A CASE STUDY IN DETERMINANT EVALUATIONS

TEWODROS AMDEBERHAN, CHRISTOPH KOUTSCHAN, AND DORON ZEILBERGER

Abstract. In this case study, we hope to elucidate three versatile and powerful tools (Dodgson’s condensation, the holonomic ansatz and constant term evaluations) to operate in tandem in proving a certain determinantal formula conjectured by the first author. We also include a postscript describing yet another, more methodological, toolbox for evaluating determinants: ‘ask determinant-guru, Christian Krattenthaler’, but advise people only to use it as a last resort, since if we would have used this last method right away, we would not have had the fun of doing it all by ourselves. Throughout this paper, the reader finds new proofs of interest while marching along the untrodden ways of our journey.

Dedicated to Maestro Christian Krattenthaler (b. 8 Oct., 1958) on his turning million-and-one years old.

“Philosophers and psychiatrists should explain why it is that we mathematicians are in the habit of systematically erasing our footsteps. Scientists have always looked askance at this strange habit of mathematicians, which has changed little from Pythagoras to our day”. –Gian-Carlo Rota.

1. An Intriguing Determinant

The discussion in this article, and its rendition, is motivated by a question on MathOverflow [3] posed by Johann Cigler wherein he asked for a simple direct proof of the determinant

\[
\det A_{n,m} := \det \left[\begin{pmatrix} 2m \\ j - i + m \end{pmatrix} - \begin{pmatrix} 2m \\ -j - i - 1 \end{pmatrix} \right]_{i,j=0}^{n-1} = \prod_{i \leq j} \frac{2n + i + j}{i + j}.
\]

The expression on the right-hand side of the identity is connected to a host of interesting combinatorial interpretations (see references [8], [9], [7], [18] and [19]).

Our journey began with a generalization (true to Pólya’s dictum: generalize to trivialize). Introduce a new parameter \(x \) and a matrix given by

\[
T_{n,m}(x) := \left[\begin{pmatrix} x + m \\ j - i + m \end{pmatrix} - \begin{pmatrix} x + m \\ -j - i - 1 \end{pmatrix} \right]_{i,j=0}^{n-1}.
\]

After enough experimentation, we managed to guess a closed-form evaluation for its determinant.

1. in piano, determinants, and hypergeometrics, inter alia.
3. This is a revised version of the paper https://arxiv.org/pdf/2307.01912.pdf with a different title.
Conjecture 1. We have
\[
\det T_{n,m}(x) = \prod_{i=1}^{n} \prod_{j=1}^{m} \frac{(x + i - j)(x + 2i + j - 2)}{(x + 2i - j)(i + j - 1)}.
\]

None of our initial attempts at proving this claim worked.

Remark 1. Meanwhile, we made the following curious observation. It requires introducing one notion. Let us denote by \(CT_y F(y) \) the constant term of a Laurent polynomial \(F(y) \). For example, if \(F(y) = (3y^2 - 2y^{-1} + 5y + 1)(y^3 + 6y + y^{-1}) \) then to compute its constant term, expand fully as a Laurent series
\[
F(y) = 3y^3 - 2y^{-2} + 19y^{-1} - 7 + 9y + 28y^2 + y^3 + 5y^4.
\]
Therefore \(CT_y F(y) = -7 \).

With this in mind, define the function
\[
\varphi_n(y) := \frac{(1 + y^n - y^{n+1} + y^{2n})(1 - y^n)^2}{y^{n-1}(1 + y)(1 - y)^2} \in \mathbb{Z}[y,y^{-1}]
\]
then
\[
\det T_{n,n}(x) = n!\prod_{i=0}^{n-1} \binom{n+i}{i}^{-1} \cdot 3^{n-2} \prod_{s=1-n}^{n} (x + s)^{CT_y(y^{-s}\varphi_n(y))}.
\]

2. Enter Dodgson

A relatively simple choice for conjecturing and proving explicit determinant evaluations is a method inspired by Dodgson’s condensation [21], that goes back to Jacobi and Desnanot, and popularized by the Reverend Charles L. Dodgson (aka Lewis Carroll). This is the third author’s favorite method (see Section 2.3 of [13]). However, \(\det T_{n,m}(x) \) did not yield to this at all. It was necessary to change the approach. Our first breakthrough was realized in the form of discovering a new matrix
\[
D_n(a,b) := \left[\binom{2i + 2a}{i - j + a - b} - \binom{2i + 2a}{i - j + a - b - 1} \right]_{i,j=0}^{n-1}
\]
which, happily, is amenable to the present technique.

Theorem 2.1. We have the determinantal evaluation
\[
\det D_n(a,b) = \prod_{i=1}^{n} \prod_{j=1}^{a-b} \frac{(a + b + i - j)(a + b + 2i + j - 2)}{(a + b + 2i - j)(i + j - 1)}.
\]

Proof. Denoting the determinant by \(M_n(a,b) \), Dodgson’s condensation states that
\[
M_n(a,b) = \frac{M_{n-1}(a,b)M_{n-1}(a+1,b+1) - M_{n-1}(a+1,b)M_{n-1}(a,b+1)}{M_{n-2}(a+1,b+1)}.
\]
Therefore, we only need to verify that the right-hand side does obey the same recurrence. Then, check both sides agree, say, when \(n = 1 \) and \(n = 2 \). □

For reasons that will become clearer soon, let us reformulate the above result.
Corollary 2.2. We have
\[
\det B_{n,m}(x) := \det \left[\begin{array}{c}
(x + m + 2i) - (x + m + 2i) \\
i - j + m
\end{array} \right]_{i,j=0}^{n-1}
\]
\[
= \prod_{i=1}^{n} \prod_{j=1}^{m} \frac{(x + i - j)(x + 2i + j - 2)}{(x + 2i - j)(i + j - 1)}.
\]

Proof. This follows from Theorem 2.1 with \(a = \frac{x + m}{2}\) and \(b = \frac{x - m}{2}\) in \(D_n(a, b)\). \(\square\)

Note that the right hand sides of the (already proved!) Corollary 2.2 and the (still unproved) Conjecture 1 are the same, but why is it useful? We will see in the next section that the left hand sides are the same, and, hence Conjecture 1 would follow from the transitivity of the \(=\) relation: \(A = B\) and \(B = C \Rightarrow A = C\).

This method was famously used by one of us (DZ) to prove the Mills–Robbins–Rumsey alternating sign matrix conjecture [25] (see also [2]). In that article the author first found a (complicated) constant term expression for the desired quantity (the number of alternating sign matrices) and another (almost as complicated) constant term expression for another quantity (totally symmetric self-complementary plane partitions), already proved by guru George Andrews to be equal to the desired expression. He then worked very hard to prove that these two constant term expressions are the same, and finally, by taking a free ride from Andrews’ previously proved enumeration, and using the above ‘transitivity of \(=\)’, gave the first proof of this notorious conjecture.

In the next section we will use this methodology, but things will be much simpler, since we will prove that the left sides of Conjecture 1 and Corollary 2.2 are given by the same constant-term expression, so unlike [25], we will not have to work hard to prove that \(A = B\), since \(A\) is exactly \(B\).

3. Enter Constant Term Evaluations

As promised at the end of the last section, in this section, we describe the connection between the two matrices \(B_{n,m}(x)\) and \(T_{n,m}(x)\) from the preceding sections.

Theorem 3.1. It holds true that \(\det T_{n,m}(x) = \det B_{n,m}(x)\), and hence so does Conjecture 1.

Proof. Denote the constant term of the Laurent series expansion of \(F(t)\) by \(CT_t F\). In view of this, the entries of \(T_{n,m}(x)\) can be expressed as a constant term:
\[
\left. \begin{array}{c}
x + m \\
(j - i + m)
\end{array} \right) - \left. \begin{array}{c}
x + m \\
m - i - j - 1
\end{array} \right) = \left(1 + \frac{1}{t_i}\right)^{x+m} t_i^{m (t_j - t_{j-1}^i - t_{j-1}^i - 1)}.
\]

The entries in the \(i\)th row of the matrix \(T_{n,m}(x)\) are (we need a different variable for each row, let us call it \(t_i\) - this does not change the values)
\[
\left. \begin{array}{c}
x + m \\
(t_i^j - t_{i-1}^j - 1)
\end{array} \right).
\]

Let \(\vec{t} = (t_0, t_1, \ldots, t_{n-1})\). We apply multi-linearity of determinants to obtain
\[
\det T_{n,m}(x) = \det \left[\left(1 + \frac{1}{t_i}\right)^{x+m} t_i^{m (t_j - t_{j-1}^i)} \right].
\]
Based on our analysis shown above, both determinants \(\det T_{n,m}(x) \) and \(\det B_{n,m}(x) \) are equal to the same constant

\[
\frac{1}{n!} CT_T \left\{ \prod_{i=0}^{n-1} \frac{(1 + t_i)^{x+m} (t_i - 1)}{t_i^{x+n+1}} \cdot \prod_{i<j} (t_i - t_j)(1-t_i t_j) \right\}
\]

Hence \(\det T_{n,m}(x) \) and \(\det B_{n,m}(x) \) must be equal to each other, as claimed. \(\square \)
In particular, we thus recover the determinant of Cigler as stated in Section 1:

Corollary 3.2. (The case $x = m$) We have

$$\det \left[\binom{2m}{j-i+m} - \binom{2m}{m-i-j-1} \right]_{i,j=0}^{n-1} = \prod_{1 \leq i \leq j \leq m-1} \frac{2n+i+j}{i+j}. $$

Proof. The specialization $x = m$ in the formula for $\det T_{n,m}(x)$ results in

$$\det T_{n,m}(m) = \prod_{1 \leq i \leq j \leq m-1} \frac{2n+i+j}{i+j}$$

after some simplification, which is $\det A_{n,m}$. □

In addition, we believe to have uncovered a new constant term evaluation which appears not to fit any of the existing formulas in the literature.

Corollary 3.3. We have

$$\text{CT}_t \left\{ \prod_{i=0}^{n-1} \frac{(1 + t_i)^{x+m}(t_i-1)}{t_i^{x+2n-1}} \prod_{i<j} (t_i-t_j)^2(1-t_i t_j) \right\}$$

$$= n! \cdot \prod_{i=1}^{n} \prod_{j=1}^{m} \frac{(x+i-j)(x+2i+j-2)}{(x+2i-j)(i+j-1)}. $$

Proof. This is a consequence of Corollary 2.2 and the proof of Theorem 3.1. □

4. **Enter the Holonomic Ansatz**

In this section, we use an automated method called the *holonomic ansatz* due to the third author [23], and extended by the second author and collaborators [4, 10, 12] to discover and prove many new deep determinant identities, which will provide yet another proof of Conjecture 1. Note: we also reindex $1 \leq i, j \leq n$ instead of $0 \leq i, j \leq n-1$. Let us recall the matrix $A_n := A_n(m,x) := (a_{i,j})_{1 \leq i, j \leq n}$ whose entries $a_{i,j}$ are given as follows:

$$a_{i,j} := a_{i,j}(m,x) := \begin{pmatrix} m+x \\ m-i+j \end{pmatrix} - \begin{pmatrix} m+x \\ m-i-j+1 \end{pmatrix}. $$

Denote by $A_n^{(i,j)}$ the matrix A_n with the i-th-row and the j-th-column being removed. Then we define

$$c_{n,j} := c_{n,j}(m,x) := (-1)^{n+j} \frac{\det A_n^{(n,j)}}{\det A_{n-1}}. $$

Employing an ansatz with undetermined coefficients (in other words, guessing), we find plausible recurrence relations that are conjecturally satisfied by the sequence $c_{n,j}$, which suggest that it is holonomic with rank 2:

\[
\begin{align*}
&j(j-n-1)(m+n)(2n+x-1)(2n+x)c_{n+1,j} + \\
&(2j-1)n(j-m)(2n+x)(j-n-x+1)c_{n,j+1} + \\
&n(j+n+x-1)(4j^2n-(m^2+4n^2-m))j \\
&- 2mn + (2j^2 - 4jn - m)x - jx^2)c_{n,j} = 0, \quad \text{and} \\
&j(j-m+1)(j+n+1)(j-n+x+2)c_{n,j+2}
\end{align*}
\]
The shape of the above recurrences, i.e., their support and their leading coefficients, implies that the following three initial conditions are sufficient to define a unique bivariate sequence: $c_{1,1} = 1$, $c_{1,2} = 0$, $c_{2,2} = 1$. From now on, let $c_{n,j}$ denote this unique bivariate sequence that is defined by unrolling the recurrences, starting from the given initial conditions. We want to prove that this conjectured definition of $c_{n,j}$ agrees with its original definition (1). For this purpose it suffices to establish the two identities:

\[(2) \quad c_{n,n} = 1 \quad (n \geq 1),\]

\[(3) \quad \sum_{j=1}^{n} a_{i,j} c_{n,j} = 0 \quad (1 \leq i < n),\]

which can be achieved by holonomic closure properties and creative telescoping, respectively. We use the Mathematica package HolonomicFunctions [11]. Observe that the closure property “integer-linear substitution” implies that $c_{n,n}$ satisfies a univariate recurrence of order at most 2. We compute this recurrence and show that it admits a constant solution. Then the two initial values $c_{1,1} = c_{2,2} = 1$ imply that $c_{n,n} = 1$ for all $n \geq 1$.

In order to prove (3), we split the sum into two parts:

\[s_{i,n} := \sum_{j=1}^{n} a_{i,j} c_{n,j} = \sum_{j=1}^{n} \left(\frac{m+x}{m-i+j} \right) c_{n,j} - \sum_{j=1}^{n} \left(\frac{m+x}{m-i-j+1} \right) c_{n,j}.\]

Now creative telescoping can be employed to derive a set of recurrences for each of the sums on the right-hand side, which can be combined to a set of recurrences that is satisfied by the whole expression $s_{i,n}$. These computations are far from trivial (it took about two hours of CPU time) and the recurrences are too big to be displayed here. It can easily be checked that $s_{i,n} = 0$ for a few concrete small integers i and n, and the computed recurrences then imply that $s_{i,n} = 0$ for all $1 \leq i < n$.

Finally, we investigate the sum

\[t_n := t_n(m,x) := \sum_{j=1}^{n} a_{n,j} c_{n,j} = \sum_{j=1}^{n} \left(\frac{m+x}{m-n+j} \right) c_{n,j} - \sum_{j=1}^{n} \left(\frac{m+x}{m-n-j+1} \right) c_{n,j}.\]
Another two applications of creative telescoping exhibit that both sums on the right-hand side satisfy the same recurrence, which therefore is also valid for their difference t_n:

$$(m + n)(2n + x - 1)(2n + x + 1)(2n + x)^2(m - n - x)t_{n+1} + n(n + x)(m - 2n - x - 1)(m - 2n - x)(m + 2n + x - 1)(m + 2n + x)t_n = 0.$$

Since this is a first-order recurrence, a closed form for t_n is immediately obtained in terms of Euler’s gamma function:

$$t_n = \frac{\Gamma(n)\Gamma(n + x)\Gamma(2n + x - m)\Gamma(2n + x + m - 1)}{\Gamma(n + m)\Gamma(n + x - m)\Gamma(2n + x)\Gamma(2n + x - 1)}.$$

From the definition (1) of $c_{n,j}$ it follows that

$$t_n = \frac{\det A_n}{\det A_{n-1}}.$$

which yields the desired closed form of our determinant:

$$\det A_n = \prod_{i=1}^{n} t_i = \prod_{i=1}^{n} \prod_{j=1}^{m} t_i(j, x) = \prod_{i=1}^{n} \prod_{j=1}^{m} \frac{(x + i - j)(x + 2i + j - 2)}{(x + 2i - j)(i + j - 1)}.$$

The special case $x = m$: we point out something very pleasant happening here. The entries $a_{i,j}$ of the matrix $T_{n,m}(m)$ are given by

$$a_{i,j} = \binom{2m}{m - i + j} - \binom{2m}{m - i - j + 1},$$

and the corresponding determinant by

$$b_n := \det T_{n,m}(m) = \prod_{1 \leq i \leq j \leq m - 1} \frac{2n + i + j}{i + j}.$$

The key difference: this time, we are able to construct an explicit doubly-indexed sequence c according to $c_{n,n} = 1$ and for $1 \leq j < n$,

$$c_{n,j} = \frac{(-1)^{n-j}(2n-1)}{(2n-j)} \binom{n+m-j-1}{n-j}.$$

Then, Zeilberger’s holonomic ansatz rules supreme once the following system of equations are proven to hold true:

$$\begin{cases}
 c_{n,n} = 1 & n \geq 1 \\
 \sum_{j=1}^{n} a_{i,j} c_{n,j} = 0 & 1 \leq i \leq n - 1 \\
 \sum_{j=1}^{n} a_{n,j} c_{n,j} = \frac{b_n}{b_{n-1}} & n \geq 1.
\end{cases}$$

But, these are directly justified with the help of Zeilberger’s algorithm [24]. We will not pursue this matter because we have already proven Conjecture 1 (see above), in its full generality.
5. \(T_{n,m}(x) \) Finds its Twin

Suppressing the parameters \(a \) and \(b \), and defining \(u_k := \left(\frac{a+b}{a-k} \right) \), the matrix \(T_{c,a}(b) \) is nothing but the difference of a Toeplitz and a Hankel matrix:

\[
T_{c,a}(b) = [u_{i-j} - u_{i+j+1}].
\]

By analogy, we may introduce its natural companion as a sum of a Toeplitz and a Hankel matrix:

\[
\widetilde{T}_{c,a}(b) = [u_{i-j} + u_{i+j+1}].
\]

A truly parallel argument (as in the previous sections) produces a very similar determinantal evaluation:

Theorem 5.1. We have

\[
\det \widetilde{T}_{c,a}(b) = \prod_{i=0}^{c} \prod_{j=1}^{a} \frac{(b+i-j)(b+2i+j-1)}{(b+2i-j-1)(i+j-1)}.
\]

To give some context, let \(f(z) \) be a complex \(L_1(\mathbb{C}) \) function on the unit circle having Fourier coefficients

\[
u_k = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) e^{-ik\theta} d\theta, \quad i = \sqrt{-1}.
\]

Then, in the terminology of Widom [20], the **determinant of a Toeplitz matrix with symbol** \(f \) is given by

\[E_n(f) = \det[u_{j-i}].\]

Toeplitz determinants find homes in many topics, such as statistical physics and random matrix theory. Different types of matrix ensembles lend themselves to classes of Toeplitz plus Hankel matrices of the form

\[
\det[u_{j-i} \pm u_{j+i+1}], \quad \det[u_{j-i} \pm u_{j+i+1}], \quad \text{etc.}
\]

From a more mathematical vantage point, such determinants arise in the decomposition of the determinants \(E_n(f) \). Namely, if the symbol \(f \) is an even function (in the sense \(f(z) = f(\frac{1}{z}) \) on the unit circle), then

\[
E_{2n+1}(f) = \frac{1}{2} \det[u_{j-i} - u_{j+i+2}]_{0}^{n-1} \times \det[u_{j-i} + u_{j+i+1}]_{0}^{n},
\]

\[
E_{2n}(f) = \det[u_{j-i} - u_{j+i+1}]_{0}^{n-1} \times \det[u_{j-i} + u_{j+i+1}]_{0}^{n-1}.
\]

Andrews and Stanton ([1], see p. 274) involved a somewhat analogous splitting up of a certain determinant that arose in plane partitions although they did not view them as such.

6. BONUS: CT Identities and Plane Partitions

Borrowing notations from Section 6, the Toeplitz matrix \([u_{j-i}]\) that appeared as a component in our matrix \(T_{c,a}(b) \) is in fact recognizable due to its relevance in the theory of plane partitions. Indeed, MacMahon [16] gave an elegant explicit formula for the number of plane partitions inside an \(a \times b \times c \) box:

\[
\prod_{i=0}^{a-1} \prod_{j=0}^{b-1} \prod_{k=0}^{c-1} \frac{i+j+k+2}{i+j+k+1}.
\]
One may readily associate a determinantal formulation [15] to this enumeration

\[
\det[u_{i,j}] = \det \left[\begin{array}{c} a + b \\ a - i + j \end{array} \right]_{i,j=0}^{c-1} = \prod_{i=0}^{a-1} \prod_{j=0}^{b-1} \prod_{k=0}^{c-1} (i + j + k + 2).
\]

We have found what appears to be new (for us, at least) matrix whose determinant matches the above product formula and enjoys the expected symmetry.

Lemma 6.1. It holds true that

\[
\det \left[\begin{array}{c} i + j + a + b \\ i + a \end{array} \right]_{i,j=0}^{c-1} = \prod_{i=0}^{a-1} \prod_{j=0}^{b-1} \prod_{k=0}^{c-1} (i + j + k + 1).
\]

Proof. This is an immediate application of Dodgson’s condensation [21].

Remark 2. The third author has previously employed the same approach towards furnishing a simple proof [22] of a determinant by MacMahon [16].

Proof. Here is a combinatorial proof for Lemma 6.1 given by C. Krattenthaler [14]. We thank him for allowing us to reproduce it.

Plane partitions in an \(a \times b \times c \) box are in bijection with families \((P_0, P_1, \ldots, P_{c-1}) \) of non-intersecting lattice paths, where \(P_i \) runs from \((-i - a, i)\) to \((-i, i + b)\), \(i = 0, 1, \ldots, c - 1 \). This is explained in Section 3.3 of Bressoud’s book [2]. An example for such a family of paths for \(a = 6 \) and \(b = c = 3 \) is displayed in the figure below.

![Example of plane partitions](image)

By the Lindström–Gessel–Viennot theorem [5], this leads to the determinant

\[
\det_{0 \leq i,j \leq c-1} \left(\begin{array}{c} a + b \\ a - i + j \end{array} \right)
\]

for the enumeration of both objects being counted here.
We may prepend and append “forced” path pieces, see the thick path portions in the figure below.

In this manner, we obtain families \((Q_0, Q_1, \ldots, Q_{c-1})\) of non-intersecting lattice paths, where \(Q_i\) runs from \((-i - a, 0)\) to \((0, i + b)\), \(i = 0, 1, \ldots, c - 1\). The corresponding Lindström–Gessel–Viennot determinant \([5]\) is

\[
\det_{0 \leq i,j \leq c-1} \begin{pmatrix} i+j+a+b \\ i+a \end{pmatrix}
\]

The proof is complete.

Remark 3. It is not hard to develop a \(q\)-analog of Lemma 6.1:

\[
\det_{i,j=0}^{c-1} \left[q^{i^2-ij} \begin{pmatrix} i+j+a+b \\ i+a \end{pmatrix} \right] = \prod_{i=0}^{c-1} \prod_{j=0}^{c-1} \prod_{k=0}^{c-1} \frac{1 - q^{i+j+k+2}}{1 - q^{i+j+k+1}}.
\]

It also retains a similar proof as in above.

In the context of Selberg’s integrals, there are equivalently-stated constant term identities, and we prove (a special case of) one due to Morris \([17]\) associated with the root system \(A_n\).

Proposition 1. We have

\[
CT_{t} \prod_{i=0}^{c-1} (1 + t_i)^a (1 + t_i^{-1})^b \prod_{i \neq j}^{0,c-1} (1 - t_j t_i^{-1})^m = \prod_{\ell=0}^{c-1} \frac{(a + b + \ell m)!((\ell + 1)m)!}{(a + \ell m)! (b + \ell m)! m!}.
\]

Proof. We are only proving the special case \(m = 1\). Start with the determinant from Lemma 6.1 where the method of constant term extraction is brought to bear:

\[
\det \begin{pmatrix} i+j+a+b \\ i+a \end{pmatrix} = \det \left[CT_{t_i} \left(t_i^{i+a} \left(1 + \frac{1}{t_i} \right)^{i+j+a+b} \right) \right] = \det \left[CT_{t_i} \left((1 + t_i)^{i+a} \left(1 + \frac{1}{t_i} \right)^b \left(1 + \frac{1}{t_i} \right)^j \right) \right]
\]

\[
= CT_{t} \prod_{i=0}^{c-1} (1 + t_i)^{i+a} \left(1 + \frac{1}{t_i} \right)^b \prod_{i<j}^{c-1} (t_j - t_i)
\]

\[
= CT_{t} \prod_{i=0}^{c-1} (1 + t_i)^{i+a} \left(1 + \frac{1}{t_i} \right)^b \prod_{i<j}^{0,c-1} (t_j - t_i^{-1})
\]

\[
= \prod_{i=0}^{c-1} \prod_{j=0}^{c-1} \prod_{k=0}^{c-1} \frac{1 - q^{i+j+k+2}}{1 - q^{i+j+k+1}}.
\]
We will strengthen the discussion by providing yet another new proof for a special

Further algebraic manipulation confirms the desired conclusion. □

We will strengthen the discussion by providing yet another new proof for a special case of a constant term identity due to Macdonald for the BC_n root system [17]. We need some preliminary work first. To this end, recall the super Catalan numbers [6] defined by

$$S_{i,j} := \frac{(2i)!}{2^i i! (i+j)!}.$$

Lemma 6.2. We have

$$\det[S_{i+a,j+b}]_{i,j=1}^n = (-1)^\frac{\binom{2}{2}}{2^n n!} \prod_{i=1}^n \frac{(2a + 2i)! (2b + 2i)! i!}{(a+i)! (b+i)! (a+b+n+i)!}.$$

Proof. A direct application of Dodgson’s condensation settles the argument. □

Corollary 6.3. Let $\vec{t} = (t_1, \ldots, t_n)$. The following identity holds true

$$CT_{\vec{t}} \prod_{i=1}^n (1 - t_i)^a \left(1 - \frac{1}{t_i}\right)^\alpha \left(1 - \frac{1}{t_i^2}\right)^\beta \times \prod_{i<j} \left(1 - \frac{t_j}{t_i}\right) \left(1 - \frac{t_i}{t_j}\right) \left(1 - \frac{1}{t_i t_j}\right) = \frac{(2\beta + 2i - 2)! (2\alpha + 2\beta + 2i - 2)! i!}{(\beta + i - 1)! (\alpha + \beta + i - 1)! (\alpha + 2\beta + n + i - 2)!}.$$

Proof. Start with the observation that

$$S_{i+a,j+b} = (-1)^{i+a} CT_{\vec{t}} \frac{(1 - t_i)^{2i+2a} (1 + t_i)^{2j+2b}}{2^{i+a+j+b}}$$

and proceed as usual

$$\det[S_{i+a,j+b}]_{i,j=1}^n = \det \left[(-1)^{i+a} CT_{\vec{t}} \frac{(1 - t_i)^{2i+2a} (1 + t_i)^{2j+2b}}{2^{i+a+j+b}} \right]_{1}^{n} = \gamma_n \det \left[CT_{\vec{t}} \frac{(1 - t_i)^{2i+2a} (1 + t_i)^{2b+2}}{2^{i+a+b+1}} \right]_{1}^{n} = \gamma_n \det \left[CT_{\vec{t}} \frac{(1 - t_i)^{2i+2a} (1 + t_i)^{2b+2}}{2^{i+a+b+1}} \right]_{1}^{n} = \gamma_n CT_{\vec{t}} \prod_{i=1}^n \left(1 - t_i \right)^{2i+2a} \left(1 + t_i \right)^{2b+2} \prod_{i<j} \left(t_j + \frac{1}{t_j} - t_i - \frac{1}{t_i} \right) = \gamma_n CT_{\vec{t}} \prod_{i=1}^n \left(1 - t_i \right)^{2i+2a} \left(1 + t_i \right)^{2b+2} \prod_{i<j} \left(t_j + \frac{1}{t_j} - t_i - \frac{1}{t_i} \right)$$
\[
\gamma_n := (-1)^{n+1} (-1)^{na} 2^{-n}. \quad \text{The rest follows from applying Lemma 6.2, from above, with } a = \alpha + \beta - 1 \text{ and } b = \beta - 1 \text{ and some algebraic simplifications.} \]

7. **Postscript: The Fourth Method - Ask Determinant guru Christian Krattenthaler**

After the first version of this paper was written, we sent it out to a few experts, and to our initial horror, we got the following email from Christian Krattenthaler, that he kindly allowed us to quote.

"Concerning the determinant that you look at: it is the special case of (3.18) in my "Advanced Determinant Calculus" [13] where } q = 1, A = x + m, L_i = i - m. This identity has a simple direct proof. As explained above Theorem 30 in [13], after having taken out appropriate factors, the determinant turns out to be a special case of Lemma 5 in [13]. That lemma is so general so that it can be proved in various ways, one of which is explained in Ref. [88] of [13]."

Indeed this is an extreme case of Pólya’s dictum already alluded to above. The general lemma, in hindsight, is almost trivial to prove, once known, but coming up with it, is anything but.

At first, we kicked ourselves for not asking guru Christian right away, and saving us the trouble of doing it ourselves. But this is the cowardly way. This ‘trouble’ was lots of fun, and it brings us to yet another take-home message.

Don’t rush to ask the expert! it is like ‘peeking at the answer at the back of the textbook’. You will learn much more by trying to do it all by yourself! Of course, if you finally give up, after an honest effort, then you can contact Professor Krattenthaler. Also if you succeed, and want to make sure that you were not scooped, do likewise, but not right away!

Remark 4. The determinant (3.18) in [13], generalizing our Conjecture 1, was used in the proof of refinements of the MacMahon ex-Conjecture and the Bender-Knuth ex-Conjecture.

8. **The Revenge of Rev. Charles**

At times life rides like a domino-effect. The last section exhibited a notion of thinking retroactively - by way of consulting experts. This prompted us to have another look at the original problem which would really make our paper even more.
A CASE STUDY IN DETERMINANT EVALUATIONS

A CASE STUDY IN DETERMINANT EVALUATIONS

self-contained. In this section, we revisit our running example - the matrix

\[T_{n,m}(x) := \left(\begin{array}{c} x + m \\ j - i + m \end{array} \right) - \left(\begin{array}{c} x + m \\ m - i - j + 1 \end{array} \right)_{1 \leq i,j \leq n}, \]

for which we had the formula

\[\det T_{n,m}(x) = \prod_{i=1}^{n} \prod_{j=1}^{m} \frac{(x + i - j)(x + 2i + j - 2)}{(x + 2i - j)(i + j - 1)}. \]

We have had a ton of adventures in proving and applying it. As noted above, Krattenthaler claimed priority by providing a generalized determinant evaluation. Fair enough. We, too, have another idea in trivializing the proof. Follow us.

Step 1. Change variables: \(x = a + b, m = b - a \). Rename \(T_{n,m}(x) \) to write

\[U_n(a,b) = \left(\begin{array}{c} 2b \\ j - i + b - a \end{array} \right) - \left(\begin{array}{c} 2b \\ b - a - i - j + 1 \end{array} \right)_{1 \leq i,j \leq n}. \]

Step 2. This is the key: use the symmetry \(\binom{A}{B} = \binom{A}{A-B} \) on the second binomial coefficient so that

\[U_n(a,b) = \left(\begin{array}{c} 2b \\ j - i + b - a \end{array} \right) - \left(\begin{array}{c} 2b \\ a + b + i + j - 1 \end{array} \right)_{1 \leq i,j \leq n}, \]

while maintaining the lingering assertion

\[\det U_n(a,b) = \prod_{i=1}^{n} \prod_{j=1}^{b-a} \frac{(a + b + i - j)(a + b + 2i + j - 2)}{(a + b + 2i - j)(i + j - 1)}. \]

Step 3. Call Dodgson’s condensation on \(U_n(a,b) \) because this matrix is in a natural form for such an application.

Proof. Denoting the determinant by \(M_n(a,b) \), Dodgson’s condensation states that

\[M_n(a,b) = \frac{M_{n-1}(a,b)M_{n-1}(a+1,b+1) - M_{n-1}(a+1,b)M_{n-1}(a,b+1)}{M_{n-2}(a+1,b+1)}. \]

Therefore, we only need to verify (routinely) that the right-hand side does the same. To conclude, simply check both sides agree, say, when \(n = 1 \) and \(n = 2 \). \(\square \)

References

Department of Mathematics, Tulane University, New Orleans, LA 70118, USA
Email address: tamdeber@tulane.edu

Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenberger Strasse 69, 4040 Linz, Austria
Email address: christoph.koutschan@oeaw.ac.at

Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA
Email address: DoronZeil@gmail.com