

Linear intervals in the Tamari and the Dyck lattices

Clément Chenevière

Unistra – RUB

September 6th, 2022

88th Séminaire Lotharingien de Combinatoire based on the preprint arXiv:2209.00418 .

Linear intervals in the Tamari and the Dyck lattices

Global definitions

- Posets and intervals
- Binary trees and the Tamari lattices
- Dyck paths and the Dyck lattices
- Main result
- 2 Linear intervals in the Tamari lattices
 - Structure of linear intervals
- 3 Linear intervals in the Dyck lattices

The alt-Tamari posets

- Definitions
- Linear intervals in the alt-Tamari posets

Posets, chains and intervals

Definition

A poset is a set P together with an order relation \leq .

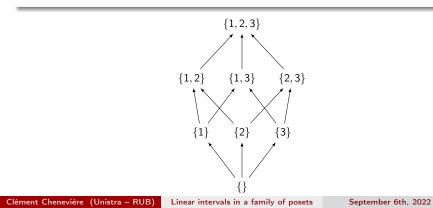
Posets and intervals

3/23

Posets, chains and intervals

Definition

A poset is a set P together with an order relation \leq . A covering relation is a pair $x \triangleleft y$ such that $x \lt y$ and $\nexists z \in P, x \lt z \lt y$. The Hasse diagram of a poset is the oriented graph of its covering relations.

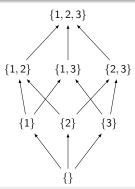


Posets and intervals

Posets, chains and intervals

Definition

A poset is a set P together with an order relation <. A covering relation is a pair $x \triangleleft y$ such that x < y and $\nexists z \in P, x < z < y$. The Hasse diagram of a poset is the oriented graph of its covering relations. If $x \leq y$, the interval [x, y] is the subset $\{t \in P | x \leq t \leq y\}$.

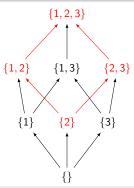


Clément Chenevière (Unistra – RUB) Linear intervals in a family of posets

Posets, chains and intervals

Definition

A poset is a set P together with an order relation \leq . A covering relation is a pair $x \triangleleft y$ such that $x \lt y$ and $\nexists z \in P, x \lt z \lt y$. The Hasse diagram of a poset is the oriented graph of its covering relations. If $x \lt y$, the interval [x, y] is the subset $\{t \in P | x \le t \le y\}$.



Clément Chenevière (Unistra – RUB) Linear

Posets and intervals

Posets, chains and intervals

Definition

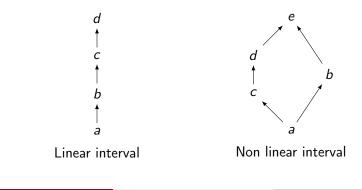
A *chain* of length k from x to y is a sequence $x = x_0 < \cdots < x_k = y$. The *height* of an interval [x, y] is the maximal length of a chain from x to y.

Posets and intervals

Posets, chains and intervals

Definition

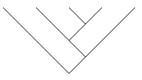
A *chain* of length k from x to y is a sequence $x = x_0 < \cdots < x_k = y$. The *height* of an interval [x, y] is the maximal length of a chain from x to y. An interval is *linear* if it is totally ordered, *i.e.* if it is a chain.



Binary trees and the Tamari lattices

Definition

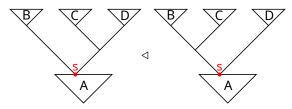
A (planar rooted) binary tree is a connected acyclic planar graph whose vertices have degree 3 or 1, with one marked vertex of degree 1 called the root.



Binary trees and the Tamari lattices

Definition

A (planar rooted) binary tree is a connected acyclic planar graph whose vertices have degree 3 or 1, with one marked vertex of degree 1 called the root. The Tamari lattice Tam_n [Tamari, 1962] is a poset on binary trees, described as the reflexive transitive closure of the left rotations.

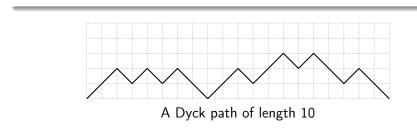


A left rotation at the node s.

Dyck paths and the Dyck lattices

Definition

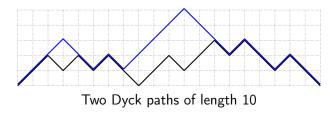
A Dyck path of length (or size) n is a path in \mathbb{N}^2 using up steps (1,1) and down steps(1,-1), starting at (0,0) and ending at (2n,0).



Dyck paths and the Dyck lattices

Definition

A Dyck path of length (or size) n is a path in \mathbb{N}^2 using up steps (1,1) and down steps(1,-1), starting at (0,0) and ending at (2n,0). The Dyck lattice Dyck_n [Stanley, 1999] is a poset on Dyck paths where a path P is lower than a path Q if P is weakly under Q.



The Tamari lattice on Dyck paths

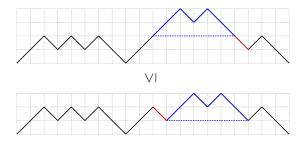
Remark

The Tamari lattice Tam_n can also be defined on Dyck paths. The covering relations consist of swapping a down step with the excursion that follows it.

The Tamari lattice on Dyck paths

Remark

The Tamari lattice Tam_n can also be defined on Dyck paths. The covering relations consist of swapping a down step with the excursion that follows it.



Main result

Theorem (C.)

For any $n \ge 1$ and $k \ge 0$, the Tamari lattice Tam_n and the Dyck lattice Dyck_n have the same number of linear intervals of height k.

Main result

Theorem (C.)

For any $n \ge 1$ and $k \ge 0$, the Tamari lattice Tam_n and the Dyck lattice Dyck_n have the same number of linear intervals of height k. More precisely, both lattices have :

General fact

In any poset, the intervals of height 0 are those of the form [x, x] with x some element of the poset and they are linear. We call them trivial intervals.

General fact

In any poset, the intervals of height 0 are those of the form [x, x] with x some element of the poset and they are linear. We call them trivial intervals. Intervals [x, y] of height 1 are exactly covering relations $x \triangleleft y$ and are linear as well.

General fact

In any poset, the intervals of height 0 are those of the form [x, x] with x some element of the poset and they are linear. We call them trivial intervals. Intervals [x, y] of height 1 are exactly covering relations $x \triangleleft y$ and are linear as well.

Question

What are the linear intervals of height 2 or more in the Tamari lattice ?

General fact

In any poset, the intervals of height 0 are those of the form [x, x] with x some element of the poset and they are linear. We call them trivial intervals. Intervals [x, y] of height 1 are exactly covering relations $x \triangleleft y$ and are linear as well.

Questions

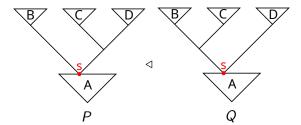
What are the linear intervals of height 2 or more in the Tamari lattice ? How many of them are there ?

Intervals of height 2

Question

What are the linear intervals of height 2 in the Tamari lattice ?

Suppose that Q is obtained from a tree P by a rotation at the node s.



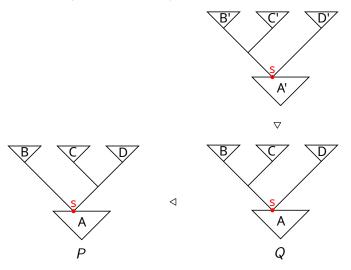
Problem

What covering relations $Q \triangleleft R$ produce a linear interval [P, R]?

Clément Chenevière (Unistra – RUB) Linear intervals in a family of posets

First case

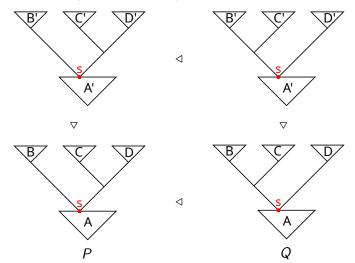
A rotation within A (that preserves s), B, C or D?



Linear intervals in a family of posets

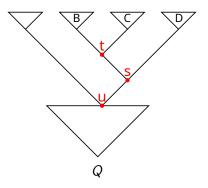
First case: Non linear

A rotation within A (that preserves s), B, C or D?



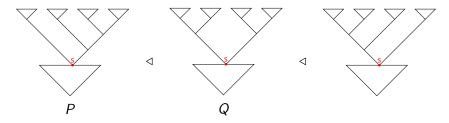
Linear intervals in a family of posets

Remaining cases



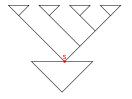
Second case

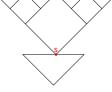
Another rotation at the node s?



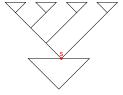
Second case: Non linear

Another rotation at the node s?



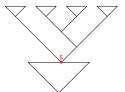


 \triangleleft

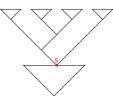


 ∇

 \triangle



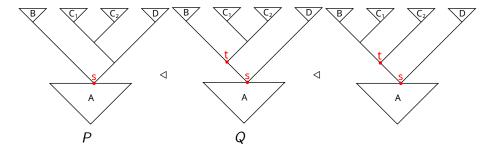
 \triangleleft



 \triangleleft

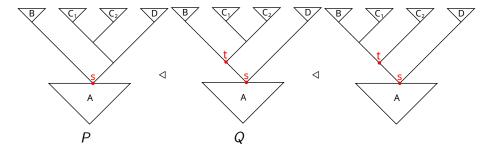
Third case

A rotation at the node t (if C is not trivial)?



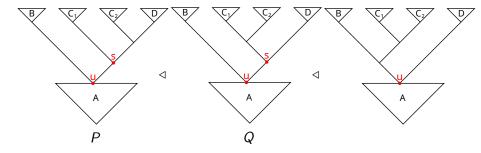
Third case: Linear!

A rotation at the node t (if C is not trivial)?



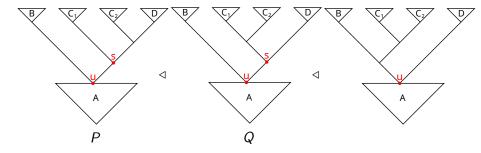
Fourth case

A rotation at the node u (if s is a right son)?



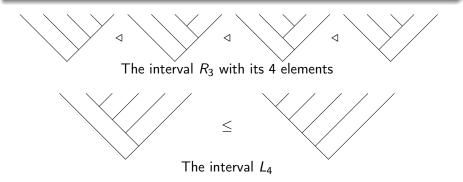
Fourth case: Linear!

A rotation at the node u (if s is a right son)?



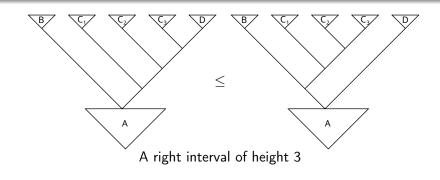
Definition

For $n \ge 2$, we can define intervals R_n and L_n with trees of size n + 1. They are linear of height n.



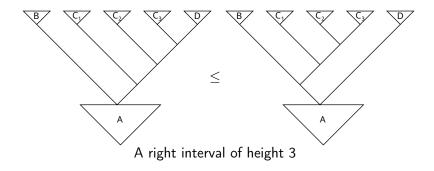
Definition

For $n \ge 2$, we can define intervals R_n and L_n with trees of size n + 1. They are linear of height n. A right interval is an interval R_k with trees grafted on its leaves and the result grafted on a tree, and it is linear of height k.



Definition

For $n \ge 2$, we can define intervals R_n and L_n with trees of size n + 1. They are linear of height n. A right interval is an interval R_k with trees grafted on its leaves and the result grafted on a tree, and it is linear of height k. A left interval is the mirrored image of any right interval.



Proposition

Left and right intervals are linear.

Proposition

Left and right intervals are linear. Any linear interval of height at least 2 is either left or right.

Proposition

Left and right intervals are linear. Any linear interval of height at least 2 is either left or right.

Theorem (C.)

F

In the Tamari lattice of size *n*, there are:

•
$$\frac{1}{n+1} \binom{2n}{n}$$
 linear intervals of height 0,
• $\binom{2n-1}{n-2}$ linear intervals of height 1,
• $2\binom{2n-k}{n-k-1}$ linear intervals of height k, for $2 \le k < n$.

General case

Proposition

Left and right intervals are linear. Any linear interval of height at least 2 is either left or right.

Theorem (C.)

In the Tamari lattice of size *n*, there are:

 ${\small {\sf Tools: \ combinatorial \ description, \ generating \ series, \ Lagrange \ inversion.}}$

Linear intervals in the Dyck lattices

Definition

For $k \ge 2$, we can define two subsets of linear intervals of height k that we call left and right intervals of height k.

Linear intervals in the Dyck lattices

Definition

For $k \ge 2$, we can define two subsets of linear intervals of height k that we call left and right intervals of height k.

Proposition

All linear intervals of height $k \ge 2$ are either left or right intervals.

Linear intervals in the Dyck lattices

Definition

For $k \ge 2$, we can define two subsets of linear intervals of height k that we call left and right intervals of height k.

A right interval of height 3 in the Dyck lattice

Proposition

All linear intervals of height $k \ge 2$ are either left or right intervals.

Theorem (C.)

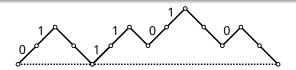
For any $n \ge 1$ and $k \ge 0$, the Tamari lattice Tam_n and the Dyck lattice Dyck_n have the same number of linear intervals of height k.

Clément Chenevière (Unistra – RUB) Linear intervals in a family of posets

Definitions

Definition

We number the up steps of Dyck paths of size *n* from 1 to *n* increasingly. We fix an increment function $\delta \in \{0, 1\}^n$. We set $\delta(u_i) = \delta(i)$ and $\delta(d) = -1$.

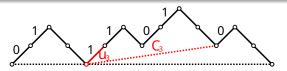


Definitions

Definition

We number the up steps of Dyck paths of size *n* from 1 to *n* increasingly. We fix an increment function $\delta \in \{0, 1\}^n$. We set $\delta(u_i) = \delta(i)$ and $\delta(d) = -1$.

Given a Dyck path P, we define the δ -excursion C_i of the up step u_i as the smallest part of P which starts with u_i and $\delta(C_i) = 0$. A δ -rotation of P at the valley du_i consists of exchanging d with the δ -excursion C_i .

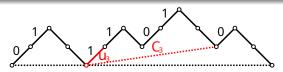


Definitions

Definition

We number the up steps of Dyck paths of size *n* from 1 to *n* increasingly. We fix an increment function $\delta \in \{0, 1\}^n$. We set $\delta(u_i) = \delta(i)$ and $\delta(d) = -1$.

Given a Dyck path P, we define the δ -excursion C_i of the up step u_i as the smallest part of P which starts with u_i and $\delta(C_i) = 0$. A δ -rotation of P at the valley du_i consists of exchanging d with the δ -excursion C_i .



Proposition-Definition

The alt-Tamari poset Tam_n^{δ} is defined as the reflexive transitive closure of the δ -rotations on the set of Dyck paths of length *n*.

Question

What intervals are linear in Tam_n^{δ} ?

20 / 23

Question

```
What intervals are linear in Tam_n^{\delta}?
```

Proposition

The covering relations in $\operatorname{Tam}_n^{\delta}$ are exactly the δ -rotations.

Question

```
What intervals are linear in Tam_{n}^{\delta}?
```

Proposition

The covering relations in $\operatorname{Tam}_n^{\delta}$ are exactly the δ -rotations.

Definition

We say that [P, Q] is a left interval if $P = Ad^k C_i B$ and $Q = AC_i d^k B$ with C_i some δ -excursion and $k \ge 2$.

Question

```
What intervals are linear in Tam_{n}^{\delta}?
```

Proposition

The covering relations in $\operatorname{Tam}_n^{\delta}$ are exactly the δ -rotations.

Definition

We say that [P, Q] is a left interval if $P = Ad^k C_i B$ and $Q = AC_i d^k B$ with C_i some δ -excursion and $k \ge 2$. We say that [P, Q] is a right interval if $P = AdC_1 \dots C_k B$ and $Q = AC_1 \dots C_k dB$ with $k \delta$ -excursions C_1, \dots, C_k and $k \ge 2$.

Question

```
What intervals are linear in Tam_n^{\delta}?
```

Proposition

The covering relations in $\operatorname{Tam}_n^{\delta}$ are exactly the δ -rotations.

Proposition-Definition

We say that [P, Q] is a left interval if $P = Ad^k C_i B$ and $Q = AC_i d^k B$ with C_i some δ -excursion and $k \ge 2$. We say that [P, Q] is a right interval if $P = AdC_1 \dots C_k B$ and $Q = AC_1 \dots C_k dB$ with $k \delta$ -excursions C_1, \dots, C_k and $k \ge 2$. In both cases, the interval is linear and k is its height.

Proposition

All linear intervals of height $k \ge 2$ in $\operatorname{Tam}_n^{\delta}$ are either left or right intervals.

Proposition

All linear intervals of height $k \ge 2$ in $\operatorname{Tam}_n^{\delta}$ are either left or right intervals.

Theorem (C.)

For all $k \ge 2$, all the alt-Tamari posets of size n have $\binom{2n-k}{n-k-1}$ right intervals of height k.

Proposition

All linear intervals of height $k \ge 2$ in $\operatorname{Tam}_n^{\delta}$ are either left or right intervals.

Theorem (C.)

For all $k \ge 2$, all the alt-Tamari posets of size n have $\binom{2n-k}{n-k-1}$ right intervals of height k.

For all $k \ge 2$, all the alt-Tamari posets of size n have $\binom{2n-k}{n-k-1}$ left intervals of height k.

Proposition

All linear intervals of height $k \ge 2$ in $\operatorname{Tam}_n^{\delta}$ are either left or right intervals.

Theorem (C.)

For all $k \ge 2$, all the alt-Tamari posets of size n have $\binom{2n-k}{n-k-1}$ right intervals of height k.

For all $k \ge 2$, all the alt-Tamari posets of size n have $\binom{2n-k}{n-k-1}$ left

intervals of height k. Moreover, there is a bijection between left intervals of height k of any two alt-Tamari posets that fixes their bottom element.

Proposition

All linear intervals of height $k \ge 2$ in $\operatorname{Tam}_n^{\delta}$ are either left or right intervals.

Theorem (C.)

For all $k \ge 2$, all the alt-Tamari posets of size n have $\binom{2n-k}{n-k-1}$ right intervals of height k.

For all $k \ge 2$, all the alt-Tamari posets of size n have $\binom{2n-k}{n-k-1}$ left

intervals of height k. Moreover, there is a bijection between left intervals of height k of any two alt-Tamari posets that fixes their bottom element.

The proof is bijective!

• We can define a whole new family of posets on Dyck paths which interpolate between the Tamari and the Dyck lattices.

- We can define a whole new family of posets on Dyck paths which interpolate between the Tamari and the Dyck lattices.
- All of these posets have the same (nice !) numbers of linear intervals of any fixed height.

- We can define a whole new family of posets on Dyck paths which interpolate between the Tamari and the Dyck lattices.
- All of these posets have the same (nice !) numbers of linear intervals of any fixed height. Idea of proof:
 - In every alt-Tamari poset, we can define left and right intervals, which are linear of height at least 2.

- We can define a whole new family of posets on Dyck paths which interpolate between the Tamari and the Dyck lattices.
- All of these posets have the same (nice !) numbers of linear intervals of any fixed height. Idea of proof:
 - In every alt-Tamari poset, we can define left and right intervals, which are linear of height at least 2.
 - 2 Every linear intervals of height at least 2 is either a left or right interval.

- We can define a whole new family of posets on Dyck paths which interpolate between the Tamari and the Dyck lattices.
- All of these posets have the same (nice !) numbers of linear intervals of any fixed height. Idea of proof:
 - In every alt-Tamari poset, we can define left and right intervals, which are linear of height at least 2.
 - 2 Every linear intervals of height at least 2 is either a left or right interval.
 - Set the set of the

Takeouts and prospects!

- We can define a whole new family of posets on Dyck paths which interpolate between the Tamari and the Dyck lattices.
- All of these posets have the same (nice !) numbers of linear intervals of any fixed height.

Prospects:

• Study the alt-Tamari posets: comparison criteria, lattice structure, changes of the Hasse diagram when we modify one entry of δ , etc..

Takeouts and prospects!

- We can define a whole new family of posets on Dyck paths which interpolate between the Tamari and the Dyck lattices.
- All of these posets have the same (nice !) numbers of linear intervals of any fixed height.

Prospects:

- Study the alt-Tamari posets: comparison criteria, lattice structure, changes of the Hasse diagram when we modify one entry of δ , etc..
- Count linear intervals in other posets: *m*-Tamari, ν-Tamari, Cambrian lattices, posets of tilting modules, etc..

Takeouts and prospects!

- We can define a whole new family of posets on Dyck paths which interpolate between the Tamari and the Dyck lattices.
- All of these posets have the same (nice !) numbers of linear intervals of any fixed height.

Prospects:

- Study the alt-Tamari posets: comparison criteria, lattice structure, changes of the Hasse diagram when we modify one entry of δ , etc..
- Count linear intervals in other posets: *m*-Tamari, *ν*-Tamari, Cambrian lattices, posets of tilting modules, etc..
- Generalize the alt-Tamari posets to the *m*-Tamari or ν -Tamari lattices.

Takeouts and prospects and questions?

Thanks for your attention!

- We can define a whole new family of posets on Dyck paths which interpolate between the Tamari and the Dyck lattices.
- All of these posets have the same (nice !) numbers of linear intervals of any fixed height.

Prospects:

- Study the alt-Tamari posets: comparison criteria, lattice structure, changes of the Hasse diagram when we modify one entry of δ , etc..
- Count linear intervals in other posets: *m*-Tamari, *ν*-Tamari, Cambrian lattices, posets of tilting modules, etc..
- Generalize the alt-Tamari posets to the *m*-Tamari or ν -Tamari lattices.

References

C. (2022).

Linear intervals in the Tamari, Dyck and alt-Tamari lattices. https://arxiv.org/abs/2209.00418.

Stanley, R. P. (1999).

Enumerative combinatorics. Vol. 2, volume 62 of *Cambridge Studies in Advanced Mathematics.*

Cambridge University Press, Cambridge.

Tamari, D. (1962). The algebra of bracketings and their enumeration. *Nieuw Arch. Wisk. (3)*, 10:131–146.