Sequences in Overpartitions joint work with George E. Andrews

Ali Kemal Uncu (aku21@bath.ac.uk)

Séminaire Lotharingien de Combinatoire 88, Strobl

The speaker is partially supported by the EPSRC grant EP/T015713/1 and partially by the FWF grant P 34501-N.

ÖAW Partitions

Basics

Partitions OverPartitions Generating Functions Rogers-Ramanujan Identities Schur's Identity

Sequences in Overpartitions A partition π is a finite sequence of non-increasing positive integers $(\lambda_1, \lambda_2, \ldots, \lambda_{\#(\pi)})$.

For a given partition $\pi = (\lambda_1, \lambda_2, \dots, \lambda_{\#(\pi)})$ the sum $\lambda_1 + \lambda_2 + \dots + \lambda_{\#(\pi)}$ is the size of the partition π and it is denoted by $|\pi|$.

Ex:

- $\pi = (5, 1, 1)$ is a partition of $|\pi| = 7$.
- $\pi = \emptyset$ is the unique partition of 0.

ÖAW OverPartitions

Basics Partitions

OverPartitions Generating Functio Rogers-Ramanujan Identities

chur's Identity

Sequences in Overpartitions An overpartition π is a finite sequence of *non-increasing* positive integers $(\lambda_1, \lambda_2, \ldots, \lambda_{\#(\pi)})$ where the first instance of a part size may be overlined.

For a given overpartition $\pi = (\lambda_1, \lambda_2, \dots, \lambda_{\#(\pi)})$ the sum $\lambda_1 + \lambda_2 + \dots + \lambda_{\#(\pi)}$ is the *size* of the overpartition π and it is denoted by $|\pi|$.

Ex:

- $\pi = (5, \overline{1}, 1)$ is an overpartition of $|\pi| = 7$.
- $\pi = \emptyset$ is the unique overpartition of 0.

ÖAW Generating Functions

Sequences in Overpartitions For a sequence $\{a_n\}_{n=0}^{\infty}$, the series

$$\sum_{n\geq 0}a_nq^n$$

is called a *generating function*.

Let \mathcal{D} be the set of all partitions into non-repeating parts.

$$\sum_{\pi\in\mathcal{D}}q^{|\pi|}=1+q+q^2+2q^3+2q^4+3q^5+4q^6+5q^7+6q^8+8q^9\dots$$

Basics Partitions OverPartitions Generating Functi Rogers-Ramanuja Identities Schur's Identity

Sequences in Overpartitions

$$(a;q)_L:=\prod_{i=0}^{L-1}(1-aq^i), ext{ and } (a;q)_\infty:=\lim_{L o\infty}(a;q)_L.$$

Basics Partitions OverPartitions Generating Functions Rogers-Ramanujan Identities Schur's Identity

Sequences in Overpartitions

$$(a;q)_L:=\prod_{i=0}^{L-1}(1-aq^i), ext{ and }(a;q)_\infty:=\lim_{L o\infty}(a;q)_L.$$
 $\sum q^{|\pi|}=(-q;q)_\infty$

where \mathcal{D} is the set of all partitions into non-repeating parts.

 $\pi \in \mathcal{D}$

Basics Partitions OverPartitions Generating Functions Rogers-Ramanujan Identities Schur's Identity

Sequences in Overpartitions

$$(a;q)_L:=\prod_{i=0}^{L-1}(1-aq^i), ext{ and } (a;q)_\infty:=\lim_{L o\infty}(a;q)_L.$$

$$\sum_{\pi\in\mathcal{D}}q^{|\pi|}=(-q;q)_\infty$$

where $\ensuremath{\mathcal{D}}$ is the set of all partitions into non-repeating parts. Similarly,

$$\sum_{\pi\in\mathcal{U}}q^{|\pi|}=rac{1}{(q;q)_{\infty}},$$

where $\ensuremath{\mathcal{U}}$ is the set of partitions.

Sep 5, 2022 Austrian Academy of Sciences & University of Bath

Basics Partitions OverPartitions Generating Functions Rogers-Ramanujan Identities Schur's Identity

Sequences in Overpartitions

$$(a;q)_L:=\prod_{i=0}^{L-1}(1-aq^i), ext{ and } (a;q)_\infty:=\lim_{L o\infty}(a;q)_L.$$

$$\sum_{\pi\in\mathcal{D}}q^{|\pi|}=(-q;q)_\infty$$

where $\ensuremath{\mathcal{D}}$ is the set of all partitions into non-repeating parts. Similarly,

$$\sum_{\pi\in\mathcal{U}_{r,s}}q^{|\pi|}=rac{1}{(q^r;q^s)_\infty},$$

where $\mathcal{U}_{r,s}$ is the set of partitions where each part is r modulo s.

Sep 5, 2022 Austrian Academy of Sciences & University of Bath

where \mathcal{O} is the set of all overpartitions.

ÖAW *q*-Binomial Coefficients

Basics Partitions OverPartitions Generating Function Rogers-Ramanujan Identities

Sequences in Overpartitions

$$(a;q)_L:=\prod_{i=0}^{L-1}(1-aq^i), ext{ and } (a;q)_\infty:=\lim_{L o\infty}(a;q)_L.$$

ÖAW *q*-Binomial Coefficients

Basics Partitions OverPartitions Generating Functi Rogers-Ramanuja Identities Schur's Identity

Sequences in Overpartitions

$$(a;q)_L := \prod_{i=0}^{L-1} (1 - aq^i), ext{ and } (a;q)_\infty := \lim_{L o \infty} (a;q)_L.$$

 $(a_1,a_2,\ldots,a_k;q)_L := (a_1;q)_L (a_2;q)_L \ldots (a_k;q)_L.$

ÖAW *q*-Binomial Coefficients

Basics Partitions OverPartitions Generating Functions Rogers-Ramanujan Identities Schur's Identity

Sequences in Overpartitions

$$(a;q)_L := \prod_{i=0}^{L-1} (1 - aq^i), ext{ and } (a;q)_\infty := \lim_{L \to \infty} (a;q)_L, \ (a_1,a_2,\ldots,a_k;q)_L := (a_1;q)_L (a_2;q)_L \ldots (a_k;q)_L.$$

We define the *q*-binomial coefficients as

$$\begin{bmatrix} m+n \\ m \end{bmatrix}_{q} := \begin{cases} \frac{(q;q)_{m+n}}{(q;q)_{m}(q;q)_{n}}, & \text{for } m, n \ge 0, \\ 0, & \text{otherwise.} \end{cases}$$

Sep 5, 2022 Austrian Academy of Sciences & University of Bath

Basics
Rogers–Ramanuja Identities
Schur's Identity

Sequences in Overpartitions

Theorem (Rogers–Ramanujan Identities)

the number of partitions of n into $\pm m \mod 5$ parts.

For m=1,2 and $n\in\mathbb{Z}_{\geq0},$ the number of partitions of n with gaps between parts $\geq2,$ all $\geq m$

Rogers–Ramanujan Identities Schur's Identity

Basics

Partitions OverPartitions

Sequences in Overpartitions

Generating Functions

=

=

Theorem (Rogers-Ramanujan Identities)

For m = 1, 2 and $n \in \mathbb{Z}_{\geq 0}$, the number of partitions of n with gaps between parts ≥ 2 , all $\geq m$

Rogers–Ramanujan Identities Schur's Identity

Basics

Partitions OverPartitions

Sequences in Overpartitions the number of partitions of n into $\pm m \mod 5$ parts.

Theorem (Rogers-Ramanujan Identities)

For m = 1, 2, we have

$$\sum_{n\geq 0} \frac{q^{n^2+(m-1)n}}{(q;q)_n} = \frac{1}{(q^m,q^{5-m};q^5)_\infty}$$

G. E. Andrews, *The Theory of Partitions*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998. Reprint of the 1976 original.

Sep 5, 2022 Austrian Academy of Sciences & University of Bath

Basics Partitions OverPartitions Generating Functions Rogers-Ramanujan Identities

Sequences in Overpartitions

Theorem (The First Rogers-Ramanujan Identity)

For any $n \in \mathbb{Z}_{\geq 0}$, the number of partitions of n with gaps between parts ≥ 2 = the number of partitions of n into $\pm 1 \mod 5$ parts.

Example: n = 10

$$\begin{array}{c|cccc} (10) & (9,1) \\ (9,1) & (6,4) \\ (8,2) & (6,1,1,1,1) \\ (7,3) & (4,4,1,1) \\ (6,4) & (4,1,1,1,1,1,1) \\ (6,3,1) & (1,1,1,1,1,1,1,1,1) \end{array}$$

Basics

Partitions OverPartitions Generating Functions Rogers-Ramanujan Identities Schur's Identity

Sequences in Overpartitions

=

Theorem (Schur's Partition Identity)

Let $n \in \mathbb{Z}_{\geq 0}$, the number of partitions of n with gaps between parts ≥ 3 , with no consecutive multiples of 3 appears

the number of partitions of n into distinct $\pm 1 \mod 3$ parts.

Basics

Partitions OverPartitions Generating Functions Rogers-Ramanujan Identities Schur's Identity

Sequences in Overpartitions

=

Theorem (Schur's Partition Identity)

Let $n \in \mathbb{Z}_{\geq 0}$, the number of partitions of n with gaps between parts ≥ 3 , with no consecutive multiples of 3 appears

the number of partitions of n into distinct $\pm 1 \mod 3$ parts.

Theorem (Schur's Partition Identity)

Basics Partitions OverPartitions Generating Functions Rogers-Ramanujan Identities

Schur's Identity

Sequences in Overpartitions =

Theorem (Schur's Partition Identity)

Let $n \in \mathbb{Z}_{\geq 0}$, the number of partitions of n with gaps between parts ≥ 3 , with no consecutive multiples of 3 appears

the number of partitions of n into distinct $\pm 1 \mod 3$ parts.

Theorem (Schur's Partition Identity)

? =
$$(-q, -q^2; q^3)_{\infty}$$
.

Theorem (Schur's Partition Identity)

Let $n \in \mathbb{Z}_{>0}$, the number of partitions of n with gaps between parts ≥ 3 , with no consecutive multiples of 3 appears

Rogers-Ramanuian Schur's Identity

=

Basics Partitions

> OverPartitions Generating Function

Identities

Sequences in Overpartitions the number of partitions of n into distinct $\pm 1 \mod 3$ parts.

Theorem (Schur's Partition Identity)

$$\sum_{m,n\geq 0} (-1)^n \frac{q^{3n(3n+2m)+m(3m-1)/2}}{(q;q)_m(q^6;q^6)_\infty} = (-q,-q^2;q^3)_\infty.$$

G. E. Andrews, K. Bringmann, and K. Mahlburg, Double Series Representations for Schur's Partition Function and Related Identities, JCT-A 132, pg 102-119, (2015).

Sep 5, 2022 Austrian Academy of Sciences & University of Bath

ÖAW Two Conjectures

Basics

Sequences in Overpartitions Two Conjectures Towards Overpartitions Proof of Theorem More on F_R Determinants Overpartitions Some Continued Fractions

After a computerized search I found these two:

$$\sum_{m,n\geq 0} (-1)^n rac{q^{rac{3n(3n+1)}{2}+m^2+3mn}}{(q;q)_m(q^3;q^3)_n} = rac{1}{(q;q^3)_\infty}, \ \sum_{m,n\geq 0} (-1)^n rac{q^{rac{3n(3n+1)}{2}+m^2+3mn+m+n}}{(q;q)_m(q^3;q^3)_n} = rac{1}{(q^2,q^3;q^6)_\infty}.$$

ÖAW One Theorem & One Conjecture

Basics

Sequences in Overpartitions Two Conjectures Towards Overpartitions Proof of Theorem More on F_N Determinants Overpartitions Some Continued Fractions After a computerized search I found these two:

Theorem (Andrews-U, 2021)

$$\sum_{m,n\geq 0} (-1)^n rac{q^{rac{3n(3n+1)}{2}+m^2+3mn}}{(q;q)_m(q^3;q^3)_n} = rac{1}{(q;q^3)_\infty}.$$

Conjecture

$$\sum_{m,n\geq 0}(-1)^nrac{q^{rac{3n(3n+1)}{2}+m^2+3mn+m+n}}{(q;q)_m(q^3;q^3)_n}=rac{1}{(q^2,q^3;q^6)_\infty}.$$

G. E. Andrews, and A.K. Uncu Sequences in Overpartitions, arXiv:2111.15003

ÖAW One Theorem & One Conjecture

After a computerized search I found these two:

Basics

Sequences in Overpartitions Two Conjectures Towards Overpartitions Proof of Theorem More on F_N Determinants Overpartitions Some Continued Fractions

Theorem (Andrews-U, 2021)

$$\sum_{m,n\geq 0} (-1)^n rac{q^{rac{3n(3n+1)}{2}+m^2+3mn}}{(q;q)_m(q^3;q^3)_n} = rac{1}{(q;q^3)_\infty}.$$

Theorem (Chern, 2022)

$$\sum_{m,n\geq 0} (-1)^n rac{q^{rac{3n(3n+1)}{2}+m^2+3mn+m+n}}{(q;q)_m(q^3;q^3)_n} = rac{1}{(q^2,q^3;q^6)_\infty}.$$

S. Chern, Asymmetric Rogers-Ramanujan type identities. I. The Andrews-Uncu Conjecture, arXiv:2203.15168

Sep 5, 2022 Austrian Academy of Sciences & University of Bath

Basics

Sequences in Overpartitions Two Conjectures Towards Overpartitions Proof of Theorem More on F_N Determinants Overpartitions Some Continued Fractions In the paper, we studied

$$F(i,k;x) = \sum_{m,n\geq 0} \frac{(-1)^n q^{\binom{(2k+1)n+1}{2}+m^2+(2k+1)mn+i(m+n)} x^{m+(2k+1)n}}{(q;q)_m (q^{2k+1};q^{2k+1})_n},$$

and its applications to overpartitions.

Basics

Sequences in Overpartitions Two Conjectures Towards Overpartitions Proof of Theorem More on F_N Determinants Overpartitions Some Continued Fractions In the paper, we studied

$$F(i,k;x) = \sum_{m,n\geq 0} \frac{(-1)^n q^{\binom{(2k+1)n+1}{2}+m^2+(2k+1)mn+i(m+n)} x^{m+(2k+1)n}}{(q;q)_m (q^{2k+1};q^{2k+1})_n},$$

and its applications to overpartitions. The theorems before are related to i = 0, 1, k = 1, and x = 1 cases.

Basics

Sequences in Overpartitions Two Conjectures Towards Overpartitions Proof of Theorem More on F_N Determinants Overpartitions Some Continued Fractions In the paper, we studied

$$F(i,k;x) = \sum_{m,n\geq 0} \frac{(-1)^n q^{\binom{(2k+1)n+1}{2}+m^2+(2k+1)mn+i(m+n)} x^{m+(2k+1)n}}{(q;q)_m (q^{2k+1};q^{2k+1})_n},$$

and its applications to overpartitions. The theorems before are related to i = 0, 1, k = 1, and x = 1 cases. In particular,

$${\sf F}(0,1;1)=rac{1}{(q;q^3)_\infty}.$$

Sep 5, 2022 Austrian Academy of Sciences & University of Bath

Theorem

=

Basics

Sequences in Overpartitions Two Conjectures Towards Overpartitions Proof of Theorem More on F_i Determinants Overpartitions Some Continued Fractions

The number of overpartitions of *n*, where for any $k \ge 1$, where $\overline{k} + \overline{(k+1)}$ or $\overline{1} + 2 + \overline{3} + 4 + \overline{5} + \cdots + (2k) + \overline{(2k+1)}$, does not appear

number of partitions of n into red and green parts where green parts $\equiv 1 \pmod{3}$.

=

Sequences in Overpartitions Two Conjectures Towards Overpartitions Proof of Theorem More on F_R Determinants Overpartitions Some Continued Fractions

Basics

Theorem

The number of overpartitions of n, where for any $k \ge 1$, where $\overline{k} + (\overline{k+1})$ or $\overline{1} + 2 + \overline{3} + 4 + \overline{5} + \dots + (2k) + (\overline{2k+1})$, does not appear

number of partitions of n into red and green parts where green parts $\equiv 1 \pmod{3}$.

For example, when n = 4, the 13 overpartitions in the first class are

and the 13 colored partitions in the second class are

$$\begin{array}{l} 4_r, \ 4_g, \ 3_r+1_r, \ 3_r+1_g, \ 2_r+2_r, \ 2_r+1_r+1_r, \ 1_r+1_g+1_r, \\ 2_r+1_g+1_g, \ 1_r+1_r+1_r+1_r, \ 1_g+1_r+1_r+1_r, \\ 1_g+1_g+1_r+1_r, \ 1_g+1_g+1_g+1_g+1_g+1_g+1_g. \end{array}$$

Sep 5, 2022 Austrian Academy of Sciences & University of Bath

- 14 -

Indeed, for $k, j, N \ge 0$, we will focus on

Basics

Sequences in Overpartitions Towards Overpartitions Proof of Theorem Overpartitions Some Continued Fractions

=

$$F_{N}(i,j,k;x,q) = F_{N}(i,j,k;x) = F_{N}(i,j,k)$$

$$= \begin{cases} \sum_{m,n\geq 0} (-1)^{n} q^{\binom{(2k+1)n+1}{2} + m^{2} + (2k+1)mn + i(m+n)} x^{m+(2k+1)n} \\ \times \begin{bmatrix} N - (2k+1)n - m + j \\ m \end{bmatrix}_{q} \begin{bmatrix} N - 2kn - m \\ n \end{bmatrix}_{q^{2k+1}}, & \text{if } N \geq 0, \\ 0, & \text{if } N < 0, \end{cases}$$

Indeed, for $k, j, N \ge 0$, we will focus on

Basics

Sequences in Overpartitions Towards Overpartitions Overpartitions Some Continued Fractions

=

$$F_{N}(i,j,k;x,q) = F_{N}(i,j,k;x) = F_{N}(i,j,k)$$

$$= \begin{cases} \sum_{m,n\geq 0} (-1)^{n} q^{\binom{(2k+1)n+1}{2} + m^{2} + (2k+1)mn + i(m+n)} x^{m+(2k+1)n} \\ \times \begin{bmatrix} N - (2k+1)n - m + j \\ m \end{bmatrix}_{q} \begin{bmatrix} N - 2kn - m \\ n \end{bmatrix}_{q^{2k+1}}, & \text{if } N \geq 0, \\ 0, & \text{if } N < 0, \end{cases}$$

$$\lim_{N\to\infty}F_N(i,j,k;x,q)=F(i,k;x,q).$$

Indeed, for $k, j, N \ge 0$, we will focus on

Basics

Sequences in Overpartitions Towards Overpartitions Proof of Theorem Overpartitions Some Continued Fractions

=

$$F_{N}(i,j,k;x,q) = F_{N}(i,j,k;x) = F_{N}(i,j,k)$$

$$= \begin{cases} \sum_{m,n\geq 0} (-1)^{n} q^{\binom{(2k+1)n+1}{2} + m^{2} + (2k+1)mn + i(m+n)} x^{m+(2k+1)n} \\ \times \begin{bmatrix} N - (2k+1)n - m + j \\ m \end{bmatrix}_{q} \begin{bmatrix} N - 2kn - m \\ n \end{bmatrix}_{q^{2k+1}}, & \text{if } N \geq 0, \\ 0, & \text{if } N < 0, \end{cases}$$

$$\lim_{N\to\infty}F_N(i,j,k;x,q)=F(i,k;x,q).$$

In the limit, *j* becomes irrelevant.

Sep 5, 2022 Austrian Academy of Sciences & University of Bath

ÖAW What do we know about F_N ?

Basics

Sequences in Overpartitions Two Conjectures Towards Overpartitions Proof of Theorem More on F_R Determinants Overpartitions Some Continued Fractions

$$F_{N}(i,j,k;x) = F_{N-1}(i,j,k;x) + xq^{N+j+i-1}F_{N-2}(i,j,k;x)$$
$$- x^{2k+1}q^{(2k+1)(N-k)+i}F_{N-(2k+1)}(i,j,k;x),$$
$$F_{N}(i,j,k;x) = F_{N}(i,j-1,k;x) + xq^{N+i+j-1}F_{N-1}(i,j-1,k;x).$$

Theorem

ÖAW What do we know about F_N ?

Basics

Sequences in Overpartitions Two Conjectures Towards Overpartitions Proof of Theorem More on F_N Determinants Overpartitions Some Continued Fractions

$$F_{N}(i,j,k;x) = F_{N-1}(i,j,k;x) + xq^{N+j+i-1}F_{N-2}(i,j,k;x)$$
$$-x^{2k+1}q^{(2k+1)(N-k)+i}F_{N-(2k+1)}(i,j,k;x),$$
$$F_{N}(i,j,k;x) = F_{N}(i,j-1,k;x) + xq^{N+i+j-1}F_{N-1}(i,j-1,k;x).$$

Corollary

Theorem

For $N \geq 1$,

$$F_{N}(0,1,1;x) = (1 + xq^{N})F_{N-1}(0,1,1;x) - x^{2}q^{2N-1}F_{N-2}(0,1,1;x)$$

Sep 5, 2022 Austrian Academy of Sciences & University of Bath

ÖAW Proof of the Main Theorem

Basics

Sequences in Overpartitions Two Conjectures Towards Overpartitions Proof of Theorem More on F_R Determinants Overpartitions Some Continued Fractions

Theorem

For non-negative integers N, let

$$f_N(q) := \sum_{j\geq 0} q^{3j^2-2j} \begin{bmatrix} \mathsf{N} \\ 3j \end{bmatrix}_q (q^2,q^3)_j,$$

then

$$f_{N+1}(q) = F_N(0, 1, 1; 1) - q^N F_{N-1}(0, 1, 1; 1).$$

Sep 5, 2022 Austrian Academy of Sciences & University of Bath

ÖAW Proof of the Main Theorem

Basics

Sequences in Overpartitions Two Conjectures Towards Overpartitions Proof of Theorem More on F_N Determinants Overpartitions Some Continued Fractions

Theorem

For non-negative integers N, let

$$f_N(q) := \sum_{j\geq 0} q^{3j^2-2j} \begin{bmatrix} \mathsf{N} \\ 3j \end{bmatrix}_q (q^2,q^3)_j,$$

then

$$f_{N+1}(q) = F_N(0, 1, 1; 1) - q^N F_{N-1}(0, 1, 1; 1).$$

Proof follows from holonomic closure properties, Zeilberger's algorithm and checking some initial conditions.

Sep 5, 2022 Austrian Academy of Sciences & University of Bath

ÖAW Proof of the Main Theorem

Basics

Sequences in Overpartitions Two Conjectures Towards Overpartitions Proof of Theorem More on F_R Determinants Overpartitions Some Continued Fractions

Theorem

For non-negative integers N, let

then

$$f_N(q) := \sum_{j\geq 0} q^{3j^2-2j} \begin{bmatrix} N\\ 3j \end{bmatrix}_q (q^2,q^3)_j,$$

$$f_{N+1}(q) = F_N(0,1,1;1) - q^N F_{N-1}(0,1,1;1).$$

$$\lim_{N\to\infty} f_N(q) = \sum_{j\geq 0} \frac{(q^2;q^3)_j}{(q;q)_{3j}} q^{3j^2-2j} = \sum_{m,n\geq 0} \frac{(-1)^n q^{\frac{3n(3n+1)}{2}+m^2+3mn}}{(q)_m(q^3;q^3)_n}.$$

$\ddot{O}AW \quad More \ on \ F_N$

Basics

Sequences in Overpartitions Two Conjectures Overpartitions Proof of Theorem More on F_N Determinants Overpartitions Some Continued

Fractions

We can also prove the following q-difference equations

Theorem

$$F_{N}(i,0,k;x) = F_{N-1}(i,0,k;xq) + xqF_{N-2}(i,0,k;xq^{2}) - x^{2k+1}q^{\binom{2k+2}{2}+i}F_{N-(2k+1)}(i,0,k;xq^{2k+1}),$$

$$F_{N}(0,1,1;x) = (1+xq)F_{N-1}(0,1,1;xq) - x^{2}q^{3}F_{N-2}(0,1,1;xq^{2}).$$

ÖAW Determinants!

Sep 5, 2022 Austrian Academy of Sciences & University of Bath

ÖAW Determinants!

Basics

$$F_N(0, 1, 1; x) =$$

 Sequences in Overpartitions
 $1 + xq - x^2q^3$
 0
 0

 Two conjectures
 -1
 $1 + xq^2 - x^2q^5$
 0
 \cdots

 Two conjectures
 0
 -1
 $1 + xq^3$
 \cdots
 \vdots

 Pred of Therem
 0
 -1
 $1 + xq^3$
 \cdots
 \vdots

 Overpartitions
 0
 -1
 $1 + xq^3$
 \cdots
 \vdots

 Overpartitions
 0
 -1
 $1 + xq^3$
 \cdots
 \vdots

 Some Continued Fractions
 \vdots
 0
 \cdots
 \vdots
 \vdots
 i
 i
 0
 \cdots
 i
 i
 i
 i
 0
 \cdots
 i
 i
 i
 i
 0
 \cdots
 i
 i

Sep 5, 2022 Austrian Academy of Sciences & University of Bath

ÖAW Sequences in Overpartitions

Basics

Sequences in Overpartitions Two Conjectures Towards Overpartitions Proof of Theorem More on F_N Determinants Overpartitions Some Continued Fractions

Theorem

 $\frac{F(0,k;x)}{(xq;q)_{\infty}}$

is the generating function for the overpartitions, where the exponent of x keeps track of the number of parts, in which

 $\overline{j} + \overline{(j+1)}$ does not appear,

ii. there are no sequences of the form $\overline{1} + 2 + \overline{3} + 4 + \overline{5} + \cdots + (2k) + \overline{(2k+1)}$.

ÖAW Sequences in Overpartitions

Basics

Sequences in Overpartitions Two Conjectures Towards Overparitions Proof of Theorem More on F_N Determinants Overpartitions Some Continued Fractions

Theorem

If i > 0,

$$\frac{F(i,k;x)}{(xq;q)_{\infty}}$$

- is the generating function for the overpartitions, in which
 - \overline{j} \overline{j} + $\overline{(j+1)}$ does not appear,
 - ii. the smallest overlined part is > i,
 - iii. sequences of the form

 $2+3+\dots+i+\overline{(i+1)}+(i+1)+(i+2)+\overline{(i+3)}+(i+4)+\overline{(i+5)}+\dots+\overline{(2k)}+(2k+1) \text{ if } i \text{ is odd, and}$ $2+3+\dots+i+\overline{(i+1)}+(i+1)+(i+2)+\overline{(i+3)}+(i+4)+\overline{(i+5)}+\dots+(2k)+\overline{(2k+1)} \text{ if } i \text{ is even, are excluded.}$

ÖAW Sequences in Overpartitions Sketch of Proof

Basics

Sequences in Overpartitions

Two Conjectures Towards Overpartitions Proof of Theores More on F_N Determinants Overpartitions Some Continued Fractions

$$F_{N}(i,0,k;x) = F_{N-1}(i,0,k;xq) + xqF_{N-2}(i,0,k;xq^{2}) - x^{2k+1}q^{\binom{2k+2}{2}+i}F_{N-(2k+1)}(i,0,k;xq^{2k+1})$$

ÖAW Sequences in Overpartitions Sketch of Proof

Basics

Sequences in Overpartitions Two Conjectures Towards Overpartitions

More on F_N

Determinants

Overpartitions Some Continues

$$F_{N}(i,0,k;x) = F_{N-1}(i,0,k;xq) + xqF_{N-2}(i,0,k;xq^{2}) - x^{2k+1}q^{\binom{2k+2}{2}+i}F_{N-(2k+1)}(i,0,k;xq^{2k+1}) f(i,k;x) := \frac{F(i,0,k;x)}{(xq;q)_{\infty}},$$

ÖAW Sequences in Overpartitions Sketch of Proof

Basics

Sequences in Overpartitions Two Conjectures Towards Overpartitions Proof of Theorem

More on F_N Determinants

Overpartitions Some Continued Fractions

$$F_{N}(i,0,k;x) = F_{N-1}(i,0,k;xq) + xqF_{N-2}(i,0,k;xq^{2}) - x^{2k+1}q^{\binom{2k+2}{2}+i}F_{N-(2k+1)}(i,0,k;xq^{2k+1}) f(i,k;x) := \frac{F(i,0,k;x)}{(xq;q)_{\infty}},$$

then

$$f(i,k;x) = \frac{1}{(1-xq)} f(i,k;xq) + \frac{xq^{i+1}}{(1-xq)(1-xq^2)} f(i,k;xq^2) \\ - \frac{x^{2k+1}q^{\binom{2k+2}{2}+i}}{(xq;q)_{2k+1}} f(i,k;xq^{2k+1}).$$

ÖAW Quick Recall

Basics

Sequences in Overpartitions Two Conjectures Overpartitions Proof of Theorem More on F_N Determinants Overpartitions Some Continued

Fractions

Recall that we saw these two 3-term relations:

$$F_{N}(0,1,1;x) = (1 + xq^{N})F_{N-1}(0,1,1;x) - x^{2}q^{2N-1}F_{N-2}(0,1,1;x),$$

$$F_{N}(0,1,1;x) = (1 + xq)F_{N-1}(0,1,1;xq) - x^{2}q^{3}F_{N-2}(0,1,1;xq^{2}).$$

Basics

Sequences in Overpartitions Two Conjectures Towards Overpartitions Proof of Theorem

Proof of Theore More on F_N Determinants Overpartitions Some Continues Fractions

$$F_{N}(0,1,1;x) = (1 + xq^{N})F_{N-1}(0,1,1;x) - x^{2}q^{2N-1}F_{N-2}(0,1,1;x)$$

Theorem

For $N\geq 1$,

$$\frac{F_N(0,1,1;x)}{F_{N-1}(0,1,1;x)} = 1 + xq^N - \frac{x^2q^{N-1}}{1 + xq^{N-1} - \frac{x^2q^{N-2}}{\cdots}}$$
$$\frac{\ddots}{1 + xq^2 - \frac{x^2q}{1 + xq}}$$

Basics

Sequences in Overpartitions Two Conjectures Towards Overpartitions Proof of Theorem

Proof of Theore More on F_N Determinants Overpartitions Some Continue Fractions

$$F_{N}(0,1,1;x) = (1+xq)F_{N-1}(0,1,1;xq) - x^{2}q^{3}F_{N-2}(0,1,1;xq^{2})$$

Theorem

For $N\geq 1$,

$$\frac{F_N(0,1,1;x)}{F_{N-1}(0,1,1;xq)} = 1 + xq + \frac{x^2q^3}{1 + xq^2 - \frac{x^2q^5}{\cdots - \frac{x^2q^{5-1}}{1 + xq^{N-1} + \frac{x^2q^{2N-1}}{1 + xq^N}}}.$$

Basics

Sequences in Overpartitions Two Conjectures Towards Overpartitions Proof of Theorem More on F_N Determinants Overpartitions Some Continued Fractions

$$F(0,1,1;x) = (1+xq)F(0,1,1;xq) - x^2q^3F(0,1,1;xq^2)$$

and a bit of algebra:

Basics

Sequences in Overpartitions Two Conjectures Towards Overpartitions Proof of Theorem More on F_N Determinants Overpartitions Some Continued Fractions

Theorem (Ramanujan)

ÖAW Some more identities

Basics

Sequences in Overpartitions Two Conjectures Towards Overpartitions Proof of Theorem More on F_N Determinants Overpartitions

Some Continue Fractions

Theorem

$$\sum_{m,n\geq 0}rac{(-1)^nq^{rac{3n(3n+1)}{2}+m^2+3mn+m+3n+1}}{(q;q)_m(q^3;q^3)_n}=rac{1}{(q;q^3)_\infty}-rac{1}{(q^2;q^3)_\infty}$$

ÖAW Some more identities

Basics

Sequences in Overpartitions Two Conjectures Towards Overpartitions Proof of Theorem More on F_{il} Determinants Overpartitions

Fractions

$$\sum_{m,n\geq 0} \frac{(-1)^n q^{\frac{3n(3n+1)}{2}+m^2+3mn+m+3n+1}}{(q;q)_m(q^3;q^3)_n} = \frac{1}{(q;q^3)_\infty} - \frac{1}{(q^2;q^3)_\infty}$$

Theorem

Theorem

$$\sum_{m,n\geq 0}rac{(-1)^nq^{rac{3n(3n+1)}{2}+m^2+3mn}(1-q^{m+3n+1})}{(q;q)_m(q^3;q^3)_n}=rac{1}{(q^2;q^3)_\infty}$$

ÖAW

Basics

Sequences in Overpartitions

Two Conjectures Towards Overpartitions Proof of Theorem More on F_N Determinants Overpartitions Some Continued

Thank you for your time

Sequences in Overpartitions joint work with George E. Andrews

Ali Kemal Uncu (aku21@bath.ac.uk)

Séminaire Lotharingien de Combinatoire 88, Strobl

The speaker is partially supported by the EPSRC grant EP/T015713/1 and partially by the FWF grant P 34501-N.