Pipe dreams

Noémie Cartier

2 septembre 2022

## Joint work with:

Nantel Bergeron Cesar Ceballos Vincent Pilaud



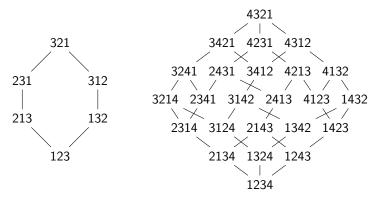
Weak order and simple reflections

Weak order and simple reflections

**Inversions** of  $\omega \in \mathfrak{S}_n : i < j$  and  $\omega^{-1}(i) > \omega^{-1}(j) \longrightarrow (1,2)$  in 24135

Weak order and simple reflections

**Inversions** of 
$$\omega \in \mathfrak{S}_n : i < j$$
 and  $\omega^{-1}(i) > \omega^{-1}(j) \longrightarrow (1,2)$  in 24135

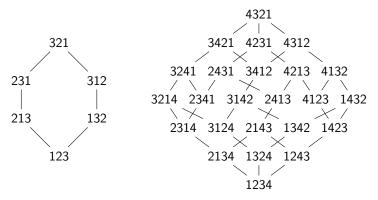


Right weak order on permutations :  $\pi \leqslant \omega \iff \operatorname{inv}(\pi) \subseteq \operatorname{inv}(\omega)$ 



Weak order and simple reflections

**Inversions** of 
$$\omega \in \mathfrak{S}_n : i < j$$
 and  $\omega^{-1}(i) > \omega^{-1}(j) \longrightarrow (1,2)$  in 24135



Right weak order on permutations :  $\pi \leqslant \omega \iff \operatorname{inv}(\pi) \subseteq \operatorname{inv}(\omega)$ 

#### Theorem

The weak order on  $\mathfrak{S}_n$  is a **lattice**.

0

Weak order and simple reflections

## Covers of the right weak order :

$$UabV \lessdot UbaV$$
  
 $31245 \lessdot 31425$ 

Weak order and simple reflections

0

## Covers of the right weak order:

$$UabV \lessdot UbaV$$
  
 $31245 \lessdot 31425$ 

$$\omega \lessdot \omega \tau_i$$
 with  $\omega(i) \lessdot \omega(i+1)$ 

## Covers of the right weak order :

$$UabV \lessdot UbaV$$
  
 $31245 \lessdot 31425$ 

$$\omega \lessdot \omega \tau_i$$
 with  $\omega(i) < \omega(i+1)$ 

$$\Rightarrow$$
 importance of generating set  $S = \{\tau_i = (i, i+1) \mid 1 \leqslant i < n\}$ 



0

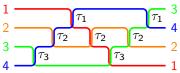
## Covers of the right weak order:

$$UabV \lessdot UbaV$$
  
 $31245 \lessdot 31425$ 

$$\omega \lessdot \omega \tau_i$$
 with  $\omega(i) < \omega(i+1)$ 

$$\Rightarrow$$
 importance of generating set  $S = \{\tau_i = (i, i+1) \mid 1 \leq i < n\}$ 

Sorting network ↔ simple reflections product





# Properties of words on S:

lacktriangle minimal length for  $\omega:I(\omega)=|\operatorname{inv}(\omega)|$  (reduced words)



# Properties of words on S:

- minimal length for  $\omega$  :  $I(\omega) = |\operatorname{inv}(\omega)|$  (reduced words)
- $\pi \leqslant \omega$  iff  $\omega = \pi \sigma$  and  $I(\omega) = I(\pi) + I(\sigma)$  :  $\pi$  is a **prefix** of  $\omega$

## Properties of words on S:

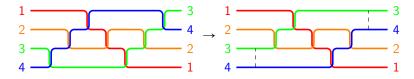
- lacktriangle minimal length for  $\omega:I(\omega)=|\operatorname{inv}(\omega)|$  (reduced words)
- $\blacksquare \ \pi \leqslant \omega \ \text{iff} \ \omega = \pi \sigma \ \text{and} \ \mathit{I}(\omega) = \mathit{I}(\pi) + \mathit{I}(\sigma) : \pi \ \text{is a prefix of} \ \omega$
- if  $\pi \leqslant \omega$  then any reduced expression of  $\omega$  has a reduced expression of  $\pi$  as a **subword**

## Properties of words on S:

- minimal length for  $\omega : I(\omega) = |\operatorname{inv}(\omega)|$  (reduced words)
- $\blacksquare \pi \leqslant \omega$  iff  $\omega = \pi \sigma$  and  $I(\omega) = I(\pi) + I(\sigma) : \pi$  is a **prefix** of  $\omega$
- if  $\pi \leq \omega$  then any reduced expression of  $\omega$  has a reduced expression of  $\pi$  as a **subword**

Pipe dreams

## Reduction to minimal length:



Fix Q word on S,  $\omega \in \mathfrak{S}_n$ SC $(Q,\omega)$  the **subword complex** on Q representing  $\omega$ :

- base set : indices of Q
- $\blacksquare$  faces : complementaries of indices sets containing an expression of  $\omega$

Fix Q word on  $S, \omega \in \mathfrak{S}_n$ 

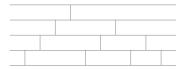
 $SC(Q,\omega)$  the **subword complex** on Q representing  $\omega$ :

- base set : indices of Q
- $lue{}$  faces : complementaries of indices sets containing an expression of  $\omega$

Pipe dreams

### An example :

Weak order and simple reflections



Facet  $\{1, 2, 3, 8, 9\}$  of  $SC(\tau_4\tau_3\tau_2\tau_1\tau_4\tau_3\tau_2\tau_4\tau_3\tau_4, 25143)$ 

Fix Q word on  $S, \omega \in \mathfrak{S}_n$ 

 $SC(Q,\omega)$  the **subword complex** on Q representing  $\omega$ :

- base set : indices of Q
- $lue{}$  faces : complementaries of indices sets containing an expression of  $\omega$

Pipe dreams

### An example :

Weak order and simple reflections

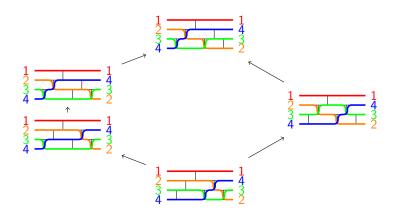


Facet  $\{1, 2, 3, 8, 9\}$  of  $SC(\tau_4\tau_3\tau_2\tau_1\tau_4\tau_3\tau_2\tau_4\tau_3\tau_4, 25143)$ 

Subwords and flips

Weak order and simple reflections

#### Structure given by flips: from one facet to another



Pipe dreams



Contact graph and acyclic facets

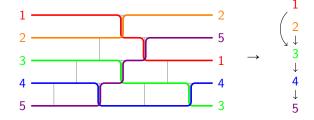
Weak order and simple reflections

## Contact graph:

- vertices : pipes
- edges: from a to b if  $\frac{a}{b}$  appears in the picture

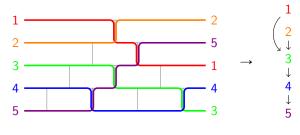
## Contact graph:

- vertices : pipes
- edges : from a to b if  $\frac{a}{b}$  appears in the picture



## Contact graph:

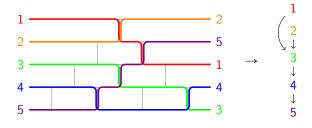
- vertices : pipes
- $\blacksquare$  edges : from a to b if  $\stackrel{a}{=} \coprod_{h}$  appears in the picture



Why look at this?

## Contact graph:

- vertices : pipes
- edges : from a to b if  $\stackrel{a}{=} \coprod_{b}$  appears in the picture



Why look at this?

Acyclic contact graph  $\iff$  vertex of the **brick polytope** 



$${\it Q}$$
 : triangular word

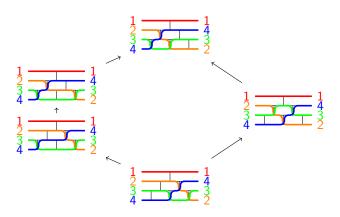
and  $\omega=1$  n (n-1)  $\dots$  2

Q: triangular word

Weak order and simple reflections



and 
$$\omega=1$$
  $n$   $(n-1)$  ... 2

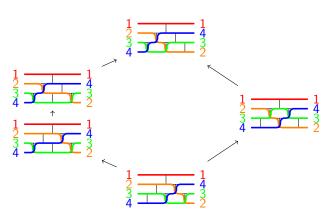


 ${\it Q}$  : triangular word

Weak order and simple reflections



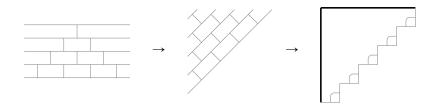
and 
$$\omega=1$$
  $n$   $(n-1)$  ... 2



⇒ this is the Tamari lattice!



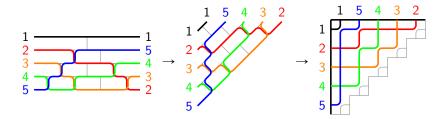
## Why the Tamari lattice?



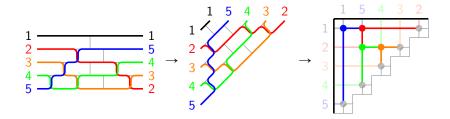
Pipe dreams

00000

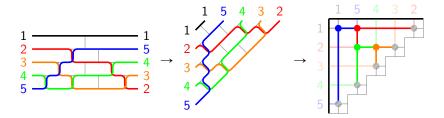
## Why the Tamari lattice?



## Why the Tamari lattice?

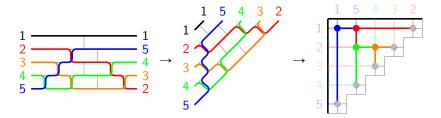


#### Why the Tamari lattice?



A binary tree appears on the pipe dream  $\rightarrow$  bijection

#### Why the Tamari lattice?



A binary tree appears on the pipe dream  $\rightarrow$  bijection

Tree rotations  $\equiv$  flips  $\rightarrow$  lattice isomorphism (Woo, 2004)



Weak order and simple reflections

The Tamari lattice is a **lattice quotient** of the weak order lattice (binary search trees insertion algorithm)

The Tamari lattice is a **lattice quotient** of the weak order lattice (binary search trees insertion algorithm)

- $\Rightarrow$  so is the flip order on this subword complex
- $\Rightarrow$  lattice morphism : BST insertion  $\iff$  pipes insertion



The Tamari lattice is a **lattice quotient** of the weak order lattice (binary search trees insertion algorithm)

- ⇒ so is the flip order on this subword complex
- $\Rightarrow$  lattice morphism : BST insertion  $\iff$  pipes insertion

Can we find other lattice quotients of parts of the weak order with pipe dreams?



Pipe dreams

Triangular pipe dreams

Weak order and simple reflections

First extension: choose any permutation for the exit.

First extension : choose any permutation for the exit.

Restriction: only consider acyclic pipe dreams

- $\rightarrow$  from permutations to pipe dreams : contact graph extensions
- ightarrow domain of the application : weak order interval  $[\mathrm{id},\omega]$



First extension : choose any permutation for the exit.

Restriction: only consider acyclic pipe dreams

- $\boldsymbol{\rightarrow}$  from permutations to pipe dreams : contact graph extensions
- ightarrow domain of the application : weak order interval  $[\mathrm{id},\omega]$

#### Theorem (Pilaud)

For any  $\omega \in \mathfrak{S}_n$ , the set  $\Pi(\omega)$  of acyclic pipe dreams of exit permutation  $\omega$ , ordered by ascending flips, is a **lattice quotient** of the weak order interval [id, $\omega$ ].



First extension : choose any permutation for the exit.

Restriction: only consider acyclic pipe dreams

- $\rightarrow$  from permutations to pipe dreams : contact graph extensions
- ightarrow domain of the application : weak order interval  $[\mathrm{id},\omega]$

#### Theorem (Pilaud)

For any  $\omega \in \mathfrak{S}_n$ , the set  $\Pi(\omega)$  of acyclic pipe dreams of exit permutation  $\omega$ , ordered by ascending flips, is a **lattice quotient** of the weak order interval [id, $\omega$ ].

Two algorithms to compute the morphism :

- insertion algorithm (pipe by pipe)
- sweeping algorithm (cell by cell)
- ightarrow name of the morphism :  ${\sf Ins}_\omega$



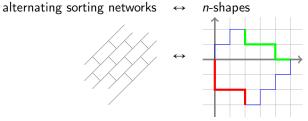
Pipe dreams

•0

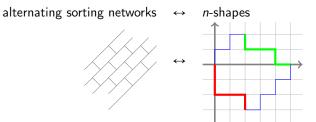
Weak order and simple reflections

Second extension: other sorting networks

# Second extension : other sorting networks

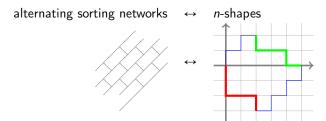


# Second extension : other sorting networks



 $Ins_{F,\omega}$  is still well defined, BUT...

## Second extension: other sorting networks

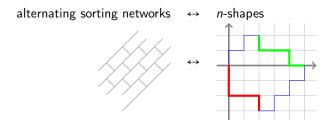


 $Ins_{F,\omega}$  is still well defined, BUT...

- $\blacksquare$  some linear extensions can be outside of [id,  $\omega$ ]
- the flip order is not always the image of the weak order



# Second extension: other sorting networks



 $Ins_{F,\omega}$  is still well defined, BUT...

- lacksquare some linear extensions can be outside of  $[\mathrm{id},\omega]$
- the flip order is not always the image of the weak order

#### Restrictions:

- only consider strongly acyclic pipe dreams
- order on pipe dreams : acyclic order (weaker than flip order)



00

Weak order and simple reflections

#### Theorem

For any n-shape F and  $\omega \in \mathfrak{S}_n$  sortable on F, the map  $\operatorname{Ins}_{F,\omega}$  is a **lattice** morphism from the weak order interval  $[\operatorname{id},\omega]$  to the strongly acyclic pipe dreams ordered by the acyclic order.

#### **Theorem**

For any n-shape F and  $\omega \in \mathfrak{S}_n$  sortable on F, the map  $\operatorname{Ins}_{F,\omega}$  is a **lattice** morphism from the weak order interval  $[\operatorname{id},\omega]$  to the strongly acyclic pipe dreams ordered by the acyclic order.

#### Theorem

If the maximal permutation  $\omega_0=n\,(n-1)\,\dots 2\,1$  is sortable on F, then any linear extension of a pipe dream on F with exit permutation  $\omega$  is in  $[\mathrm{id},\omega]$ , and all acyclic pipe dreams are strongly acyclic.

## Further generalization: Coxeter groups

| symmetric group $\mathfrak{S}_n$ | Coxeter group W                            |  |
|----------------------------------|--------------------------------------------|--|
| transpositions $(i, i + 1)$      | simple reflections                         |  |
| reduced pipe dreams              | subword complex                            |  |
| pair of pipes                    | root in Φ                                  |  |
| P# acyclic                       | root cone is pointed                       |  |
| $\pi \in lin(P)$                 | root configuration $\subseteq \pi(\Phi^+)$ |  |

#### Theorem

Weak order and simple reflections

For any word Q on S and  $w \in W$  sortable on Q, the map  $Ins_{Q,w}$  is **well-defined** on the weak order interval [e, w].



#### Theorem

Weak order and simple reflections

For any word Q on S and  $w \in W$  sortable on Q, the map  $Ins_{Q,w}$  is **well-defined** on the weak order interval [e, w].

Pipe dreams

# Theorem (Jahn & Stump 2022)

If the Demazure product of Q is  $w_0$ , then for any  $w \in W$  the application  $Ins_Q(w, \cdot)$  is surjective on acyclic facets of SC(Q, w).



#### **Theorem**

Weak order and simple reflections

For any word Q on S and  $w \in W$  sortable on Q, the map  $Ins_{Q,w}$  is **well-defined** on the weak order interval [e, w].

#### Theorem (Jahn & Stump 2022)

If the Demazure product of Q is  $w_0$ , then for any  $w \in W$  the application  $Ins_Q(w,\cdot)$  is surjective on acyclic facets of SC(Q,w).

## Conjecture

If Q is an alternating word on S and  $w \in W$  is sortable on Q, then the application  $Ins_{Q,w} : [e,w] \mapsto SC(Q,w)$  is a **lattice morphism** from the left weak order on [e,w] to its image.



Weak order and simple reflections

# Thank you for your attention!

Pipe dreams



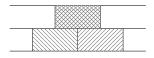
Q a word on S seen as a sorting network, here  $\omega = \omega_0 = n(n-1)\dots 1$ 

| - |  |  |  |
|---|--|--|--|
|   |  |  |  |

Q a word on S seen as a sorting network, here  $\omega = \omega_0 = n(n-1) \dots 1$ 

Pipe dreams

**bricks** of Q : bounded cells



Q a word on S seen as a sorting network, here  $\omega = \omega_0 = n(n-1) \dots 1$ 

Pipe dreams

bricks of Q : bounded cells

Weak order and simple reflections

**■ brick vector** of  $f \in SC(Q, \omega)$  :  $i^{th}$  coordinate is the number of bricks under pipe i

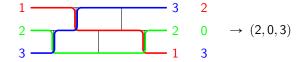


Pipe dreams

bricks of Q : bounded cells

Weak order and simple reflections

**■ brick vector** of  $f \in SC(Q, \omega)$ :  $i^{th}$  coordinate is the number of bricks under pipe i



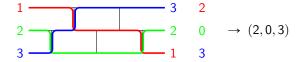
Q a word on S seen as a sorting network, here  $\omega = \omega_0 = n(n-1) \dots 1$ 

Pipe dreams

bricks of Q : bounded cells

Weak order and simple reflections

**■ brick vector** of  $f \in SC(Q, \omega)$  :  $i^{th}$  coordinate is the number of bricks under pipe i

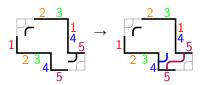


**brick polytope** of  $SC(Q, \omega)$ : convex hull of brick vectors of facets



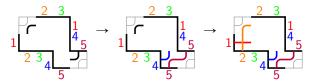
Pipe dreams

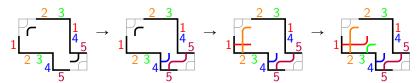
Sweeping algorithm for  $\omega=23145$  and  $\pi=21345$ 

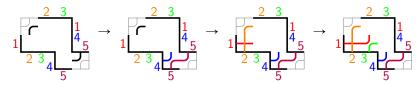


Pipe dreams

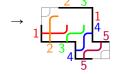
Sweeping algorithm for  $\omega=23145$  and  $\pi=21345$ 

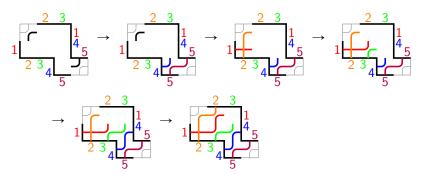


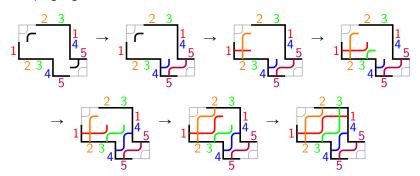


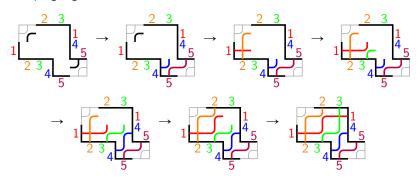


Pipe dreams









- If  $\omega^{-1}(i) < \omega^{-1}(j)$ , add an elbow  $\checkmark$
- 2 if  $\omega^{-1}(i) > \omega^{-1}(j)$  and  $\pi^{-1}(i) > \pi^{-1}(j)$ , add a cross m+
- 3 if i, j inversion of  $\omega$  and non-inversion of  $\pi$ , add an elbow  $\uparrow$  if you can still make the pipes end in order  $\omega$  that way (3a), and a cross + otherwise (3b)

The idea: keep track of cells containing only half of an elbow, and complete as many of those cells as possible when inserting a new pipe.

Pipe dreams



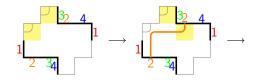
The idea: keep track of cells containing only half of an elbow, and complete as many of those cells as possible when inserting a new pipe.

Pipe dreams



The idea: keep track of cells containing only half of an elbow, and complete as many of those cells as possible when inserting a new pipe.

Pipe dreams



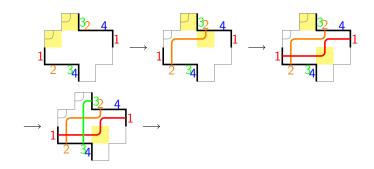
The idea: keep track of cells containing only half of an elbow, and complete as many of those cells as possible when inserting a new pipe.

Pipe dreams



The idea: keep track of cells containing only half of an elbow, and complete as many of those cells as possible when inserting a new pipe.

Pipe dreams



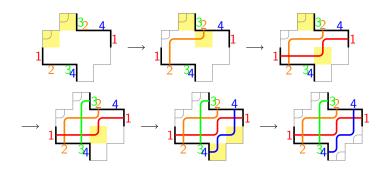
The idea: keep track of cells containing only half of an elbow, and complete as many of those cells as possible when inserting a new pipe.

Pipe dreams



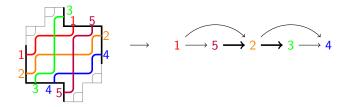
The idea: keep track of cells containing only half of an elbow, and complete as many of those cells as possible when inserting a new pipe.

Pipe dreams



An acyclic but not strongly acyclic facet:

Weak order and simple reflections



Pipe dreams

One linear extension : 15234 < 31524.

