Lattice quotients of weak order intervals in subword complexes

Noémie Cartier

2 septembre 2022

Joint work with :
Nantel Bergeron
Cesar Ceballos
Vincent Pilaud

The weak order on permutations
Inversions of $\omega \in \mathfrak{S}_{n}: i<j$ and $\omega^{-1}(i)>\omega^{-1}(j) \quad \rightarrow(1,2)$ in 24135

Inversions of $\omega \in \mathfrak{S}_{n}: i<j$ and $\omega^{-1}(i)>\omega^{-1}(j) \quad \rightarrow(1,2)$ in 24135

Right weak order on permutations : $\pi \leqslant \omega \Longleftrightarrow \operatorname{inv}(\pi) \subseteq \operatorname{inv}(\omega)$

Inversions of $\omega \in \mathfrak{S}_{n}: i<j$ and $\omega^{-1}(i)>\omega^{-1}(j) \quad \rightarrow(1,2)$ in 24135

Right weak order on permutations : $\pi \leqslant \omega \Longleftrightarrow \operatorname{inv}(\pi) \subseteq \operatorname{inv}(\omega)$

Theorem

The weak order on \mathfrak{S}_{n} is a lattice.

The weak order on permutations
Covers of the right weak order :

$$
\begin{aligned}
& U a b V \lessdot U b a V \\
& 31245 \lessdot 31425
\end{aligned}
$$

The weak order on permutations
Covers of the right weak order:

$$
\begin{aligned}
& U a b V \lessdot U b a V \\
& 31245 \lessdot 31425
\end{aligned}
$$

$$
\omega \lessdot \omega \tau_{i} \text { with } \omega(i)<\omega(i+1)
$$

The weak order on permutations
Covers of the right weak order :

$$
\begin{aligned}
& U a b V \lessdot U b a V \\
& 31245 \lessdot 31425
\end{aligned}
$$

$$
\begin{gathered}
\omega \lessdot \omega \tau_{i} \text { with } \omega(i)<\omega(i+1) \\
\Rightarrow \text { importance of generating set } S=\left\{\tau_{i}=(i, i+1) \mid 1 \leqslant i<n\right\}
\end{gathered}
$$

Covers of the right weak order:

$$
\begin{aligned}
& U a b V \lessdot U b a V \\
& 31245 \lessdot 31425
\end{aligned}
$$

\Rightarrow importance of generating set $S=\left\{\tau_{i}=(i, i+1) \mid 1 \leqslant i<n\right\}$
Sorting network \leftrightarrow simple reflections product

Properties of words on S :

- minimal length for $\omega: I(\omega)=|\operatorname{inv}(\omega)|$ (reduced words)

Properties of words on S :

- minimal length for $\omega: I(\omega)=|\operatorname{inv}(\omega)|$ (reduced words)

■ $\pi \leqslant \omega$ iff $\omega=\pi \sigma$ and $I(\omega)=I(\pi)+I(\sigma): \pi$ is a prefix of ω

Properties of words on S:

- minimal length for $\omega: I(\omega)=|\operatorname{inv}(\omega)|$ (reduced words)
- $\pi \leqslant \omega$ iff $\omega=\pi \sigma$ and $I(\omega)=I(\pi)+I(\sigma): \pi$ is a prefix of ω
- if $\pi \leqslant \omega$ then any reduced expression of ω has a reduced expression of π as a subword

Properties of words on S:
■ minimal length for $\omega: I(\omega)=|\operatorname{inv}(\omega)|$ (reduced words)

- $\pi \leqslant \omega$ iff $\omega=\pi \sigma$ and $I(\omega)=I(\pi)+I(\sigma): \pi$ is a prefix of ω
- if $\pi \leqslant \omega$ then any reduced expression of ω has a reduced expression of π as a subword

Reduction to minimal length :

Fix Q word on $S, \omega \in \mathfrak{S}_{n}$ $\operatorname{SC}(Q, \omega)$ the subword complex on Q representing ω :

- base set : indices of Q
- faces : complementaries of indices sets containing an expression of ω

Fix Q word on $S, \omega \in \mathfrak{S}_{n}$
$\operatorname{SC}(Q, \omega)$ the subword complex on Q representing ω :

- base set : indices of Q
- faces : complementaries of indices sets containing an expression of ω

An example :

Facet $\{1,2,3,8,9\}$ of $\mathrm{SC}\left(\tau_{4} \tau_{3} \tau_{2} \tau_{1} \tau_{4} \tau_{3} \tau_{2} \tau_{4} \tau_{3} \tau_{4}, 25143\right)$

Fix Q word on $S, \omega \in \mathfrak{S}_{n}$
$\operatorname{SC}(Q, \omega)$ the subword complex on Q representing ω :

- base set : indices of Q
- faces : complementaries of indices sets containing an expression of ω

An example :

Facet $\{1,2,3,8,9\}$ of $\mathrm{SC}\left(\tau_{4} \tau_{3} \tau_{2} \tau_{1} \tau_{4} \tau_{3} \tau_{2} \tau_{4} \tau_{3} \tau_{4}, 25143\right)$

Structure given by flips : from one facet to another

Contact graph :

- vertices: pipes
- edges : from a to b if ${ }^{a} I_{b}$ appears in the picture

Contact graph :

- vertices: pipes
- edges : from a to b if ${ }^{a} I_{b}$ appears in the picture

Contact graph :

- vertices: pipes
- edges : from a to b if ${ }^{a} I_{b}$ appears in the picture

Why look at this?

Contact graph :

- vertices: pipes
- edges : from a to b if ${ }^{a} I_{b}$ appears in the picture

Why look at this?
Acyclic contact graph \Longleftrightarrow vertex of the brick polytope

Pipe dreams
Q : triangular word

$$
\text { and } \omega=1 n(n-1) \ldots 2
$$

Noémie Cartier

Lattice quotients of weak order intervals in subword complexes

A very special case

Q ：triangular word

$$
\text { and } \omega=1 n(n-1) \ldots 2
$$

A very special case

Q : triangular word

$$
\text { and } \omega=1 n(n-1) \ldots 2
$$

\Rightarrow this is the Tamari lattice!

Why the Tamari lattice?

Noémie Cartier

Lattice quotients of weak order intervals in subword complexes

Why the Tamari lattice?

Why the Tamari lattice?

Why the Tamari lattice?

A binary tree appears on the pipe dream \rightarrow bijection

Why the Tamari lattice?

A binary tree appears on the pipe dream \rightarrow bijection
Tree rotations \equiv flips \rightarrow lattice isomorphism (Woo, 2004)

The Tamari lattice is a lattice quotient of the weak order lattice (binary search trees insertion algorithm)

The Tamari lattice is a lattice quotient of the weak order lattice (binary search trees insertion algorithm)
\Rightarrow so is the flip order on this subword complex
\Rightarrow lattice morphism : BST insertion \Longleftrightarrow pipes insertion

The Tamari lattice is a lattice quotient of the weak order lattice (binary search trees insertion algorithm)
\Rightarrow so is the flip order on this subword complex
\Rightarrow lattice morphism : BST insertion \Longleftrightarrow pipes insertion

Can we find other lattice quotients of parts of the weak order with pipe dreams?

First extension : choose any permutation for the exit.

First extension : choose any permutation for the exit.
Restriction : only consider acyclic pipe dreams
\rightarrow from permutations to pipe dreams: contact graph extensions
\rightarrow domain of the application: weak order interval [id, ω]

First extension : choose any permutation for the exit.
Restriction: only consider acyclic pipe dreams
\rightarrow from permutations to pipe dreams : contact graph extensions
\rightarrow domain of the application: weak order interval [id, ω]

Theorem (Pilaud)

For any $\omega \in \mathfrak{S}_{n}$, the set $\Pi(\omega)$ of acyclic pipe dreams of exit permutation ω, ordered by ascending flips, is a lattice quotient of the weak order interval [id, ω].

First extension : choose any permutation for the exit.
Restriction: only consider acyclic pipe dreams
\rightarrow from permutations to pipe dreams : contact graph extensions
\rightarrow domain of the application: weak order interval [id, ω]

Theorem (Pilaud)

For any $\omega \in \mathfrak{S}_{n}$, the set $\Pi(\omega)$ of acyclic pipe dreams of exit permutation ω, ordered by ascending flips, is a lattice quotient of the weak order interval [id, ω].

Two algorithms to compute the morphism :

- insertion algorithm (pipe by pipe)
- sweeping algorithm (cell by cell)
\rightarrow name of the morphism: $\operatorname{lns}_{\omega}$

Generalized pipe dreams

Second extension : other sorting networks

Second extension : other sorting networks

alternating sorting networks $\leftrightarrow n$-shapes

Second extension : other sorting networks

alternating sorting networks $\leftrightarrow n$-shapes

Ins $_{F, \omega}$ is still well defined, BUT...

Second extension : other sorting networks

alternating sorting networks $\leftrightarrow n$-shapes

Ins $_{F, \omega}$ is still well defined, BUT...

- some linear extensions can be outside of [id, ω]
- the flip order is not always the image of the weak order

Second extension : other sorting networks

Ins $_{F, \omega}$ is still well defined, BUT...

- some linear extensions can be outside of [id, ω]
- the flip order is not always the image of the weak order

Restrictions:

- only consider strongly acyclic pipe dreams
- order on pipe dreams : acyclic order (weaker than flip order)

Theorem

For any n-shape F and $\omega \in \mathfrak{S}_{n}$ sortable on F, the map $\operatorname{lns}_{F, \omega}$ is a lattice morphism from the weak order interval $[i d, \omega]$ to the strongly acyclic pipe dreams ordered by the acyclic order.

Theorem

For any n-shape F and $\omega \in \mathfrak{S}_{n}$ sortable on F, the map $\operatorname{lns}_{F, \omega}$ is a lattice morphism from the weak order interval $[i d, \omega]$ to the strongly acyclic pipe dreams ordered by the acyclic order.

Theorem

If the maximal permutation $\omega_{0}=n(n-1) \ldots 21$ is sortable on F, then any linear extension of a pipe dream on F with exit permutation ω is in [id, ω], and all acyclic pipe dreams are strongly acyclic.

Further generalization : Coxeter groups

symmetric group \mathfrak{S}_{n}	Coxeter group W
transpositions $(i, i+1)$	simple reflections
reduced pipe dreams	subword complex
pair of pipes	root in Φ
$P^{\#}$ acyclic	root cone is pointed
$\pi \in \operatorname{lin}(P)$	root configuration $\subseteq \pi\left(\Phi^{+}\right)$

Theorem

For any word Q on S and $w \in W$ sortable on Q, the map $\operatorname{Ins}_{Q, w}$ is well-defined on the weak order interval $[e, w]$.

Theorem

For any word Q on S and $w \in W$ sortable on Q, the map $\operatorname{Ins}_{Q, w}$ is well-defined on the weak order interval $[e, w]$.

Theorem (Jahn \& Stump 2022)

If the Demazure product of Q is w_{0}, then for any $w \in W$ the application $\operatorname{lns}_{Q}(w, \cdot)$ is surjective on acyclic facets of $\operatorname{SC}(Q, w)$.

Theorem

For any word Q on S and $w \in W$ sortable on Q, the map $\operatorname{lns}_{Q, w}$ is well-defined on the weak order interval $[e, w]$.

Theorem (Jahn \& Stump 2022)

If the Demazure product of Q is w_{0}, then for any $w \in W$ the application $\operatorname{Ins}_{Q}(w, \cdot)$ is surjective on acyclic facets of $\operatorname{SC}(Q, w)$.

Conjecture

If Q is an alternating word on S and $w \in W$ is sortable on Q, then the application $\operatorname{Ins}_{Q, w}:[e, w] \mapsto \operatorname{SC}(Q, w)$ is a lattice morphism from the left weak order on $[e, w]$ to its image.

Thank you for your attention !

Q a word on S seen as a sorting network, here $\omega=\omega_{0}=n(n-1) \ldots 1$

Q a word on S seen as a sorting network, here $\omega=\omega_{0}=n(n-1) \ldots 1$

- bricks of Q : bounded cells

Q a word on S seen as a sorting network, here $\omega=\omega_{0}=n(n-1) \ldots 1$
- bricks of Q : bounded cells
- brick vector of $f \in \operatorname{SC}(Q, \omega)$: $i^{\text {th }}$ coordinate is the number of bricks under pipe i

Q a word on S seen as a sorting network, here $\omega=\omega_{0}=n(n-1) \ldots 1$
- bricks of Q : bounded cells
- brick vector of $f \in \operatorname{SC}(Q, \omega)$: $i^{\text {th }}$ coordinate is the number of bricks under pipe i2

$$
0 \quad \rightarrow(2,0,3)
$$

Q a word on S seen as a sorting network, here $\omega=\omega_{0}=n(n-1) \ldots 1$

- bricks of Q : bounded cells
- brick vector of $f \in \operatorname{SC}(Q, \omega): i^{\text {th }}$ coordinate is the number of bricks under pipe i

2
$0 \rightarrow(2,0,3)$
3

- brick polytope of $\mathrm{SC}(Q, \omega)$: convex hull of brick vectors of facets

Sweeping algorithm for $\omega=23145$ and $\pi=21345$

1 if $\omega^{-1}(i)<\omega^{-1}(j)$, add an elbow J
2 if $\omega^{-1}(i)>\omega^{-1}(j)$ and $\pi^{-1}(i)>\pi^{-1}(j)$, add a cross +
3 if i, j inversion of ω and non-inversion of π, add an elbow J if you can still make the pipes end in order ω that way (3a), and a cross + otherwise (3b)

Insertion algorithm for $\omega=3241$ and $\pi=2134$
The idea : keep track of cells containing only half of an elbow, and complete as many of those cells as possible when inserting a new pipe.

Insertion algorithm for $\omega=3241$ and $\pi=2134$
The idea : keep track of cells containing only half of an elbow, and complete as many of those cells as possible when inserting a new pipe.

Insertion algorithm for $\omega=3241$ and $\pi=2134$
The idea : keep track of cells containing only half of an elbow, and complete as many of those cells as possible when inserting a new pipe.

Insertion algorithm for $\omega=3241$ and $\pi=2134$
The idea : keep track of cells containing only half of an elbow, and complete as many of those cells as possible when inserting a new pipe.

Insertion algorithm for $\omega=3241$ and $\pi=2134$
The idea : keep track of cells containing only half of an elbow, and complete as many of those cells as possible when inserting a new pipe.

Insertion algorithm for $\omega=3241$ and $\pi=2134$
The idea : keep track of cells containing only half of an elbow, and complete as many of those cells as possible when inserting a new pipe.

Insertion algorithm for $\omega=3241$ and $\pi=2134$
The idea : keep track of cells containing only half of an elbow, and complete as many of those cells as possible when inserting a new pipe.

An acyclic but not strongly acyclic facet :

One linear extension : 15234 <31524.

