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Partitions

A partition π is a finite sequence of non-increasing positive integers
(λ1, λ2, . . . , λ#(π)).

For a given partition π = (λ1, λ2, . . . , λ#(π)) the sum λ1 + λ2 + · · ·+ λ#(π) is the
size of the partition π and it is denoted by |π|.

Ex:

π = (5, 1, 1) is a partition of |π| = 7.

π = ∅ is the unique partition of 0.
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OverPartitions

An overpartition π is a finite sequence of non-increasing positive integers
(λ1, λ2, . . . , λ#(π)) where the first instance of a part size may be overlined.

For a given overpartition π = (λ1, λ2, . . . , λ#(π)) the sum λ1 + λ2 + · · ·+ λ#(π) is
the size of the overpartition π and it is denoted by |π|.

Ex:

π = (5, 1, 1) is an overpartition of |π| = 7.

π = ∅ is the unique overpartition of 0.
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Generating Functions

For a sequence {an}∞n=0, the series ∑
n≥0

anq
n

is called a generating function.

Let D be the set of all partitions into non-repeating parts.∑
π∈D

q|π| = 1 + q + q2 + 2q3 + 2q4 + 3q5 + 4q6 + 5q7 + 6q8 + 8q9 . . . .

∅ (2, 1), (3) (3, 2, 1), (5, 1), (4, 2), (6)
(1) (3, 1), (4) (4, 2, 1), (6, 1), (5, 2), (4, 3), (7)
(2) (4, 1), (3, 2), (5) . . .
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q-Pochhammer Symbol

(a; q)L :=
L−1∏
i=0

(1− aqi ), and (a; q)∞ := lim
L→∞

(a; q)L.

∑
π∈D

q|π| = (−q; q)∞

where D is the set of all partitions into non-repeating parts.
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(a; q)L :=
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i=0

(1− aqi ), and (a; q)∞ := lim
L→∞

(a; q)L.

∑
π∈D

q|π| = (−q; q)∞

where D is the set of all partitions into non-repeating parts.
Similarly, ∑

π∈U
q|π| =

1

(q; q)∞
,

where U is the set of partitions.
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(a; q)L :=
L−1∏
i=0

(1− aqi ), and (a; q)∞ := lim
L→∞

(a; q)L.

∑
π∈D

q|π| = (−q; q)∞

where D is the set of all partitions into non-repeating parts.
Similarly, ∑

π∈Ur,s

q|π| =
1

(qr ; qs)∞
,

where Ur ,s is the set of partitions where each part is r modulo s.
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q-Pochhammer Symbol

(a; q)L :=
L−1∏
i=0

(1− aqi ), and (a; q)∞ := lim
L→∞

(a; q)L.

Also

∑
π∈O

q|π| =
(−q; q)∞
(q; q)∞

where O is the set of all overpartitions.
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q-Binomial Coefficients

(a; q)L :=
L−1∏
i=0

(1− aqi ), and (a; q)∞ := lim
L→∞

(a; q)L.

(a1, a2, . . . , ak ; q)L := (a1; q)L(a2; q)L . . . (ak ; q)L.

We define the q-binomial coefficients as[
m + n

m

]
q

:=

{
(q;q)m+n

(q;q)m(q;q)n
, for m, n ≥ 0,

0, otherwise.
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Theorem (Rogers–Ramanujan Identities)

For m = 1, 2 and n ∈ Z≥0, the number of partitions of n with gaps between parts
≥ 2, all ≥ m
=
the number of partitions of n into ±m mod 5 parts.

Theorem (Rogers–Ramanujan Identities)

For m = 1, 2, we have

∑
n≥0

qn
2+(m−1)n

(q; q)n
=

1

(qm, q5−m; q5)∞
.

G. E. Andrews, The Theory of Partitions, Cambridge Mathematical Library, Cambridge University

Press, Cambridge, 1998. Reprint of the 1976 original.
Sep 5, 2022 Austrian Academy of Sciences & University of Bath - 7 - Ali K. Uncu : aku21@bath.ac.uk



Basics

Partitions

OverPartitions

Generating Functions

Rogers–Ramanujan
Identities

Schur’s Identity

Sequences in
Overpartitions

Partition Identities

Theorem (Rogers–Ramanujan Identities)

For m = 1, 2 and n ∈ Z≥0, the number of partitions of n with gaps between parts
≥ 2, all ≥ m
=
the number of partitions of n into ±m mod 5 parts.

Theorem (Rogers–Ramanujan Identities)

For m = 1, 2, we have

∑
n≥0

qn
2+(m−1)n

(q; q)n
=

1

(qm, q5−m; q5)∞
.

G. E. Andrews, The Theory of Partitions, Cambridge Mathematical Library, Cambridge University

Press, Cambridge, 1998. Reprint of the 1976 original.
Sep 5, 2022 Austrian Academy of Sciences & University of Bath - 7 - Ali K. Uncu : aku21@bath.ac.uk



Basics

Partitions

OverPartitions

Generating Functions

Rogers–Ramanujan
Identities

Schur’s Identity

Sequences in
Overpartitions

Partition Identities

Theorem (Rogers–Ramanujan Identities)

For m = 1, 2 and n ∈ Z≥0, the number of partitions of n with gaps between parts
≥ 2, all ≥ m
=
the number of partitions of n into ±m mod 5 parts.

Theorem (Rogers–Ramanujan Identities)

For m = 1, 2, we have

∑
n≥0

qn
2+(m−1)n

(q; q)n
=

1

(qm, q5−m; q5)∞
.

G. E. Andrews, The Theory of Partitions, Cambridge Mathematical Library, Cambridge University

Press, Cambridge, 1998. Reprint of the 1976 original.
Sep 5, 2022 Austrian Academy of Sciences & University of Bath - 7 - Ali K. Uncu : aku21@bath.ac.uk



Basics

Partitions

OverPartitions

Generating Functions

Rogers–Ramanujan
Identities

Schur’s Identity

Sequences in
Overpartitions

Partition Identities

Theorem (The First Rogers–Ramanujan Identity)

For any n ∈ Z≥0, the number of partitions of n with gaps between parts ≥ 2
=
the number of partitions of n into ±1 mod 5 parts.

Example: n = 10

(10) (9, 1)
(9, 1) (6, 4)
(8, 2) (6, 1, 1, 1, 1)
(7, 3) (4, 4, 1, 1)
(6, 4) (4, 1, 1, 1, 1, 1, 1)
(6, 3, 1) (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
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Theorem (Schur’s Partition Identity)

Let n ∈ Z≥0, the number of partitions of n with gaps between parts ≥ 3, with no
consecutive multiples of 3 appears
=
the number of partitions of n into distinct ±1 mod 3 parts.

Theorem (Schur’s Partition Identity)
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Theorem (Schur’s Partition Identity)

Let n ∈ Z≥0, the number of partitions of n with gaps between parts ≥ 3, with no
consecutive multiples of 3 appears
=
the number of partitions of n into distinct ±1 mod 3 parts.

Theorem (Schur’s Partition Identity)

? = (−q,−q2; q3)∞.
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Theorem (Schur’s Partition Identity)

Let n ∈ Z≥0, the number of partitions of n with gaps between parts ≥ 3, with no
consecutive multiples of 3 appears
=
the number of partitions of n into distinct ±1 mod 3 parts.

Theorem (Schur’s Partition Identity)∑
m,n≥0

(−1)n
q3n(3n+2m)+m(3m−1)/2

(q; q)m(q6; q6)∞
= (−q,−q2; q3)∞.

G. E. Andrews, K. Bringmann, and K. Mahlburg, Double Series Representations for Schur’s

Partition Function and Related Identities, JCT-A 132, pg 102- 119, (2015).
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Two Conjectures

After a computerized search I found these two:

∑
m,n≥0

(−1)n
q

3n(3n+1)
2

+m2+3mn

(q; q)m(q3; q3)n
=

1

(q; q3)∞
,

∑
m,n≥0

(−1)n
q

3n(3n+1)
2

+m2+3mn+m+n

(q; q)m(q3; q3)n
=

1

(q2, q3; q6)∞
.
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One Theorem & One Conjecture

After a computerized search I found these two:

Theorem (Andrews-U, 2021)∑
m,n≥0

(−1)n
q

3n(3n+1)
2

+m2+3mn

(q; q)m(q3; q3)n
=

1

(q; q3)∞
.

Conjecture ∑
m,n≥0

(−1)n
q

3n(3n+1)
2

+m2+3mn+m+n

(q; q)m(q3; q3)n
=

1

(q2, q3; q6)∞
.

G. E. Andrews, and A.K. Uncu Sequences in Overpartitions, arXiv:2111.15003
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One Theorem & One Conjecture

After a computerized search I found these two:

Theorem (Andrews-U, 2021)∑
m,n≥0

(−1)n
q

3n(3n+1)
2

+m2+3mn

(q; q)m(q3; q3)n
=

1

(q; q3)∞
.

Theorem (Chern, 2022)∑
m,n≥0

(−1)n
q

3n(3n+1)
2

+m2+3mn+m+n

(q; q)m(q3; q3)n
=

1

(q2, q3; q6)∞
.

S. Chern, Asymmetric Rogers–Ramanujan type identities. I. The Andrews–Uncu Conjecture,

arXiv:2203.15168
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Connection to Overpartitions

In the paper, we studied

F (i , k; x) =
∑

m,n≥0

(−1)nq((2k+1)n+1
2 )+m2+(2k+1)mn+i(m+n)xm+(2k+1)n

(q; q)m(q2k+1; q2k+1)n
,

and its applications to overpartitions.The theorems before are related to i = 0, 1,
k = 1, and x = 1 cases. In particular,

F (0, 1; 1) =
1

(q; q3)∞
.
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Theorem

The number of overpartitions of n, where for any k ≥ 1, where k + (k + 1) or
1 + 2 + 3 + 4 + 5 + · · ·+ (2k) + (2k + 1), does not appear
=
number of partitions of n into red and green parts where green parts ≡ 1 (mod 3).

For example, when n = 4, the 13 overpartitions in the first class are

4, 4, 3 + 1, 3 + 1, 3 + 1, 3 + 1, 2 + 2, 2 + 2, 2 + 1 + 1,
2 + 1 + 1, 2 + 1 + 1, 1 + 1 + 1 + 1, 1 + 1 + 1 + 1,

and the 13 colored partitions in the second class are

4r , 4g , 3r + 1r , 3r + 1g , 2r + 2r , 2r + 1r + 1r , 1r + 1g + 1r ,
2r + 1g + 1g , 1r + 1r + 1r + 1r , 1g + 1r + 1r + 1r ,

1g + 1g + 1r + 1r , 1g + 1g + 1g + 1r , 1g + 1g + 1g + 1g .
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Connection to Overpartitions

Indeed, for k, j ,N ≥ 0, we will focus on

FN(i , j , k ; x , q) = FN(i , j , k ; x) = FN(i , j , k)

=



∑
m,n≥0

(−1)nq((2k+1)n+1
2 )+m2+(2k+1)mn+i(m+n)xm+(2k+1)n

×
[
N − (2k + 1)n −m + j

m

]
q

[
N − 2kn −m

n

]
q2k+1

, if N ≥ 0,

0, if N < 0,

lim
N→∞

FN(i , j , k ; x , q) = F (i , k ; x , q).

In the limit, j becomes irrelevant.
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What do we know about FN?

Theorem

FN(i , j , k ; x) = FN−1(i , j , k ; x) + xqN+j+i−1FN−2(i , j , k; x)

− x2k+1q(2k+1)(N−k)+iFN−(2k+1)(i , j , k ; x),

FN(i , j , k ; x) = FN(i , j − 1, k ; x) + xqN+i+j−1FN−1(i , j − 1, k; x).

Corollary

For N ≥ 1,

FN(0, 1, 1; x) = (1 + xqN)FN−1(0, 1, 1; x)− x2q2N−1FN−2(0, 1, 1; x).
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Proof of the Main Theorem

Theorem

For non-negative integers N, let

fN(q) :=
∑
j≥0

q3j
2−2j

[
N

3j

]
q

(q2, q3)j ,

then
fN+1(q) = FN(0, 1, 1; 1)− qNFN−1(0, 1, 1; 1).

Proof follows from holonomic closure properties, Zeilberger’s algorithm and
checking some initial conditions.
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Proof of the Main Theorem

Theorem

For non-negative integers N, let

fN(q) :=
∑
j≥0

q3j
2−2j

[
N

3j

]
q

(q2, q3)j ,

then
fN+1(q) = FN(0, 1, 1; 1)− qNFN−1(0, 1, 1; 1).

lim
N→∞

fN(q) =
∑
j≥0

(q2; q3)j
(q; q)3j

q3j
2−2j =

∑
m,n≥0

(−1)nq
3n(3n+1)

2
+m2+3mn

(q)m(q3; q3)n
.
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More on FN

We can also prove the following q-difference equations

Theorem

FN(i , 0, k ; x) = FN−1(i , 0, k ; xq) + xqFN−2(i , 0, k ; xq2)

− x2k+1q(2k+2
2 )+iFN−(2k+1)(i , 0, k ; xq2k+1),

FN(0, 1, 1; x) = (1 + xq)FN−1(0, 1, 1; xq)− x2q3FN−2(0, 1, 1; xq2).
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Determinants!
FN(i , 0, k ; x) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 xq1+i 0 0 . . . 0 −x2k+1q(2k+2)·1+i 0 . . . 0

−1 1 xq2+i 0 . . . 0 −x2k+1q(2k+2)·2+i
.
.
.

0 −1 1 xq3+i
. . .

0 0 −1
. . .

. . .

.

.

.

.

.

.
. . .

.

.

.

. . . 0

−x2k+1q(2k+1)(N−k)+i

. . . 0

. . .
.
.
.

. . .
. . .

. . . 0

. . . 1 xqN−2 0

.

.

. . . . −1 1 xqN−1+i

0 . . . . . . 0 −1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Sep 5, 2022 Austrian Academy of Sciences & University of Bath - 20 - Ali K. Uncu : aku21@bath.ac.uk



Basics

Sequences in
Overpartitions

Two Conjectures

Towards
Overpartitions

Proof of Theorem

More on FN

Determinants

Overpartitions

Some Continued
Fractions

Determinants!

FN(0, 1, 1; x) =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + xq −x2q3 0 . . . 0

−1 1 + xq2 −x2q5 0 . . .
...

0 −1 1 + xq3
. . .

...
... 0

. . .
...

. . .
...

. . .
. . . 0

...
. . . 0 −1 1 + xqN−1 −x2q2N−1

0 . . . . . . 0 −1 1 + xqN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Sequences in Overpartitions

Theorem

F (0, k; x)

(xq; q)∞

is the generating function for the overpartitions, where the exponent of x keeps
track of the number of parts, in which

i. j + (j + 1) does not appear,

ii. there are no sequences of the form 1 + 2 + 3 + 4 + 5 + · · ·+ (2k) + (2k + 1).
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Sequences in Overpartitions

Theorem

If i > 0,
F (i , k ; x)

(xq; q)∞

is the generating function for the overpartitions,in which

i. j + (j + 1) does not appear,

ii. the smallest overlined part is > i ,

iii. sequences of the form
2 + 3 + · · ·+ i + (i + 1) + (i + 1) + (i + 2) + (i + 3) + (i + 4) + (i + 5) +
· · ·+ (2k) + (2k + 1) if i is odd, and
2 + 3 + · · ·+ i + (i + 1) + (i + 1) + (i + 2) + (i + 3) + (i + 4) + (i + 5) +
· · ·+ (2k) + (2k + 1) if i is even, are excluded.
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Sequences in Overpartitions
Sketch of Proof

FN(i , 0, k ; x) =FN−1(i , 0, k; xq) + xqFN−2(i , 0, k ; xq2)

− x2k+1q(2k+2
2 )+iFN−(2k+1)(i , 0, k ; xq2k+1)

f (i , k; x) :=
F (i , 0, k ; x)

(xq; q)∞
,

then

f (i , k ; x) =
1

(1− xq)
f (i , k ; xq) +

xqi+1

(1− xq)(1− xq2)
f (i , k; xq2)

− x2k+1q(2k+2
2 )+i

(xq; q)2k+1
f (i , k ; xq2k+1).
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Quick Recall

Recall that we saw these two 3-term relations:

FN(0, 1, 1; x) = (1 + xqN)FN−1(0, 1, 1; x)− x2q2N−1FN−2(0, 1, 1; x),

FN(0, 1, 1; x) = (1 + xq)FN−1(0, 1, 1; xq)− x2q3FN−2(0, 1, 1; xq2).

Sep 5, 2022 Austrian Academy of Sciences & University of Bath - 25 - Ali K. Uncu : aku21@bath.ac.uk



Basics

Sequences in
Overpartitions

Two Conjectures

Towards
Overpartitions

Proof of Theorem

More on FN

Determinants

Overpartitions

Some Continued
Fractions

Continued Fractions

FN(0, 1, 1; x) = (1 + xqN)FN−1(0, 1, 1; x)− x2q2N−1FN−2(0, 1, 1; x)

Theorem

For N ≥ 1,

FN(0, 1, 1; x)

FN−1(0, 1, 1; x)
= 1 + xqN −

x2qN−1

1 + xqN−1 −
x2qN−2

. . . −
. . .

1 + xq2 −
x2q

1 + xq

.
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Continued Fractions

FN(0, 1, 1; x) = (1 + xq)FN−1(0, 1, 1; xq)− x2q3FN−2(0, 1, 1; xq2)

Theorem

For N ≥ 1,

FN(0, 1, 1; x)

FN−1(0, 1, 1; xq)
= 1 + xq +

x2q3

1 + xq2 −
x2q5

. . . −
. . .

1 + xqN−1 +
x2q2N−1

1 + xqN

.
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Continued Fractions

F (0, 1, 1; x) = (1 + xq)F (0, 1, 1; xq)− x2q3F (0, 1, 1; xq2)

and a bit of algebra:

Theorem

(q; q3)∞
∑

m,n≥0

(−1)nq
3n(3n+1)

2
+m2+3mn+m+3n+1

(q)m(q3; q3)n
=

q

1 + q −
q3

1 + q2 −
q5

1 + q3 −
q7

. . .

.
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Continued Fractions

Theorem (Ramanujan)

(q2; q3)∞
(q; q3)∞

=
1

1−
q

1 + q −
q3

1 + q2 −
q5

1 + q3 −
q7

. . .

.
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Some more identities

Theorem ∑
m,n≥0

(−1)nq
3n(3n+1)

2
+m2+3mn+m+3n+1

(q; q)m(q3; q3)n
=

1

(q; q3)∞
− 1

(q2; q3)∞

Theorem ∑
m,n≥0

(−1)nq
3n(3n+1)

2
+m2+3mn(1− qm+3n+1)

(q; q)m(q3; q3)n
=

1

(q2; q3)∞
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Thank you for your time
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