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Séminaire Lotharingien de Combinatoire
Strobl

September 6, 2022



Outline

I Convex polytopes

I Kalai’s conjecture on reconstruction of spheres

I Subword complexes

I Manifolds



Convex polytopes

(Convex) polytope P:
convex hull of finitely many points in Euclidian space.

The graph G (P):
the graph consisting of the vertices and edges of P.

P G (P)

Simple polytope P:
number of edges incident to each vertex equals the dimension of P.



Reconstruction of polytopes

Theorem (Blind–Mani, 1987)

If P is a simple polytope, then the graph G (P) determines the entire
combinatorial structure of P.

P G (P)

Kalai, 1988: A simple constructive proof.
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Reconstruction of polytopes

Theorem (Blind–Mani, 1987)

If P is a simple polytope, then the graph G (P) determines the entire
combinatorial structure of P.

This holds for arbitrary polytopes (not only simple) in dimension 3
(Steinitz Theorem), but not in higher dimensions.

Example

Let ∆m be a m-dimensional simplex. The following are two non
isomorphic 6-dimensional polytopes with the same graph (complete
graph on 8 vertices)

(∆2 ×∆4)∗ � (∆3 ×∆3)∗



Duality of polytopes

Every nonempty d-polytope P in Rd admits a dual polytope in Rd :

P∗ = {y ∈ Rd : xT y ≤ 1 for all x ∈ P}

where P is assumed to contain the origin in its interior.

P P∗

Under this duality:

P ←→ P∗

vertices ←→ facets (maximal dimensional faces)
edges ←→ ridges (codimension 1 faces)
. . . ←→ . . .
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Simple vs simplicial

Simplicial polytope P:
all faces are simplices.

The facet-ridge graph GFR(P):
the graph whose vertices are facets of P
two facets are connected by an edge if they intersect in a ridge.

P is simple ←→ P∗ is simplicial
G (P) = GFR(P∗)

P P∗



Reconstruction of polytopes and spheres

Theorem (Blind–Mani, 1987)

Simplicial polytopes are completely determined by their facet-ridge
graphs.

Conjecture (Blind–Mani, 1987; Kalai, 2009)

Simplicial spheres are completely determined by their facet-ridge graphs.

A simplicial sphere is a simplicial complex which is homeomorphic to a
sphere.
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Most spheres are not polytopal

For d ≥ 3, most d-spheres are not polytopal.

I Goodman–Pollack, 1986

I Kalai, 1988

I Pfeifle–Ziegler, 2004

Deciding polytopality of spheres is a difficult problem

Mnëv’s Universality theorem: Realization
spaces of polytopes can take arbitrary
(semi-algebraic) shapes and thus can exhibit
all kinds of pathologies.

The realizability problem for 4-polytopes is
NP-hard.



Goal

Our initial goal was:
Look for a counterexample to Kalai’s Conjecture among a special family
of simplicial spheres which are conjectured to be polytopal.
(kill two conjectures at once)

Instead:
We proved the conjecture for this family.
(spherical subword complexes)

Rest of the talk:
Introduce subword complexes and state our main result.



Subword complexes preliminaries

Simplicial Complex ∆: A collection of subsets of a ground set E which
is closed under containment:

σ ∈ ∆ and τ ⊆ σ −→ τ ∈ ∆

faces: subsets in ∆
vertices: singleton sets
facets: maximal sets
ridges: facets missing a single element

1

2

3

4

∆ = {∅, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}}



Subword complexes preliminaries

Symmetric group Sn+1:
group of permutations of {1, . . . , n + 1}

generators {s1, . . . , sn}, si = (i i + 1)
length of w: smallest r such that w = si1 . . . sir
longest element: permutation [n + 1, . . . , 1]
reduced expression for w : expression for w of minimal length

In this talk: finite Coxeter groups
(very similar to the symmetric group)
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Subword complexes

W finite Coxeter group with generating set S

Q = (q1, . . . , qm) a word in S

π ∈W

Definition (Knutson–Miller, 2004)

The subword complex ∆(Q, π) is the simplicial complex whose

faces ←→ subwords P of Q such that Q \ P
contains a reduced expression of π

Knutson–Miller. Gröbner geometry of Schubert polynomials. Ann. Math., 161(3), ’05
Knutson–Miller. Subword complexes in Coxeter groups. Adv. Math., 184(1), ’04
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Subword complexes - Example 1

In type A2:

W = S3, S = {s1, s2} = {(1 2), (2 3)}

Q =
( s1,s2 ,s1 ,s2 ,s1 )
q1,q2,q3,q4,q5

and π = [3 2 1]

= s1s2s1 = s2s1s2

∆(Q, π) is isomorphic to q1

q2

q3

q4

q5
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Subword complexes - Example 2

In type A3:

W = S4, S = {s1, s2, s3} = {(1 2), (2 3), (3 4)}

Q =
( s1,s2 ,s1 ,s2 ,s1 ,s3 )
q1,q2,q3,q4,q5,q6

and π = [3 2 1] = s1s2s1 = s2s1s2

∆(Q, π) is isomorphic to q1

q2

q3

q4

q5

q6
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Subword complexes

Theorem (Knutson-Miller, 2004)

Subword complexes are vertex decomposable spheres or balls.

Conjecture (Knutson–Miller, C.–Labbé-Stump, ...)

Spherical subword complexes are polytopal.

Special cases include:

I Cyclic polytopes

I Duals of associahedra

I Cluster complexes of cluster algebras of finite type

I Duals of pointed-pseudotriangulation polytopes

I Simplicial multi-associahedra (conjectured)

Woo, Pilaud–Pocchiola, Serrano–Stump, Stump, C.-Labbé–Stump, Rote–Santos–Streinu,
Jonsson, ...
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Our main theorem

Theorem (C.–Doolittle)

Spherical subword complexes of finite type are completely determined by
their facet-ridge graph. In other words, they satisfy Kalai’s Conjecture.

Our current proof is not constructive.
It is based on the topological tools developed by Blind and Mani.

Open Problem

Find a combinatorial constructive proof.
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Manifolds

Question

Are simplicial manifolds completely determined by their facet-ridge
graphs?

Answer: No
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Answer: No. Counterexamples can be explicitly found using ideas of
Blind–Mani and Adiprasito.
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Manifolds are not reconstructible

Example 1: Two non-isomorphic triangulations of the projective plane
with isomorphic facet-ridge graphs:

a

7

8

9
5 4

6

1

3

2

1

3

2

a

7

8

9
5 4

6

1

3

2

1

3

2



Manifolds are not reconstructible

Example 2: Two non-isomorphic triangulations of the torus
with isomorphic facet-ridge graphs:

4 5 632

7 1 2 3

5 6 7

5 6 7 1

1 2 3

8

9

a

b

4 5 632

7 1 2 3

5 6 7

5 6 7 1

1 2 3

8

9

a

b



Thank you!


