
Motivation
Background

Banerjee’s Congruences
References

Partitions, Kernels, and the Localization Method

Nicolas Allen Smoot
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Partitions

Definition

For any n ∈ Z≥0, a partition of n is a representation of n as a sum
of positive integers, called parts. The number of partitions of a
given n is denoted p(n).

For example, p(4) = 5:

4

3 + 1

2 + 2

2 + 1 + 1

1 + 1 + 1 + 1
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∞∑
n=0

p(n)qn =
∞∏

m=1

1

1− qm
.

The sequence for p(n) begins

(p(n))n≥0 =
(
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 57, 77, 101, 135,

176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, ...
)

What kind of arithmetic properties does p(n) have?
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Ramanujan’s Congruences

(p(n))n≥0 =
(
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 57, 77, 101, 135,

176, 231, 297, 385, 490, 627, 792, 1002, 1255, 1575, 1958, ...
)

p(5n + 4) ≡ 0 (mod 5).

p(25n + 24) ≡ 0 (mod 25).

p(125n + 99) ≡ 0 (mod 125).

Theorem (Ramanujan, 1918)

Let n, α ∈ Z≥0 such that 24n ≡ 1 (mod 5α). Then

p (n) ≡ 0 (mod 5α).
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dk(n): k-Elongated Plane Partitions of n

Define Dk(q) by

Dk(q) :=
∞∑
n=0

dk(n)q
n =

∞∏
m=1

(1− q2m)k

(1− qm)3k+1
.

Here dk(n) counts the number of k-elongated plane partitions of n.
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dk(n): k-Elongated Plane Partitions of n

a3 a5 a2k−1 a2k+1

a2k−2 a2k

a2k+2

a7

a6a4a2

a1

Figure: A length 1 k-elongated partition diamond.

aj ∈ Z≥0

ab → ac indicates that ab ≥ ac

a1 + a2k+2 = n
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dk(n): k-Elongated Plane Partitions of n

a3

a2k+2

a2ka2

a1 a4k+3 a(2k+1)m+1

a2k+1 a2k+4

a2k+3 a4k+1

a4k+2 a(2k+1)m

a(2k+1)m−1

Figure: A length m k-elongated partition diamond.

aj ∈ Z≥0

ab → ac indicates that ab ≥ ac

a1 + a2k+2 + ...+ a(2k+1)m+1 = n

Notice that d0(n) = p(n).
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Congruences on d2(n)

(d2(n))n≥0 =
(
1, 7, 33, 126, 419, 1260, 3509, 9185, 22842, 54395,

124784, 277059, 597644, 1256341, 2580363, 5189185,

10236710, 19840410, 37832553, 71060190, 131610897, ...
)

Theorem (G.E. Andrews, P. Paule, 2021)

For all n ≥ 0,

d2(3n + 2) ≡ 0 (mod 3),

d2(9n + 8) ≡ 0 (mod 9),

d2(27n + 17) ≡ 0 (mod 27).
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Congruences on d2(n)

Conjecture (G.E. Andrews, P. Paule, 2021)

Let n, α ∈ Z≥0 such that 8n ≡ 1 (mod 3α). Then

d2 (n) ≡ 0 (mod 3α).

“... the Conjectures... seem to be particulary challenging,
especially the infinite family of Ramanujan type congruences”
(G.E. Andrews, P. Paule, “MacMahon’s Partition Analysis XIII”).

Theorem (Me, about a week after the conjecture was announced)

Let n, α ∈ Z≥0 such that 8n ≡ 1 (mod 3α). Then

d2 (n) ≡ 0 (mod 32⌊α/2⌋+1).
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Congruences on d5(n)

(d5(n))n≥0 =
(
1, 16, 147, 1008, 5705, 28080, 124054, 502336,

1892211, 6703200, 22519756, 72222192, 222280253,

659381856, 1892107005, 5268028752, 14268267146, ...
)

Theorem (da Silva, Hirschhorn, Sellers, 2021)

For all j , n ≥ 0,

d5j+5(5n + 4) ≡ 0 (mod 5).

Note that d5(5n + 4) ≡ 0 (mod 5).
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Banerjee’s Congruences

This was conjectured by Koustav Banerjee:

Theorem (Banerjee, Me, 2022)

Let n, α ∈ Z≥1 such that 4n ≡ 1 (mod 5α). Then

d5(n) ≡ 0 (mod 5⌊α/2⌋+1).
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Ramanujan’s Congruences

Theorem

Let n, α ∈ Z≥0 such that 24n ≡ 1 (mod 5α). Then

p (n) ≡ 0 (mod 5α).

Lα := Φα ·
∑

24n≡1 mod 5α

p(n)q⌊n/5
α⌋+1

L1 = 5t

L2 = 1575t + 162500t2 + 4921875t3 + 58593750t4 + 244140625t5

t = q
∞∏

m=1

(
1− q5m

1− qm

)
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Ramanujan’s Congruences

Theorem

Let n, α ∈ Z≥0 such that 24n ≡ 1 (mod 5α). Then

p (n) ≡ 0 (mod 5α).

There exist operators U(0), U(1) such that

U(1) (L2α−1) = L2α,

U(0) (L2α) = L2α+1.

By induction, we can prove

1

5α
Lα ∈ Z[t].
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Banerjee’s Congruences

Theorem

Let n, α ∈ Z≥1 such that 4n ≡ 1 (mod 5α). Then

d5(n) ≡ 0 (mod 5⌊α/2⌋+1).

Lα := Φα ·
∑

4n≡1 mod 5α

d5(n)q
⌊n/5α⌋+2/gcd(α,2).
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First Example

L1 =
1

(1 + 5x)6

(
5705x2 + 6840120x3 + 2034152125x4 + 280484938650x5 + 22921365211325x6 + 1260917405154520x7

+ 50400843190048480x8 + 1539115922208139200x9 + 37183654303328448000x10 + 728924483359472640000x11

+ 11816089262411136000000x12 + 160681440628058880000000x13 + 1853291134193264640000000x14

+ 18284160727362809856000000x15 + 155286793010086625280000000x16 + 1140657222505472000000000000x17

+ 7269894420215070720000000000x18 + 40277647277404979200000000000x19

+ 194099187864646451200000000000x20 + 813054581193729638400000000000x21

+ 2954545150241538048000000000000x22 + 9282005730758492160000000000000x23

+ 25080951875200614400000000000000x24 + 57872525958316032000000000000000x25

+ 112916020309524480000000000000000x26 + 183812885074411520000000000000000x27

+ 245082228994867200000000000000000x28 + 260725452832768000000000000000000x29

+ 212837104353280000000000000000000x30 + 125198296678400000000000000000000x31

+ 47244640256000000000000000000000x32 + 8589934592000000000000000000000x33
)
.

x =q
∞∏

m=1

(1− q2m)(1− q10m)3

(1− qm)3(1− q5m)
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Main Theorem

Theorem

Define

ψ := ψ(α) :=

⌊
5α+1

4

⌋
+ 1− gcd(α, 2),

β := β(α) = ⌊α/2⌋+ 1.

Then for all α ≥ 1, we have

(1 + 5x)ψ

5β
· Lα ∈ Z[x ].

From this, Banerjee’s congruences follow.
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Lα

L1 =
1

(1 + 5x)6
·
(
5705x2 + 6840120x3 + ...

+ 8589934592000000000000000000000x33
)
.

We want to express

Lα =
∑
m≥1

s(m) · 5θi (m) · xm

(1 + 5x)n
,

with n ∈ Z≥1 fixed, s, θi integer-valued functions, s discrete, and
i = 0, 1 depending on the parity of α.
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U Operator

Lα =
∑
m≥1

s(m) · 5θi (m) · xm

(1 + 5x)n
,

There exist operators U(0), U(1) such that

U(1) (L2α−1) = L2α,

U(0) (L2α) = L2α+1.

We need to study

U(i)

(
xm

(1 + 5x)n

)
.
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Inheritance Mapping

Definition

V(1)
n :=

 1

(1 + 5x)n

∑
m≥2

s(m) · 5θ1(m) · xm : (s(m))m≥2 ∈ ker (Ω)

 ,

V(0)
n :=

 1

(1 + 5x)n

∑
m≥1

s(m) · 5θ0(m) · xm
 .

Ω :
∞⊕

m=2

Z → Z/5Z2,

: s 7→
(
1 1 2 1 0 0 0 0 0 0...
0 0 1 0 4 4 4 0 0 0...

)
· s.

Ω is the associated inheritance mapping.
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m≥1
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Stability Within Inheritance Kernel

We have L1 ∈ V(1)
6 .

Theorem

Suppose f ∈ V(1)
n . Then

1

5
· U(1) (f ) ∈ V(0)

5n ,

1

5
· U(0) ◦ U(1) (f ) ∈ V(1)

25n+6.

From this, the Main theorem and Banerjee’s congruences follow.
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Inheritance Mapping

V(1)
n :=

 1

(1 + 5x)n

∑
m≥2

s(m) · 5θ1(m) · xm : (s(m))m≥2 ∈ ker (Ω)

 .

Ω :
∞⊕

m=2

Z → Z/5Z2,

: s 7→
(
1 1 2 1 0 0 0 0 0 0...
0 0 1 0 4 4 4 0 0 0...

)
· s.

Analogues to Ω actually exist for every congruence family modulo
powers of prime ℓ, e.g., the congruences for p(n) by powers of 5.
When the level of the associated modular curve is ℓ, Ω is trivial.
When the level is 2 · ℓ, Ω has a form given in the family above.
When the level is 4 · ℓ, we don’t yet understand Ω.
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