cases}$
with the exception of two coefficients: for $\delta=1$ and $n=5$, we have $c_{71}^{(1)}(5)=-1$ and $c_{79}^{(1)}(5)=1$.

Epilogue

Conjecture (A modulus 7 "Borwein Conjecture")

For positive integers n, consider the expansion of the polynomial

$$
\frac{(q ; q)_{7 n}}{\left(q^{7} ; q^{7}\right)_{n}}=\sum_{m=0}^{21 n^{2}} d_{m}(n) q^{m}
$$

Then

$$
\begin{array}{r}
d_{7 m}(n) \geq 0 \quad \text { and } \quad d_{7 m+1}(n), d_{7 m+3}(n), d_{7 m+4}(n), d_{7 m+6}(n) \leq 0 \\
\text { for all } m \text { and } n
\end{array}
$$

while

$$
d_{7 m+5}(n)\left\{\begin{array}{l}
\geq 0, \quad \text { for } m \leq 3 \alpha(n) n^{2} \\
\leq 0, \quad \text { for } m>3 \alpha(n) n^{2}
\end{array}\right.
$$

where $\alpha(n)$ seems to stabilise around 0.302 .

Epilogue

A final point

Epilogue

A final point

When Doron Zeilberger saw Chen Wang presenting his proof of the First Borwein Conjecture, his immediate reaction was:

Epilogue

A final point

When Doron Zeilberger saw Chen Wang presenting his proof of the First Borwein Conjecture, his immediate reaction was:
"Great! However, I want a combinatorial proof."

Epilogue

A final point

When Doron Zeilberger saw Chen Wang presenting his proof of the First Borwein Conjecture, his immediate reaction was:

> "Great! However, I want a combinatorial proof."

Is the Borwein Conjecture (and its variations) about Combinatorics or Asymptotics?

Epilogue

A final point

Is the Borwein Conjecture (and its variations) about Combinatorics or Asymptotics?

Epilogue

A final point

Is the Borwein Conjecture (and its variations) about Combinatorics or Asymptotics?

Not so clear ...

Epilogue

A final point

Is the Borwein Conjecture (and its variations) about Combinatorics or Asymptotics?

Not so clear ...
One must simply admit that until now "combinatorial" attacks have not led to any progress on the Borwein Conjectures. By contrast, the first proof of the First Borwein Conjecture by Wang has been accomplished using analytic methods, as well as the proofs that I have shown here.

Epilogue

A final point

Is the Borwein Conjecture (and its variations) about Combinatorics or Asymptotics?

Not so clear ...
One must simply admit that until now "combinatorial" attacks have not led to any progress on the Borwein Conjectures. By contrast, the first proof of the First Borwein Conjecture by Wang has been accomplished using analytic methods, as well as the proofs that I have shown here.
We have just seen the "modulus 7 Borwein Conjecture" which seems difficult to deal with by combinatorial means.

Epilogue

A final point

Is the Borwein Conjecture (and its variations) about Combinatorics or Asymptotics?

Not so clear ...
One must simply admit that until now "combinatorial" attacks have not led to any progress on the Borwein Conjectures. By contrast, the first proof of the First Borwein Conjecture by Wang has been accomplished using analytic methods, as well as the proofs that I have shown here.
We have just seen the "modulus 7 Borwein Conjecture" which seems difficult to deal with by combinatorial means.
Gaurav Bhatnagar and Michael Schlosser made several conjectures of "Borwein type" which are also "asymptotic" conjectures.

Epilogue

A final point

Is the Borwein Conjecture (and its variations) about Combinatorics or Asymptotics?

Epilogue

A final point

Is the Borwein Conjecture (and its variations) about Combinatorics or Asymptotics?
I guess the last word in this matter has not yet been spoken...

