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Many combinatorial sequences are moment sequences of
probability measures on the real line.

Example: The number of perfect matchings:

(2n − 1)!! =

∫
R
x2n · e−x

2/2

√
2π

Equivalently, the Hankel determinants of the sequence
1, 3, 15, 105, 945 . . . are all positive, and the first one is 1:

(
1
) (

1 3
3 15

)  1 3 15
3 15 105

15 105 945




1 3 15 105
3 15 105 945

15 105 945 10395
105 945 10395 135135


1 6 720 3628800
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Many combinatorial sequences are moment sequences of
probability measures on the real line.

Example: The Catalan numbers:

Cn =
1

n + 1

(
2n

n

)
=

∫ 2

−2
x2n ·

√
4− x2

2π

Equivalently, the Hankel determinants of the sequence
1, 1, 2, 5, 14, 42, 132, 429, . . . are all positive:

(
1
) (

1 1
1 2

) 1 1 2
1 2 5
2 5 14




1 1 2 5
1 2 5 14
2 5 14 42
5 14 42 132


1 1 1 1
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Andrew Elvey Price (June 2022): Of the 354,910 sequences in the
OEIS, 16,595 (4.7%) may be moment sequences.

Which combinatorial sequences are moment sequences?

# trees on labeled nodes (nn−2):

1, 1, 3, 16, 125, 1296, 16807, 262144, 4782969, . . .

# trees on unlabeled nodes:

1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, 1301, 3159, . . .

# permutations avoiding consecutive 123:

1, 1, 2, 5, 17, 70, 349, 2017, 13358, 99377, 822041, . . .

# permutations avoiding consecutive 132:

1, 1, 2, 5, 16, 63, 296, 1623, 10176, 71793, 562848, . . .

Cn: 1, 1, 2, 5, 14, 42, 132, 329, 1430, 4862, 16796, . . . 3
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Which combinatorial sequences are moment sequences?

Can we find structural properties of our combinatorial objects that
determine positivity?

Is this interesting?

Depends on the answer(s) . . .
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There are two parts to these talks:

I A large and diverse family of combinatorial sequences,
captured by a single multivariate continued fraction that
guarantees they are all moment sequences:

Permutations, set partitions, perfect matchings, colored
permutations, . . .

Bonus: A “new” family of combinatorial objects with many
nice properties but mostly unstudied so far.

I A large uniform family of sequences we conjecture to be
moment sequences:

Permutations covered by occurrences of consecutive patterns.

6 / 1



In 1979 Françon and Viennot came up with a way to keep track of
four statistics on permutations simultaneously:

peaks, valleys, double ascents, double descents

3 1 6 7 9 4 8 5 2

Flajolet (1980) then showed how the encoding of permutations
F-W used for this was captured by a continued fraction.

Which is equivalent to putting certain weights on Motzkin paths.

He then gave a very general correspondence between labeled
Motzkin paths and continued fractions.

Flajolet’s paper Combinatorial aspects of continued fractions is
truly one of the great papers of combinatorics.
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A Motzkin path is a sequence of up, down and level steps,
starting at (0, 0), ending at (n, 0), never going below the x-axis:

A Dyck path is a Motzkin path with no level steps:
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A Motzkin path is a sequence of (1,1), (1,0) and (1,-1) steps,
starting at (0, 0), ending at (n, 0), never going below the x-axis:

A Dyck path is a Motzkin path with no level steps:
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A Motzkin path is a sequence of up, down and level steps,
starting at (0, 0), ending at (n, 0), never going below the x-axis:

1− x −
√

1− 2x − 3x2

2x2

A Dyck path is a Motzkin path with no level steps:

1−
√

1− 4x2

2x2

8 / 1



The Catalan numbers count Dyck paths, whose generating
function is

C (x) =
1−
√

1− 4x2

2x2
=
∑
n≥0

1

n + 1

(
2n

n

)
x2n

which satisfies C = 1 + x2C 2,

from which it follows that C (x) =
1

1−
x2

1−
x2

. . .
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Dyck path

1

1−
x2

1−
x2

. . .

Motzkin path

1

1−z −
z2

1−z −
z2

. . .

In the continued fraction representation the level steps are directly
visible.
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A = a0, a1, . . . is a Hamburger moment sequence of a (positive)
measure ρ on the real line if

an =

∫
R
xn dρ(x)

Equivalently, the Hankel determinants are all positive (or positive
for n ≤ N and 0 for n > N).

Equivalently, there are real numbers βi and αi such that

∑
n≥0

anz
n =

1

1− α0z −
β1z

2

1− α1z −
β2z

2

. . .

with βi > 0 for all i (or all i ≤ N and 0 for i > N).
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[2] [2] [3]
Weighted Motzkin path

1

1− z −
z2

1− 3z −
22z2

. . .

1− (2n + 1)z −
n2z2

. . .

=
∑
n≥0

n! · zn

where αn(·) has αn(1) = 2n + 1 and βn(·) has βn(1) = n2Special case of the general correspondence by Flajolet (1980).
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Several papers have exploited Flajolet’s 1980 correspondence to
obtain distributions of various sets of permutations statistics:

Françon–Viennot 1979
Foata–Zeilberger 1990
Biane 1993
de Médicis–Viennot 1994
Simion–Stanton 1994
Clarke–Steingŕımsson–Zeng 1996
Randrianarivony 1998
Elizalde 2018

Most recently:

Blitvić–Steingŕımsson 2021
Sokal–Zeng 2022

13 / 1



Our Continued Fraction

For parameters a, b, c , d , f , g , h, `, p, r , s, t, u,w ∈ R, let

C(z) =
1

1− α0z −
β1z

2

1− α1z −
β2z

2

. . .

where

αn = u · wn + s [n]a,b + t [n]f ,g βn = p r [n]c,d [n]h,`

and [n]x ,y = xn−1 + xn−2y + · · ·+ xyn−2 + yn−1

statistics to Motzkin paths corresponding to C(z), using Flajolet’s
correspondence.
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1− α0z −
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2

1− α1z −
β2z

2

. . .

where

αn = u · wn + s [n]a,b + t [n]f ,g βn = p r [n]c,d [n]h,`

The Plan: Find a bijection taking permutations, carrying lots of
statistics, to Motzkin paths corresponding to C(z), using Flajolet’s
general correspondence.
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Consider Motzkin paths labeled as follows, where 0 ≤ i < k

I Upsteps from height k − 1 to k have labels pc idk−1−i

I Downsteps from height k to k − 1 have labels rhi`k−1−i

I Level steps at height k have labels in

{u · wk} ∪ {s aibk−1−i} ∪ {t f igk−1−i}.

By Flajolet’s correspondence, C(z) is the generating function for
Motzkin paths thus labeled:

C(z) = 1

. . .

1− (u · wn + s [n]a,b + t [n]f ,g ) z −
p r [n + 1]c,d [n + 1]h,` z2

. . .
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Fourteen statistics on permutations σ(1)σ(2) . . . σ(n), based on
excedances and inversions:

σ(i): 5 9 7 1 2 6 8 4 3
i : 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Excedances red

Anti-excedances blue

Fixed points green
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But this gets more complicated . . .
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5 9 7 1 2 6 8 4 3
1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

7 is a linked excedance: 8 = σ(7) > 7 > σ−1(7) = 3

4 is a linked anti-excedance: 1 = σ(4) < 4 < σ−1(4) = 9

9 · · · 6 is an inversion between excedance and fixed point
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1. # excedances as exc(σ) := #{i ∈ [n] | i < σ(i)},
2. # fixed points as fp(σ) := #{i ∈ [n] | i = σ(i)},
3. # anti-excedances as aexc(σ) := #{i ∈ [n] | i > σ(i)},
4. # linked excedances as le(σ) := #{i ∈ [n] | σ−1(i) < i < σ(i)},
5. # linked anti-excedances as lae(σ) := #{i ∈ [n] | σ−1(i) > i > σ(i)}.
6. # inversions between excedances: ie(σ) := #{i , j ∈ [n] | i < j < σ(j) < σ(i)}.
7. # inversions between excedances where the greater excedance is

linked:ile(σ) := #{i , j ∈ [n] | i < j < σ(j) < σ(i) and σ−1(j) < j}.
8. # restricted non-inversions between

excedances:nie(σ) := #{i , j ∈ [n] | i < j < σ(i) < σ(j)}.
9. # restricted non-inversions between excedances where the rightmost excedance

is linked: nile(σ) := #{i , j ∈ [n] | i < j < σ(i) < σ(j) and σ−1(j) < j}.
10. # inversions between anti-excedances:

iae(σ) := #{i , j ∈ [n] | j > i > σ(i) > σ(j)}.
11. # inversions between anti-excedances where the smaller anti-excedance is

linked: ilae(σ) := #{i , j ∈ [n] | j > i > σ(i) > σ(j) and σ−1(i) > i}.
12. # restricted non-inversions between anti-excedances:

niae(σ) := #{i , j ∈ [n] | j > i > σ(j) > σ(i)}.
13. # restricted non-inversions between anti-excedances where the smaller

anti-excedance is linked:
nilae(σ) := #{i , j ∈ [n] | j > i > σ(j) > σ(i) and σ−1(i) > i}.

14. # inversions between excedances and fixed points:
iefp(σ) := #{i , j ∈ [n] | i < j = σ(j) < σ(i)}.
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6. # inversions between excedances: ie(σ) := #{i , j ∈ [n] | i < j < σ(j) < σ(i)}.
7. # inversions between excedances where the greater excedance is

linked:ile(σ) := #{i , j ∈ [n] | i < j < σ(j) < σ(i) and σ−1(j) < j}.
8. # restricted non-inversions between

excedances:nie(σ) := #{i , j ∈ [n] | i < j < σ(i) < σ(j)}.
9. # restricted non-inversions between excedances where the rightmost excedance

is linked:
nile(σ) := #{i , j ∈ [n] | i < j < σ(i) < σ(j) and σ−1(j) < j}.

10. # inversions between anti-excedances:
iae(σ) := #{i , j ∈ [n] | j > i > σ(i) > σ(j)}.

11. # inversions between anti-excedances where the smaller anti-excedance is
linked: ilae(σ) := #{i , j ∈ [n] | j > i > σ(i) > σ(j) and σ−1(i) > i}.

12. # restricted non-inversions between anti-excedances:
niae(σ) := #{i , j ∈ [n] | j > i > σ(j) > σ(i)}.

13. # restricted non-inversions between anti-excedances where the smaller
anti-excedance is linked:
nilae(σ) := #{i , j ∈ [n] | j > i > σ(j) > σ(i) and σ−1(i) > i}.

14. # inversions between excedances and fixed points:
iefp(σ) := #{i , j ∈ [n] | i < j = σ(j) < σ(i)}.

20 / 1



5 9 7 1 2 6 8 4 3
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bijection

corresponding
Motzkin path

p

dp

cdp
g2t

`2r
w2u as

hr

r

wt: a · c · d2 · g2 · h · `2 · p3 · r3 · s · t · u · w2

Weight of labeled Motzkin path, wt(M): Product of its labels
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hr
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wt: a · c · d2 · g2 · h · `2 · p3 · r3 · s · t · u · w2

Above wt is one term in [z9] C(z)
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The weight of a labeled Motzkin path M, wt(M), is the product of
its labels.

Theorem: There is a bijection η : Sn →Mn such that if
M = η(σ) then wt(M) equals

stat(σ) = aile(σ)bnile(σ)c ie(σ)−ile(σ)dnie(σ)−nile(σ)

× f ilae(σ)gnilae(σ)hiae(σ)−ilae(σ)`niae(σ)−nilae(σ)

× pexc(σ)−le(σ)raexc(σ)−lae(σ)s le(σ)t lae(σ)ufp(σ)w iefp(σ)

Corollary: C(z) =
∑
n≥0

∑
σ∈Sn

stat(σ)zn.

In short: Weight of Motzkin path goes to 14-parameter statistic on
corresponding permutation
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There are several related bijections in earlier literature by

Françon-Viennot 1979
Foata-Zeilberger 1990
Biane 1993
de Médicis-Viennot 1994

Simion-Stanton 1994
Clarke-Steingŕımsson-Zeng 1996
Randrianarivony 1998
Elizalde 2018

Our results generalize most of these, some modulo a bijection
interchanging excedances and descents.

In a contemporaneous paper, Sokal and Zeng (2022) present a
framework similar to ours, but with an additional four statistics,
including the crossings and alignments defined by Corteel.

Of the above, only Biane, Elizalde and Sokal-Zeng separate fixed
points from anti-excedances, as we do. This leads to greater
symmetry in the continued fraction, and to results not otherwise
obtainable.
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The number sequences arising from C enumerate many different
combinatorial structures, such as permutations, perfect matchings
and set partitions.

These basic examples happen to be moment sequences of
important distributions from probability theory.
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Some refinements of these objects also have meaning in probability
theory.

Which structures give something probabilistically meaningful?
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Moment sequences

A sequence a0, a1, a2, . . . is a moment sequence of a positive
measure on the real line if and only if all principal minors of

a0 a1 · · · an
a1 a2 · · · an+1

...
an an+1 · · · a2n


are non-negative for any n. (Hamburger, a 100 years ago)

In particular, (an)n≥0 is then log-convex
(
an−1an+1 ≥ a2

n

)
.

Can get strong lower bounds on growth rates of moment sequences
(provided the αi are positive).

(Haagerup–Haagerup–Ramirez Solano,
Elvey Price, Clisby–Conway–Guttmann)
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Moment sequences

∑
n≥0

mnz
n = C(z) =

1

1− α0z −
β1z

2

1− α1z −
β2z

2

. . .

αn = u · wn + s [n]a,b + t [n]f ,g βn = p r [n]c,d [n]h,`

Theorem: For a, b, c , d , f , g , h, `, p, r , s, t, u,w ∈ R with pr > 0
and c , d , h, ` satisfying

c = −d or h = −` or

(c > −d and h > −`) or (c < −d and h < −`),

the sequence (mn) is the moment sequence of some probability
measure on R. In particular if all non-negative and pr > 0.
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Moment sequences

∑
n≥0

mnz
n = C(z) =

1

1− α0z −
β1z

2

1− α1z −
β2z

2

. . .

αn = u · wn + s [n]a,b + t [n]f ,g βn = p r [n]c,d [n]h,`

With mild conditions on the parameters of C(z), which are easy to
check, we get moment sequences.

All sequences mentioned from now on are moment sequences
arising from C(z).

28 / 1



1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

p
dp
cdp

g2t
`2r
w2u as

hr
r

C(z) =
1

1− α0z −
β1z

2

1− α1z −
β2z

2

. . .

where

αn = u · wn + s [n]a,b + t [n]f ,g βn = p r [n]c,d [n]h,`

Here, u carries #fixed points, s carries #linked excedances, a
carries #inversions among linked excedances, . . .
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C(z) = 1

. . .

1− (u · wn + s [n]a,b + t [n]f ,g ) z −
p r [n + 1]c,d [n + 1]h,` z2

. . .

With s = qx , p = x , all other parameters = 1, we get

C(z) =
∑
n≥0

∑
σ∈Sn

xdes(σ)qocc321(σ)zn,

where occ321 is #occurrences of the consecutive pattern 321

occurrence: 356412 not consecutive: 356412

First shown by Elizalde 2018, using a different continued fraction.
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With s = 0, all other parameters = 1, we get

C(z) =
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Av321(n) = # n-permutations avoiding consecutive pattern 321

occurrence: 356412 not consecutive: 356412

First shown by Elizalde 2018, using a different continued fraction.

30 / 1



With s = 0, all other parameters = 1, we get

C(z) =
∑
n≥0

Av321(n)zn,

Av321(n) = # n-permutations avoiding consecutive pattern 321

If b, d , g , ` = q, s = xq, p, u = x , others = 1:

C(z) =
∑
n≥0

∑
σ∈Sn

xdes(σ)+1qocc2 31(σ)zn.

where occ2 31 is #occurrences of the vincular pattern 2 31

2 31 occurrence: 416523 62 not adjacent: 416523

Two more cases: Catalan and Bell numbers
1 2 3 1 23
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The only 3-pattern whose avoiders don’t give a moment sequence
is the consecutive pattern 132 (equivalently 213, 231, 312).

This is the only 3-pattern whose avoidance is not captured in C(z).
(Trying to fit the βi to this sequence leads to a contradiction.)

Theorem: The sequence of numbers of avoiders of a pattern of
length 3 is a moment sequence iff it is a special case of C(z).
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Of the three sequences for classical patterns of length 4, two are
known to be moment sequences. Elvey Price conjectures the same
is true of the third, the enigmatic 1324.

Clisby-Conway-Guttmann-Inoue conjecture that the same is true for
all 16 Wilf classes of length 5, and prove this in the case of 12345.

Conjecture: The numbers of permutations avoiding any single
classical pattern form a moment sequences.

Which combinatorial sequences are moment sequences?

Which tools from probability/analysis would that let us use?
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Specializations of C(z) also capture a large part of the q-Askey
scheme of orthogonal polynomials, here interpreted in terms of the
simple concepts of excedances and inversions in permutations.

Corteel and Williams have a combinatorial interpretation with
statistics on different objects (staircase tableaux) for all
polynomials that specialize from the Askey-Wilson family.

34 / 1



Specializations of C(z) also capture a large part of the q-Askey
scheme of orthogonal polynomials, here interpreted in terms of the
simple concepts of excedances and inversions in permutations.

Corteel and Williams have a combinatorial interpretation with
statistics on different objects (staircase tableaux) for all
polynomials that specialize from the Askey-Wilson family.

34 / 1



35 / 1



Specializations of our C(z) do not capture the entire q-Askey
scheme, but our underlying statistics are somewhat simpler.

36 / 1



ab = q
bc = - q
cd = q

a = 0 α = 1 a = 0

ab = q a =   √q a = 1

b = -1

b = c = 1

α = 1
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A very open problem

Sokal and Zeng have a continued fraction with another four
parameters, carrying statistics on alignments and crossings in
permutations, first defined by Corteel.

(They also have multivariate continued fractions carrying lots of
statistics on set partitions and perfect matchings. Recommended!)

Is it possible to add further parameters carrying even more
permutation statistics?

In particular, is it possible to expand these continued fractions to
encompass all of the q-Askey scheme?
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Generalizations

Via simple substitutions of parameters, many of the permutation
statistics carried by C(z) generalize to the k-colored permutations
Skn — each letter gets one of k colors — in particular the signed
permutations of the type B Coxeter groups (k = 2).

312462425013

312462425013

Let ci be the color of the i-th letter.

An excedance in a colored permutation a1a2 . . . an is an i such that

ai > i OR (ai = i AND ci > 0)

A fixed point is an i such that ai = i AND ci = 0

An anti-excedance is an i such that ai < i
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• An excedance in a colored permutation is an i such that

ai > i OR (ai = i AND ci > 0)

• A fixed point is an i such that ai = i AND ci = 0

• An anti-excedance is an i such that ai < i

Proposition: With s, p = kx , t, r = ky , u = (k − 1)x + q, and
all other parameters set to 1, we get

C(z) =
∑
n≥0

∑
σ∈Skn

xexc(σ)yaexc(σ)qfix(σ)zn.

Easy to refine this to distinguish linked/unlinked (anti-)excedances,
because the colors embed naturally in C(z).

(There are quite a few papers on various statistics on the colored
permutations.)
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• An inversion is a pair (i , j) where i < j and

ci > cj OR (ci = cj AND ai > aj)
With

a, c , h, r = q, b, f , d , `, t = q2, g ,w = 0, p, u = 1, s = 2q,
we get the distribution of inversions over Sn from C:

C(z) =
∑
n≥0

∑
π∈Sn

qinv(π)zn.

Biane already obtained this in 1993, starting from a different
continued fraction.

If we replace z by z((k − 1)q + 1) above, we get the distribution of
inversions over the k-colored permutations Skn for k > 1.

Further, setting p = x , s = (1 + x)q, we get

C(z) =
∑
n≥0

∑
π∈Sn

xexc(π)qinvπzn.

Unclear whether that can be extended to Skn via C and whether
other Euler-Mahonian pairs can be obtained from C.
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Coloring only fixed points

Because fixed points live independently in C(z), the following
generalization is obvious:

k-arrangements: Permutations with k-colored fixed points

I 0-arrangements are derangements (no fixed points)

I 1-arrangements are permutations

I 2-arrangements were called just arrangements by Comtet, and
coincide with Postnikov’s decorated permutations, which are
in bijection with ‘certain non-negative Grassmann cells’.

For k > 2 the k-arrangements do not seem to have been studied.

But they have many nice properties, and doubtless many more to
be discovered.
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Proposition: Let Ak(n) be the number of k-arrangements of [n].
Then

• Ak(0) = 1. For n > 0: Ak(n) = n · Ak(n − 1) + (k − 1)n

•
∑
n≥0

Ak(n)
xn

n!
=

e(k−1)x

(1− x)

• Ak(n) =
∑
i≥0

(
n

i

)
Ak−1(i) (successive binomial transforms)

• Ak(n) equals the permanent of the n × n matrix with k on the
diagonal and 1s elsewhere.

All of this holds for k < 0. Seems that Ak(n) > 0 for n >> 0.

What does that count?
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#k-arrangements on [n] =

∫ ∞
k−1

xne−x+(k−1)dx

−2 0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

Positivity previously observed for:

I k = 0: Martin & Kearney ’15

I k = 2: Ardila, Rincón, Williams ’16 (# positroids)
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Encoding k-arrangements

Replacing fixed points colored i by −i gives the derangement form
of a k-arrangement. Example:

6 23 1 45 9 8 72 5 3
6 −3 1 −5 9 8 −2 5 3

Replacing fixed points colored i < k by −i gives the permutation
form of a k-arrangement. Example for a 5-arrangement:

6 23 1 45 9 8 72 5 3
6 −3 1 4 9 8 −2 5 3
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Replacing fixed points colored i by −i gives the derangement form
of a k-arrangement. Example:

6 23 1 45 9 8 72 5 3
6 −3 1 −5 9 8 −2 5 3

Replacing fixed points colored i < k by −i gives the permutation
form of a k-arrangement. Example for a 5-arrangement:

6 23 1 45 9 8 72 5 3
6 −3 1 4 9 8 −2 5 3

Given a k-arrangement A as a permutation π with fixed points
colored with {1, 2, . . . , k}, letting its non-fixed points have color 0
we can regard A as a k-colored permutation in Skn .

Conjecture: inv and maj are equidistributed on k-arrangements
as colored permutations.

Conjecture: des has the same distribution on k-arrangements as
colored permutations as it does on the permutation or
derangement form.
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Proposition: exc and des are equidistributed on the permutation
form of k-arrangements of [n] for any n and k , as are inv and maj.

Proposition: The number of 2-arrangements of [n] whose
permutation form avoids a classical 3-pattern is Cn+1.
Those with k negative entries: the ballot number k+1

n+1

(2n−k
n

)
.
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Conjecture: des has the same distribution on the derangement
and permutation forms for k-arrangements of [n].

Conjecture: The number of 3-arrangements of [n] whose
permutation form avoids any given classical 3-pattern is Cn+2 − 2n.
(2-arrangements: Cn+1)

Conjecture: The number of 2-arrangements of [n − 1] with k
descents whose permutation form avoids any given classical
3-pattern, “equals” the number of rooted ordered trees with n
non-root nodes and k leaves (A108838 in OEIS).

Conjecture: The number 2-arrangements of [n− 1] with k ascents
whose permutation form avoids 123 “equals” the number of
123-avoiding permutations of [n] with k peaks. (A236406).

Proved by Fu-Han-Lin. Surprisingly non-trivial.
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Classical CLT

Theorem
Let X1,X2, . . . be i.i.d. with E(Xi ) = 0 and E(X 2

i ) = 1. Then

SN := 1√
N

∑N
i=1 Xi

d−→ N (0, 1). Equivalently,

lim
N→∞

E
(
S2n−1
N

)
= 0,

lim
N→∞

E
(
S2n
N

)
= (2n − 1)!! := (2n − 1)(2n − 3) · · · 5 · 3 · 1

=
∑

π∈P2(2n)

1
1 2 3 4 5 6 7 8 9 10 11 12

Proof.
Product of sums as a sum of products:

E(Sk
N) =

1

Nk/2

∑
i(1),...,i(k)∈[N]

E(Xi(1) · · ·Xi(k)).
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E(Sk
N) =

1

Nk/2

∑
i(1),...,i(k)∈[N]

E(Xi(1) · · ·Xi(k)).

I Independence g =⇒ factorization. E.g.

E(X1X2X2X1X1) = E(X 3
1 )E(X 2

2 )

I Independence + identical distribution =⇒ same repetition
patterns yield identical mixed moments. E.g.

E(X1X2X2X1X1) = E(X5X3X3X5X5)

I E(Xi ) = 0 =⇒ partitions with a singleton don’t contribute.
I Remaining partitions with a block of size ≥ 3 are too few

(o(Nk/2)). Hence, only pair partitions (Θ(Nk/2) for k even)
appear in the limit and

lim
N→∞

E
(
S2n−1
N

)
= 0, lim

N→∞
E
(
S2n
N

)
=

∑
π∈P2(2n)

1.
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Statistics on perfect matchings Measure

Gaussian N(0,1)

1 2 3 4 5 6 7 8 9 10 11 12

non-crossing perfect matchings “free Gaussian”

q#crossings

fermionic BM

����� �����������

free BM classical BM

Bożejko & Speicher ’91

q#crossingst#nestings

Blitvić ’12 51 / 1



And now a different look at positivity for permutation patterns

Joint work with Natasha Blitvić and Slim Kammoun

52 / 1



The descent set of a permutation π = a1a2 . . . an is

Dset(π) = {i | ai > ai+1}.

Dset(31452) = {1, 4}.

Theorem (Gessel–Viennot 1985): The number of
n-permutations with a given descent set is a minor of the binomial
matrix: 

· · ·
· · ·
· · ·
· · ·
· · ·

...
...

...
...

...
...


A special case of the Lindström–Gessel–Viennot Lemma, counting
non-intersecting lattice paths.

A descent is an occurrence of the consecutive pattern 21.

What about arbitrary consecutive patterns?
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Dset(π) = {i | ai > ai+1}.

Dset(31452) = {1, 4}.

Theorem (Gessel–Viennot 1985): The number of
n-permutations with a given descent set is a minor of the binomial
matrix: 

1 1 1 1 1 · · ·
1 2 3 4 5 · · ·
0 1 3 6 10 · · ·
0 0 1 4 10 · · ·
0 0 0 1 5 · · ·
...

...
...

...
...

...


A special case of the Lindström–Gessel–Viennot Lemma, counting
non-intersecting lattice paths.

A descent is an occurrence of the consecutive pattern 21.

What about arbitrary consecutive patterns?
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Occurrence of the consecutive pattern 1324:

1 3 2 4 1 3 2 4
1 4 2 6 3 7 5 8

1 3 2 4 1 3 2 4

Four consecutive letters, in the same order of size as 1,3,2,4.
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1 3 2 4 1 3 2 4
1 4 2 6 3 7 5 8

1 3 2 4 1 3 2 4

This permutation has occurrences of 1324 starting at positions 1, 3
and 5. Equivalently, it is covered by 1324 with overlap 2.

There is one permutation of length 4 covered by 1324, two such of
length 6 with overlap 2, five of length 8:

1 3 2 4 1 3 2 5 4 6 1 3 2 5 4 7 6 8
1 4 2 5 3 6 1 3 2 6 4 7 5 8

1 4 2 5 3 7 6 8
1 4 2 6 3 7 5 8
1 5 2 6 3 7 4 8
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1 3 2 4 1 3 2 4
1 4 2 6 3 7 5 8

1 3 2 4 1 3 2 4

This permutation has occurrences of 1324 starting at positions 1, 3
and 5. Equivalently, it is covered by 1324 with overlap 2.

Fact: For n ≥ 1, the number of permutations of length 2n + 2
covered by 1324 with overlap 2 is the Catalan number Cn.

1 3 2 4 1 3 2 5 4 6 1 3 2 5 4 7 6 8
1 4 2 5 3 6 1 3 2 6 4 7 5 8

1 4 2 5 3 7 6 8
1 4 2 6 3 7 5 8
1 5 2 6 3 7 4 8
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We only deal with cases where a pattern P covers a
permutation π: every letter of π belongs to an occurrence of P.

Allowing gaps between occurrences introduces a trivially computed
factor to enumeration formulas.

We count permutations in which a pattern P occurs at least in
prescribed places, disregarding whether P may occur elsewhere.

In many cases, if a pattern covers a permutation π with fixed
overlaps then it can’t occur in other places in π.

Example: 2143 can overlap in one or two letters. In either case it
can’t occur in other positions than those prescribed by the overlap.

The permutation 132547698 is covered by 13254 with overlap 1,
but also has it occurring in the middle: 132547698.

Posssible because 13254 has autocorrelation 3 > 5/2:
1 3 2
1 3 2 5 4

1 3 2
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For patterns of different lengths and different overlaps we get lots
of different counting sequences. These depend only on the first j
and last j letters in a pattern, where m is the size of the overlap.

Pattern Enumeration

1 · · · (k-1) : n!j := (n − j)(n − 2j)(n − 3j) · · ·

1 · · · 2 :
(n − 1)!

(j + 1)! · (3!)j+1
= # partitions of [kn], block sizes k

1 · · · (k-d) :

j∏
i=0

(
i(k − 1) + d

d

)

2 k · · · 1 3 :
((k − 2)j + k − 2))j

(j + 1)!

overlap 2, those above
have overlap 1
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The numbers of permutations of length 4 + 3j covered by 2143
with overlap 1:

1, 9, 234, 12204, 1067040, 140641920, 26053347600, . . .

No simple expression, but there is a general recursive formula.
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Let p = p1p2 . . . pm · · · pm+1pm+2 . . . p2m be a K -pattern where
p1 < p2 < · · · < pm & pm+1 < pm+2 < · · · < p2m.

Let πi be the place of the i-th smallest among p1, p2, . . . , p2m.

Let gj(L) be the number of permutations of length K + j(K −m)
with p-overlap m and ending with L = `1, `2, . . . , `m.

Then g0(p) = 1, g0(L) = 0 if L 6= p, and for j ≥ 0 we have

gj+1(L) =
∑

`1<`2<···<`m

gj(`1, `2, . . . , `m)
2m∏
i=0

(
`πi+1 − `πi − 1

pπi+1 − pπi − 1

)
.

Now sum over all L.

A simple lemma (bijection) removes the requirement of increasing
prefix and suffix.
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Let p = p1p2 . . . pm · · · pm+1pm+2 . . . p2m be a K -pattern where
p1 < p2 < · · · < pm & pm+1 < pm+2 < · · · < p2m.

Let πi be the place of the i-th smallest among p1, p2, . . . , p2m.

Let gj(L) be the number of permutations of length K + j(K −m)
with p-overlap m and ending with L = `1, `2, . . . , `m.

Then g0(p) = 1, g0(L) = 0 if L 6= p, and for j ≥ 0 we have

gj+1(L) =
∑

`1<`2<···<`m

gj(`1, `2, . . . , `m)
2m∏
i=0

(
`πi+1 − `πi − 1

pπi+1 − pπi − 1

)
.

Idea of proof: To construct a permutation ending in L, look at all
possible prefixes L′ of the last occurrence of p. In how many ways
can we choose the letters between L′ and L?
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Conjecture: For any pattern and any size overlap, the counting
sequence is a moment sequence.

Verified for:

I all patterns of length ≤ 20, overlap 1, enumerating sequences
of length 50 (25× 25 Hankel determinants),

I all patterns of length ≤ 9, overlap 2, sequences of length 20

I several cases for overlap 3 . . .

In some cases we can determine the corresponding measure.
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A bolder conjecture:

For any periodic overlap sequence we also get moment sequences.

Example: First two occurrences overlap by 2, second and third
by 3, third and fourth by 1, then by 2, 3, 1, 2, 3, 1, . . .

We have confirmed this for a variety of examples.

What about arbitrary (non-periodic) overlap sequences?
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What kind of tools do we have for showing positivity of
combinatorial sequences?

I Continued fractions

I Fast growth

I Turning the problem into a graph and . . .
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Continued fractions

A = a0, a1, . . . is a Hamburger moment sequence of a (positive)
measure ρ on the real line if

an =

∫
R
xn dρ(x)

Equivalently, there are real numbers βi and αi such that

∑
n≥0

anz
n =

1

1− α0z −
β1z

2

1− α1z −
β2z

2

. . .

with βi > 0 for all i (or all i ≤ N and 0 for i > N).
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Fast growth

Theorem(Katkova-Vishnyakova, 2006): Let M = (aij) be a
k × k matrix with positive entries such that, for all i , j ,

ai ,j · ai+1,j+1 > 4 · cos2 π

k + 1
· ai ,j+1 · ai+1,j

Then detM > 0.

Corollary: Let A = a0, a1, a2, . . . be an infinite sequence such that,
for all i ,

ai−1 · ai+1 ≥ 4 · a2
i

Then all the Hankel determinants of A are positive.

1, a, 4a2, . . . , 4(n2)an, . . .

This does not seem to apply to any of the “pattern cover”
sequences we have seen.
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Turning the problem into a graph . . .
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Theorem (Elvey Price–Guttmann, 2019): G a locally finite
graph, v a vertex of G , Ln number of loops of length n starting
and ending at v . Then L0, L1, L2, . . . is a moment sequence.

Slide borrowed from

Andrew Elvey Price,

with kind permission
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Thanks!
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N. Blitvić and E. Steingŕımsson: Permutations, moments, measures

Transactions of the AMS, 374 (8) 2021, 5473–5508.

N. Blitvić, S. Kammoun and E. Steingŕımsson: Permutations
covered by a consecutive pattern, in preparation.
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