A generalization of perfectly clustering words via brick band modules of certain gentle algebras

Benjamin Dequêne
LaCIM (UQAM), Montréal

Séminaire Lotharingien de Combinatoire 2022, September 4-7, 2022

LACIM
 Laboratoire d'algèbre, de combinatoire et d'informatique mathématique

UQÀM

This is a joint work with Mélodie Lapointe, Yann Palu, Pierre-Guy Plamondon, Christophe Reutenauer and Hugh Thomas.

Underlying story

Word combinatorics
Representation theory of algebras

Underlying story

Word combinatorics	Representation theory of algebras
Words	Modules over algebras

Underlying story

Word combinatorics	Representation theory of algebras
Words	Modules over algebras
UI	UI
Perfectly clustering words	Brick band modules over certain algebras

Underlying story

Underlying story

The main point of this talk is to present this link, and how representation theoretic tools can be used for proving a conjecture over perflectly clustering words.

Plan

1 Word universe

Plan

a Word universe

- Perfectly clustering words
a Word universe
- Perfectly clustering words
- Gessel-Reutenauer transformations

I Word universe

- Perfectly clustering words
- Gessel-Reutenauer transformations
[2 Representation theory of algebras universe

1 Word universe

- Perfectly clustering words
- Gessel-Reutenauer transformations
Σ Representation theory of algebras universe
- Dyck path model and link with PCWs

1 Word universe
■ Perfectly clustering words

- Gessel-Reutenauer transformations
Σ Representation theory of algebras universe
- Dyck path model and link with PCWs

■ Black box : quiver representations

■ Perfectly clustering words

- Gessel-Reutenauer transformations

2 Representation theory of algebras universe

- Dyck path model and link with PCWs
- Black box : quiver representations
- Using words and modules link

Perfectly clustering words

Definitions for words

Definitions for words

- $\Sigma=\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n}\}$: our alphabet (finite totally ordered set).

Definitions for words

- $\Sigma=\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n}\}$: our alphabet (finite totally ordered set).
- Σ^{*} : the set of (finite) words over Σ.

Definitions for words

- $\Sigma=\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n}\}$: our alphabet (finite totally ordered set).
- Σ^{*} : the set of (finite) words over Σ.
- For any $w \in \Sigma^{*}$, we denote by $|w|$ the number of letters which compose w and $|w|_{\mathrm{i}}$ the number of occurences of the letter \mathbf{i} in w. For instance, if $w=\mathbf{1 3 2 1}$, then $|w|=4,|w|_{\mathbf{1}}=2,|w|_{\mathbf{2}}=1$ and $|w|_{\mathbf{3}}=1$.

Definitions for words

- $\Sigma=\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n}\}$: our alphabet (finite totally ordered set).
- Σ^{*} : the set of (finite) words over Σ.
- For any $w \in \Sigma^{*}$, we denote by $|w|$ the number of letters which compose w and $|w|_{\mathrm{i}}$ the number of occurences of the letter \mathbf{i} in w. For instance, if $w=\mathbf{1 3 2 1}$, then $|w|=4,|w|_{\mathbf{1}}=2,|w|_{\mathbf{2}}=1$ and $|w|_{\mathbf{3}}=1$.
- For any $w \in \Sigma^{*}$, denote by (w) the conjugacy class of w. For example, if $w=1321$ then $(w)=\{1321,3211,2113,1132\}$.

Definitions for words

- $\Sigma=\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n}\}$: our alphabet (finite totally ordered set).
- Σ^{*} : the set of (finite) words over Σ.
- For any $w \in \Sigma^{*}$, we denote by $|w|$ the number of letters which compose w and $|w|_{\mathrm{i}}$ the number of occurences of the letter \mathbf{i} in w. For instance, if $w=\mathbf{1 3 2 1}$, then $|w|=4,|w|_{\mathbf{1}}=2,|w|_{\mathbf{2}}=1$ and $|w|_{\mathbf{3}}=1$.
- For any $w \in \Sigma^{*}$, denote by (w) the conjugacy class of w. For example, if $w=1321$ then $(w)=\{1321,3211,2113,1132\}$.
- A word $w \in \Sigma^{*}$ is called primitive if it is not the power of another one. For example, $w=1211$ is primitive, but not $u=1212$.

Definitions for words

- $\Sigma=\{\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n}\}$: our alphabet (finite totally ordered set).
- Σ^{*} : the set of (finite) words over Σ.
- For any $w \in \Sigma^{*}$, we denote by $|w|$ the number of letters which compose w and $|w|_{\mathrm{i}}$ the number of occurences of the letter \mathbf{i} in w.
For instance, if $w=\mathbf{1 3 2 1}$, then $|w|=4,|w|_{\mathbf{1}}=2,|w|_{\mathbf{2}}=1$ and $|w|_{\mathbf{3}}=1$.
- For any $w \in \Sigma^{*}$, denote by (w) the conjugacy class of w.

For example, if $w=1321$ then $(w)=\{1321,3211,2113,1132\}$.

- A word $w \in \Sigma^{*}$ is called primitive if it is not the power of another one. For example, $w=1211$ is primitive, but not $u=1212$.
- Let \leqslant be the lexicographical order (extended periodically to infinite words) on primitive words of Σ^{*}. For instance, $1211212111<12112$.

1	2	1	1	2	1	2	1	1	1	\cdots
1	2	1	1	2	1	2	1	1	2	\cdots

Burrows-Wheeler transformation

Burrows-Wheeler transformation

Consider $w=414132223141$.
We define the Burrows-Wheeler['94] transform of w as the result of the following process :

Burrows-Wheeler transformation

Consider $w=414132223141$.
We define the Burrows-Wheeler['94] transform of w as the result of the following process :

- We order the words in its conjugacy class according to the lexicographical order. We construct the Burrows-Wheeler tableau like that.

1	3	2	2	2	3	1	4	1	4	1	4
1	4	1	3	2	2	2	3	1	4	1	4
1	4	1	4	1	3	2	2	2	3	1	4
1	4	1	4	1	4	1	3	2	2	2	3
2	2	2	3	1	4	1	4	1	4	1	3
2	2	3	1	4	1	4	1	4	1	3	2
2	3	1	4	1	4	1	4	1	3	2	2
3	1	4	1	4	1	4	1	3	2	2	2
3	2	2	2	3	1	4	1	4	1	4	1
4	1	3	2	2	2	3	1	4	1	4	1
4	1	4	1	3	2	2	2	3	1	4	1
4	1	4	1	4	1	3	2	2	2	3	1

Burrows-Wheeler transformation

Consider $w=414132223141$.
We define the Burrows-Wheeler['94] transform of w as the result of the following process :

- We order the words in its conjugacy class according to the lexicographical order. We construct the Burrows-Wheeler tableau like that.

1	3	2	2	2	3	1	4	1	4	1	4
1	4	1	3	2	2	2	3	1	4	1	4
1	4	1	4	1	3	2	2	2	3	1	4
1	4	1	4	1	4	1	3	2	2	2	3
2	2	2	3	1	4	1	4	1	4	1	3
2	2	3	1	4	1	4	1	4	1	3	2
2	3	1	4	1	4	1	4	1	3	2	2
3	1	4	1	4	1	4	1	3	2	2	2
3	2	2	2	3	1	4	1	4	1	4	1
4	1	3	2	2	2	3	1	4	1	4	1
4	1	4	1	3	2	2	2	3	1	4	1
4	1	4	1	4	1	3	2	2	2	3	1

- Then we read the word obtained by taking the last column of this tableau. We get is the Burrows-Wheeler transform of $w: \mathrm{BW}(w)=444332221111$

Perfectly clustering words

Perfectly clustering words

Definition 1

A perfectly clustering word is a primitive word w such that the letters of $\mathrm{BW}(w)$ are in the weakly decreasing order.

Perfectly clustering words

Definition 1

A perfectly clustering word is a primitive word w such that the letters of $\mathrm{BW}(w)$ are in the weakly decreasing order.

So $w=414132223141$ is perfectly clustering because $\mathrm{BW}(w)=444332221111$.

Perfectly clustering words

Definition 1

A perfectly clustering word is a primitive word w such that the letters of $\mathrm{BW}(w)$ are in the weakly decreasing order.

So $w=414132223141$ is perfectly clustering because $\mathrm{BW}(w)=444332221111$.

Remark 2

(i) The Burrows-Wheeler transform of w only depends on the conjugacy class of w; therefore if w is perfectly clustering, so is any conjugate of w.

Perfectly clustering words

Definition 1

A perfectly clustering word is a primitive word w such that the letters of $\mathrm{BW}(w)$ are in the weakly decreasing order.

So $w=414132223141$ is perfectly clustering because $\mathrm{BW}(w)=444332221111$.

Remark 2

(i) The Burrows-Wheeler transform of w only depends on the conjugacy class of w; therefore if w is perfectly clustering, so is any conjugate of w.
(ii) Perfectly clustering words over an alphabet of two letters correspond exactly to Christoffel words.

Perfectly clustering words

Definition 1

A perfectly clustering word is a primitive word w such that the letters of $\mathrm{BW}(w)$ are in the weakly decreasing order.

So $w=414132223141$ is perfectly clustering because $\mathrm{BW}(w)=444332221111$.

Remark 2

(i) The Burrows-Wheeler transform of w only depends on the conjugacy class of w; therefore if w is perfectly clustering, so is any conjugate of w.
(ii) Perfectly clustering words over an alphabet of two letters correspond exactly to Christoffel words.
(iii) The Burrows-Wheeler transform gives an injective map from conjugacy classes of primitive words to words.

Gessel-Reutenauer transformations

Gessel-Reutenauer transformation

Gessel-Reutenauer transformation

The Gessel-Reutenauer['93,'12] tranformation gives a bijective map from multisets of conjugacy classes of primitive words over Σ^{*} to words over Σ^{*}. Let us explain how it works with an example. Let us take $s=\{(\mathbf{5 3 5 1 2 1 2 1}),(5343)\}$:

Gessel-Reutenauer transformation

The Gessel-Reutenauer['93,'12] tranformation gives a bijective map from multisets of conjugacy classes of primitive words over Σ^{*} to words over Σ^{*}. Let us explain how it works with an example. Let us take $s=\{(\mathbf{5 3 5 1 2 1 2 1}),(5343)\}$:

- We consider all the conjugates of each word in the multiset and we order them with respect to the (extended version of the) lexicographical order.

1	2	1	2	1	5	3	5
1	2	1	5	3	5	1	2
1	5	3	5	1	2	1	2
2	1	2	1	5	3	5	1
2	1	5	3	5	1	2	1
				3	4	3	5
3	5	1	2	1	2	1	5
				3	5	3	4
				4	3	5	3
5	1	2	1	3	1	5	3
				5	3	4	3
5	3	5	1	2	1	2	1

Gessel-Reutenauer transformation

The Gessel-Reutenauer['93,'12] tranformation gives a bijective map from multisets of conjugacy classes of primitive words over Σ^{*} to words over Σ^{*}. Let us explain how it works with an example. Let us take $s=\{(\mathbf{5 3 5 1 2 1 2 1}),(5343)\}$:

- We consider all the conjugates of each word in the multiset and we order them with respect to the (extended version of the) lexicographical order.

1	2	1	2	1	5	3	5
1	2	1	5	3	5	1	2
1	5	3	5	1	2	1	2
2	1	2	1	5	3	5	1
2	1	5	3	5	1	2	1
				3	4	3	5
3	5	1	2	1	2	1	5
				3	5	3	4
				4	3	5	3
5	1	2	1	3	1	5	3
				5	3	4	3
5	3	5	1	2	1	2	1

- We get $\Psi(s)=522115543331=w$.

Gessel-Reutenauer transformations

Gessel-Reutenauer transform

Gessel-Reutenauer transform

We define $\Phi(w)=\Psi^{-1}(w)=s$ as the Gessel-Reutenauer transformation of w. (which could be calculed explicitely - we will explain it later, if time allows).

Gessel-Reutenauer transform

We define $\Phi(w)=\Psi^{-1}(w)=s$ as the Gessel-Reutenauer transformation of w. (which could be calculed explicitely - we will explain it later, if time allows).
Note that Ψ restricted to multisets made of an unique conjugacy class coincides with BW.

Gessel-Reutenauer transform

We define $\Phi(w)=\Psi^{-1}(w)=s$ as the Gessel-Reutenauer transformation of w. (which could be calculed explicitely - we will explain it later, if time allows).
Note that Ψ restricted to multisets made of an unique conjugacy class coincides with BW.

Theorem 3

There exists at most one perfectly clustering word (up to conjugation) with a given number of occurences of each letter in it.

Dyck path model

Dyck path model and link with PCWs

Dyck path model

Definition 4

A g-vector is a vector $g=\left(g_{1}, \ldots, g_{n}\right) \in \mathbb{Z}^{n}$ such that :

Dyck path model and link with PCWs

Dyck path model

Definition 4

A g-vector is a vector $g=\left(g_{1}, \ldots, g_{n}\right) \in \mathbb{Z}^{n}$ such that :

- For all $i \in\{1, \ldots, n\}, g_{1}+\cdots+g_{i} \geqslant 0$.

Dyck path model and link with PCWs

Dyck path model

Definition 4

A g-vector is a vector $g=\left(g_{1}, \ldots, g_{n}\right) \in \mathbb{Z}^{n}$ such that :

- For all $i \in\{1, \ldots, n\}, g_{1}+\cdots+g_{i} \geqslant 0$.
- $g_{1}+\cdots+g_{n}=0$

Dyck path model

Definition 4

A g-vector is a vector $g=\left(g_{1}, \ldots, g_{n}\right) \in \mathbb{Z}^{n}$ such that :

- For all $i \in\{1, \ldots, n\}, g_{1}+\cdots+g_{i} \geqslant 0$.
- $g_{1}+\cdots+g_{n}=0$

Now we will describe a morphism φ from g-vector to multiset of conjugacy classes of words.

- Given a g vector we can associate to it a Dyck path in a natural way.

Dyck path associated to $g=(3,-2,3,-1,-3)$.

Dyck path model

Definition 4

A g-vector is a vector $g=\left(g_{1}, \ldots, g_{n}\right) \in \mathbb{Z}^{n}$ such that :

- For all $i \in\{1, \ldots, n\}, g_{1}+\cdots+g_{i} \geqslant 0$.
- $g_{1}+\cdots+g_{n}=0$

Now we will describe a morphism φ from g-vector to multiset of conjugacy classes of words.

- Then we label the Dyck path thanks to the g-vector by induction: we label the $\left|g_{1}\right|$ first steps of the Dyck path by $\mathbf{1}$, then the following $\left|g_{2}\right|$ steps by 2 and so on.

Labelling of the Dyck path associated to $g=(3, \square 2,3,-1,-3)$.

Dyck path model

Definition 4

A g-vector is a vector $g=\left(g_{1}, \ldots, g_{n}\right) \in \mathbb{Z}^{n}$ such that :

- For all $i \in\{1, \ldots, n\}, g_{1}+\cdots+g_{i} \geqslant 0$.
- $g_{1}+\cdots+g_{n}=0$

Now we will describe a morphism φ from g-vector to multiset of conjugacy classes of words.

- We draw curves over the Dyck path as follows : we draw a horizontal line between two opposites steps of the Dyck path, and we draw rainbow arcs between steps with the same label out side of the surface delimited by the Dyck path and the dashed line.

Curves over the Dyck path associated to $g=(3,-2,3,-1,-3)$.

Dyck path model

Curves over the Dyck path associated to $g=(3,-2,3,-1,-3)$.

- This is what we can call Dyck path model of g. To get a multiset of conjugacy classes of words from this model, we proceed as follows :

Dyck path model

We start at 4.

- This is what we can call Dyck path model of g. To get a multiset of conjugacy classes of words from this model, we proceed as follows :

1) We start from an extremity of one of the curves over the Dyck path and we keep in mind the label of this extremity (if there are close curves, we can start from any step of the Dyck path)

Dyck path model

The recording of our travel : $\mathbf{4 3}$

- This is what we can call Dyck path model of g. To get a multiset of conjugacy classes of words from this model, we proceed as follows :

2) Then we follow the curve until we come back to where we start. We keep track of the labels of the Dyck path edge each time we go out of the surface delimited by the Dyck path and the dashed line (the label of the other extremity of the curve is included).

Dyck path model

The recording of our travel : 435

- This is what we can call Dyck path model of g. To get a multiset of conjugacy classes of words from this model, we proceed as follows :

2) Then we follow the curve until we come back to where we start. We keep track of the labels of the Dyck path edge each time we go out of the surface delimited by the Dyck path and the dashed line (the label of the other extremity of the curve is included).

Dyck path model

The recording of our travel : $\mathbf{4 3 5 3}$

- This is what we can call Dyck path model of g. To get a multiset of conjugacy classes of words from this model, we proceed as follows :

2) Then we follow the curve until we come back to where we start. We keep track of the labels of the Dyck path edge each time we go out of the surface delimited by the Dyck path and the dashed line (the label of the other extremity of the curve is included).

Dyck path model

We ended the travel of this curve, we get (4353).

- This is what we can call Dyck path model of g. To get a multiset of conjugacy classes of words from this model, we proceed as follows :

3) Once we end the travel of a curve, we record the conjugacy class of the word we obtained (if we followed a closed curve, we record two copies of it), and we start the traveling of another curve. We continue until we have done this for all the curves.

Dyck path model and link with PCWs

Dyck path model

- We give the result as a multiset of all conjugacy classes we got following the process.

$$
\varphi((3,-2,3,-1,-3))=\{(\mathbf{4 3 5 3}),(\mathbf{3 5 1 2 1 2 1 5})\}
$$

Dyck path model and link with PCWs
Correspondance between PCWs and g-vectors

Correspondance between PCWs and g-vectors

Proposition 5 [DLPPRT '22+]

Let $g=\left(g_{1}, \ldots, g_{n}\right)$ be a g-vector with $g_{1}>0$ and $g_{i} \leqslant 0$ for $i>1$. Then

$$
f(\varphi(g))=\Phi\left(\mathbf{n}^{\left|g_{n}\right|} \ldots \mathbf{3}^{\left|g_{3}\right|} \mathbf{2}^{\left|g_{2}\right|}\right)
$$

where f is the erasing morphism of $\mathbf{1}$. Moreover each conjugacy class appearing is a conjugacy class of a perfectly clustering word.

Dyck path model and link with PCWs

Correspondance between PCWs and g-vectors

Proposition 5 [DLPPRT '22+]

Let $g=\left(g_{1}, \ldots, g_{n}\right)$ be a g-vector with $g_{1}>0$ and $g_{i} \leqslant 0$ for $i>1$. Then

$$
f(\varphi(g))=\Phi\left(\mathbf{n}^{\left|g_{n}\right|} \cdots 3^{\left|g_{3}\right|} \mathbf{2}^{\left|g_{2}\right|}\right)
$$

where f is the erasing morphism of $\mathbf{1}$. Moreover each conjugacy class appearing is a conjugacy class of a perfectly clustering word.

For $g=(5,-1,-3,-1)$, we get $\varphi(g)=\{(\mathbf{3 1 4 1}),(\mathbf{1 4 1 2 1 4})\}$ and so $f(\varphi(g))=\{(\mathbf{3 4}),(\mathbf{4 2 4})\}$

Correspondance between PCWs and g-vectors

Proposition 5 [DLPPRT '22+]

Let $g=\left(g_{1}, \ldots, g_{n}\right)$ be a g-vector with $g_{1}>0$ and $g_{i} \leqslant 0$ for $i>1$. Then

$$
f(\varphi(g))=\Phi\left(\mathbf{n}^{\left|g_{n}\right|} \ldots \mathbf{3}^{\left|g_{3}\right|} \mathbf{2}^{\left|g_{2}\right|}\right)
$$

where f is the erasing morphism of $\mathbf{1}$. Moreover each conjugacy class appearing is a conjugacy class of a perfectly clustering word.

2	4	4
	3	4
4	2	4
	4	3
4	4	2

We can check that $\Psi(\{(\mathbf{3 4}),(424)\})=44432$.

Black box: Quiver representations

Black box: Quiver representations

- This Dyck path model is a variant model based on the surface model we use to study special kind of algebras, called gentle algebras.

Black box: Quiver representations

- This Dyck path model is a variant model based on the surface model we use to study special kind of algebras, called gentle algebras.
- The algebra under the carpet of this story is coming from a quotient of the path algebra of the following quiver

$$
Q=\mathbf{1} \underset{\beta_{1}}{\stackrel{\alpha_{1}}{\longrightarrow}} \mathbf{2} \stackrel{\alpha_{2}}{\longrightarrow} \cdots \quad \underset{\beta_{2}}{\stackrel{\alpha_{n-1}}{\longrightarrow}} \mathbf{n}
$$

Black box: Quiver representations

- This Dyck path model is a variant model based on the surface model we use to study special kind of algebras, called gentle algebras.
- The algebra under the carpet of this story is coming from a quotient of the path algebra of the following quiver

$$
Q=\mathbf{1} \xrightarrow[\beta_{1}]{\stackrel{\alpha_{1}}{\longrightarrow}} \mathbf{2} \xrightarrow[\beta_{2}]{\alpha_{2}} \cdots \quad \stackrel{\beta_{n-1}}{\xrightarrow[\alpha_{n-1}]{\longrightarrow}} \mathbf{n}
$$

and we quotient it by the ideal $I=\left\langle\alpha_{i+1} \beta_{i}, \beta_{i+1} \alpha_{i}\right\rangle$.

Black box: Quiver representations

- This Dyck path model is a variant model based on the surface model we use to study special kind of algebras, called gentle algebras.
- The algebra under the carpet of this story is coming from a quotient of the path algebra of the following quiver

$$
Q=\mathbf{1} \xrightarrow[\beta_{1}]{\stackrel{\alpha_{1}}{\longrightarrow}} \mathbf{2} \xrightarrow[\beta_{2}]{\alpha_{2}} \cdots \quad \stackrel{\beta_{n-1}}{\xrightarrow[\alpha_{n-1}]{\longrightarrow}} \mathbf{n}
$$

and we quotient it by the ideal $I=\left\langle\alpha_{i+1} \beta_{i}, \beta_{i+1} \alpha_{i}\right\rangle$.

- For gentle algebras there exist surface models [Simoes-Baur '18, Opper-Plamondon-Schroll ' $18, \ldots$] which allow one to associate some closed curves on the surface to modules over these algebras.

Surface model associated to the above algebra.

Black box: Quiver representations

- This Dyck path model is a variant model based on the surface model we use to study special kind of algebras, called gentle algebras.
- The algebra under the carpet of this story is coming from a quotient of the path algebra of the following quiver

$$
Q=\mathbf{1} \xrightarrow[\beta_{1}]{\stackrel{\alpha_{1}}{\longrightarrow}} \mathbf{2} \xrightarrow[\beta_{2}]{\alpha_{2}} \cdots \quad \stackrel{\beta_{n-1}}{\stackrel{\alpha_{n-1}}{\longrightarrow}} \mathbf{n}
$$

and we quotient it by the ideal $I=\left\langle\alpha_{i+1} \beta_{i}, \beta_{i+1} \alpha_{i}\right\rangle$.

- For gentle algebras there exist surface models [Simoes-Baur '18, Opper-Plamondon-Schroll ' $18, \ldots$] which allow one to associate some closed curves on the surface to modules over these algebras.

Example of a curve of this surface.

Black box : Quiver representations

- The name " g-vector" comes from the notion of g-vectors which already exists in representation theory and which can be calculated for any module over these kind of algebras. Here we are interested to certain kind of modules that are direct sums of the band ones.

Black box: Quiver representations

- The name " g-vector" comes from the notion of g-vectors which already exists in representation theory and which can be calculated for any module over these kind of algebras. Here we are interested to certain kind of modules that are direct sums of the band ones.
- In the Dyck path model, each curve can be associated to a (one-parameter family of) band modules. And so to g-vector, we can associated a module obtained a direct sum of those band modules. Let us denote it by M_{g}.

The Dyck path model simplifying the surface model.

Using words and modules link

Euler form

Euler form

Definition 6

The Euler form is a bilinear form defined on \mathbb{R}^{n} by : for all $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$,

$$
\langle x \mid y\rangle=\sum_{i=1}^{n} x_{i} y_{i}+2 \sum_{1 \leqslant i<j \leqslant n} x_{i} y_{j}
$$

Euler form

Definition 6

The Euler form is a bilinear form defined on \mathbb{R}^{n} by : for all $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$,

$$
\langle x \mid y\rangle=\sum_{i=1}^{n} x_{i} y_{i}+2 \sum_{1 \leqslant i<j \leqslant n} x_{i} y_{j}
$$

- The name "Euler form" comes from representation theory. In particular, if g, h are two g-vectors, and if we denote by M_{g} and M_{h} the modules associated to them respectively, we get :

$$
\langle g, h\rangle=\operatorname{dim} \operatorname{Hom}\left(M_{g}, M_{h}\right)-\operatorname{dim} \operatorname{Hom}\left(M_{h}, M_{g}\right)
$$

Euler form

Definition 6

The Euler form is a bilinear form defined on \mathbb{R}^{n} by : for all $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$,

$$
\langle x \mid y\rangle=\sum_{i=1}^{n} x_{i} y_{i}+2 \sum_{1 \leqslant i<j \leqslant n} x_{i} y_{j}
$$

- The name "Euler form" comes from representation theory. In particular, if g, h are two g-vectors, and if we denote by M_{g} and M_{h} the modules associated to them respectively, we get :

$$
\langle g, h\rangle=\operatorname{dim} \operatorname{Hom}\left(M_{g}, M_{h}\right)-\operatorname{dim} \operatorname{Hom}\left(M_{h}, M_{g}\right)
$$

- In particular, we can deduce that The Euler form is skew symmetric over g-vectors. We can also check it by calculus :

$$
\langle g, h\rangle+\langle h, g\rangle=2\left(\sum_{i=1}^{n} g_{i}\right)\left(\sum_{j=1}^{n} h_{j}\right)=0
$$

Lapointe conjecture

Theorem 7 [DLPPRT '22+]

 distinct circular primitive words.

Lapointe conjecture

Theorem 7 [DLPPRT '22+]

 distinct circular primitive words.

Sketch of the proof.

- Let g, h two g-vectors. To avoid that curves associated to g and to h intersect (to avoid the existence of a non-zero morphisms between M_{g} and M_{h}), we need that $\langle g, h\rangle=0$.

Lapointe conjecture

Theorem 7 [DLPPRT '22+]

 distinct circular primitive words.

Sketch of the proof.

- Let g, h two g-vectors. To avoid that curves associated to g and to h intersect (to avoid the existence of a non-zero morphisms between M_{g} and M_{h}), we need that $\langle g, h\rangle=0$.
- The Euler form is skew symmetric over g-vectors : it implies its isotropic subspace is of dimension at most $\lceil(n-1) / 2\rceil$.

Lapointe conjecture

Theorem 7 [DLPPRT '22+]

 distinct circular primitive words.

Sketch of the proof.

- Let g, h two g-vectors. To avoid that curves associated to g and to h intersect (to avoid the existence of a non-zero morphisms between M_{g} and M_{h}), we need that $\langle g, h\rangle=0$.
- The Euler form is skew symmetric over g-vectors :
it implies its isotropic subspace is of dimension at most $\lceil(n-1) / 2\rceil$.
- A certain familly of g-vectors which gives a basis of this space, and there exist at most $\lceil(n-1) / 2\rceil$ of them.

Lapointe conjecture

Theorem 7 [DLPPRT '22+]

 distinct circular primitive words.

Sketch of the proof.

- Let g, h two g-vectors. To avoid that curves associated to g and to h intersect (to avoid the existence of a non-zero morphisms between M_{g} and M_{h}), we need that $\langle g, h\rangle=0$.
- The Euler form is skew symmetric over g-vectors : it implies its isotropic subspace is of dimension at most $\lceil(n-1) / 2\rceil$.
- A certain familly of g-vectors which gives a basis of this space, and there exist at most $\lceil(n-1) / 2\rceil$ of them.
- Hence the number of conjugacy classes of words is bounded by $\lceil(n-1) / 2\rceil$.

To sum up / To go further :

To sum up / To go further :

1) We introduced perfectly clustering words and explain that could be link to representation theory of algebras following a combinatorial point of view.

To sum up / To go further :

1) We introduced perfectly clustering words and explain that could be link to representation theory of algebras following a combinatorial point of view.
2) We saw how we can use this correspondance to prove some results in the word universe using tools from the representation theory one.

To sum up / To go further :

1) We introduced perfectly clustering words and explain that could be link to representation theory of algebras following a combinatorial point of view.
2) We saw how we can use this correspondance to prove some results in the word universe using tools from the representation theory one.
3) Note that this correspondance is exceptionnal. However we could try to understand other kind of words corresponds to other brick modules over another gentle algebra.

To sum up / To go further :

1) We introduced perfectly clustering words and explain that could be link to representation theory of algebras following a combinatorial point of view.
2) We saw how we can use this correspondance to prove some results in the word universe using tools from the representation theory one.
3) Note that this correspondance is exceptionnal. However we could try to understand other kind of words corresponds to other brick modules over another gentle algebra.
4) Another remark is: there exists a bijection from (connected acyclic) bi-rainbow meanders to conjugacy classes of perfecly clustering words and, in some way we get a result that could be translate in this kind of behaviour.

To sum up / To go further :

1) We introduced perfectly clustering words and explain that could be link to representation theory of algebras following a combinatorial point of view.
2) We saw how we can use this correspondance to prove some results in the word universe using tools from the representation theory one.
3) Note that this correspondance is exceptionnal. However we could try to understand other kind of words corresponds to other brick modules over another gentle algebra.
4) Another remark is: there exists a bijection from (connected acyclic) bi-rainbow meanders to conjugacy classes of perfecly clustering words and, in some way we get a result that could be translate in this kind of behaviour.

To be continued...

To sum up / To go further :

1) We introduced perfectly clustering words and explain that could be link to representation theory of algebras following a combinatorial point of view.
2) We saw how we can use this correspondance to prove some results in the word universe using tools from the representation theory one.
3) Note that this correspondance is exceptionnal. However we could try to understand other kind of words corresponds to other brick modules over another gentle algebra.
4) Another remark is: there exists a bijection from (connected acyclic) bi-rainbow meanders to conjugacy classes of perfecly clustering words and, in some way we get a result that could be translate in this kind of behaviour.

To be continued...

Vielen Dank!

(Bonus) : Gessel-Reutenaeur transform explicit explaination

(Bonus) : Gessel-Reutenaeur transform explicit explaination

Let $w=\mathbf{5 2 2 1 1 5 5 4 3 3 3 1}$. To get back $s=\{(\mathbf{5 3 5 1 2 1 2 1}),(\mathbf{5 3 4 3})\}$, we proceeed as follows :

(Bonus) : Gessel-Reutenaeur transform explicit explaination

Let $w=\mathbf{5 2 2 1 1 5 5 4 3 3 3 1}$. To get back $s=\{(\mathbf{5 3 5 1 2 1 2 1}),(\mathbf{5 3 4 3})\}$, we proceeed as follows :

- We first consider the standard permutation of w :

w	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}$
$\mathrm{st}(w)$	10	4	5	1	2	11	12	9	6	7	8	3

(Bonus) : Gessel-Reutenaeur transform explicit explaination

Let $w=\mathbf{5 2 2 1 1 5 5 4 3 3 3 1}$. To get back $s=\{(\mathbf{5 3 5 1 2 1 2 1}),(\mathbf{5 3 4 3})\}$, we proceeed as follows :

- We first consider the standard permutation of w :

w	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}$
$\mathrm{st}(w)$	10	4	5	1	2	11	12	9	6	7	8	3

- We consider $\tau=\operatorname{st}(w)^{-1}$ and we write τ as a product of disjoint cycles:

$$
\tau=\left(\begin{array}{llllllllll}
1 & 4 & 2 & 5 & 3 & 12 & 7 & 10
\end{array}\right) \cdot\left(\begin{array}{lllll}
6 & 9 & 8 & 11
\end{array}\right)
$$

(Bonus) : Gessel-Reutenaeur transform explicit explaination

Let $w=\mathbf{5 2 2 1 1 5 5 4 3 3 3 1}$. To get back $s=\{(\mathbf{5 3 5 1 2 1 2 1}),(\mathbf{5 3 4 3})\}$, we proceeed as follows :

- We first consider the standard permutation of w :

w	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}$
$\mathrm{st}(w)$	10	4	5	1	2	11	12	9	6	7	8	3

- We consider $\tau=\operatorname{st}(w)^{-1}$ and we write τ as a product of disjoint cycles :

$$
\tau=\left(\begin{array}{llllllllll}
1 & 4 & 2 & 5 & 3 & 12 & 7 & 10
\end{array}\right) \cdot\left(\begin{array}{lllll}
6 & 9 & 8 & 11
\end{array}\right)
$$

- We get the multiset of the conjugacy classes s by replacing i by the ith letter of w with respect to $\operatorname{st}(w)$.

$$
\Phi(w)=\{(\mathbf{1 5 3 5 1 2 1 2}),(\mathbf{3 5 3 4})\}=s
$$

(Bonus) : Gessel-Reutenaeur transform explicit explaination

Let $w=\mathbf{5 2 2 1 1 5 5 4 3 3 3 1}$. To get back $s=\{(\mathbf{5 3 5 1 2 1 2 1}),(\mathbf{5 3 4 3})\}$, we proceeed as follows :

- We first consider the standard permutation of w :

w	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}$
$\mathrm{st}(w)$	10	4	5	1	2	11	12	9	6	7	8	3

- We consider $\tau=\operatorname{st}(w)^{-1}$ and we write τ as a product of disjoint cycles :

$$
\tau=\left(\begin{array}{llllllllll}
1 & 4 & 2 & 5 & 3 & 12 & 7 & 10
\end{array}\right) \cdot\left(\begin{array}{lllll}
6 & 9 & 8 & 11
\end{array}\right)
$$

- We get the multiset of the conjugacy classes s by replacing i by the ith letter of w with respect to $\operatorname{st}(w)$.

$$
\Phi(w)=\{(\mathbf{1 5 3 5 1 2 1 2}),(\mathbf{3 5 3 4})\}=s
$$

We call $\Phi(w)$ the Gessel-Reutenauer transform of w.

(Bonus) : Gessel-Reutenaeur transform explicit explaination

Let $w=\mathbf{5 2 2 1 1 5 5 4 3 3 3 1}$. To get back $s=\{(\mathbf{5 3 5 1 2 1 2 1}),(\mathbf{5 3 4 3})\}$, we proceeed as follows :

- We first consider the standard permutation of w :

w	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}$
$\mathrm{st}(w)$	10	4	5	1	2	11	12	9	6	7	8	3

- We consider $\tau=\operatorname{st}(w)^{-1}$ and we write τ as a product of disjoint cycles :

$$
\tau=\left(\begin{array}{llllllllll}
1 & 4 & 2 & 5 & 3 & 12 & 7 & 10
\end{array}\right) \cdot\left(\begin{array}{lllll}
6 & 9 & 8 & 11
\end{array}\right)
$$

- We get the multiset of the conjugacy classes s by replacing i by the ith letter of w with respect to $\operatorname{st}(w)$.

$$
\Phi(w)=\{(\mathbf{1 5 3 5 1 2 1 2}),(\mathbf{3 5 3 4})\}=s
$$

We call $\Phi(w)$ the Gessel-Reutenauer transform of w.
Note that $\Psi=\Phi^{-1}$ coincides with BW for multisets made of an unique conjugacy class.

