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Urefinable Partitions

Definition
A partition λ = (λ1, λ2, . . . , λt) of N ∈ N is such that λ1 ≤ λ2 ≤ . . . ≤ λt and∑t

i=1 λi = N . We write λ ⊢ N .
A partition into distinct parts is a partition such that λ1 < λ2 < . . . < λt.
Let DN the set of partition into distinct parts of N .
We call missing parts of λ the positive integers belonging to:

Mλ = {1, 2, 3, . . . , λt} \ {λ1, . . . , λt}
A partition into distinct parts λ = (λ1, . . . , λt) is refinable if there exist λi ∈ λ
and mj,mk ∈ Mλ such that mj +mk = λi.
Otherwise the partition is unrefinable.
The set UN denotes the set of unrefinable partitions of N .

It is easy to think that if one partition has fewer missing parts than another then it is more
likely to be unrefinable, but if we take:

λ = (1, 2, 3, 5, 6, 8, 12) λ′ = (1, 2, 3, 5, 6, 8, 11, 12)

we can observe that λ is unrefinable and λ′ is refinable because λ′7 = 11 = 4 + 7 despite
|Mλ| > |Mλ′|

Simple Properties

• If |Mλ| = {0, 1} then λ is clearly unrefinable.We define:

πn = (1, 2, . . . , n− 1, n) ⊢ n (n + 1)

2
= Tn

πn,d =
(
1, 2, . . . , d̂, . . . , n

)
⊢ Tn − d = Tn,d

We can conclude that every integer n ≥ 3 admits at least one unrefinable partition.

•The anti-symmetric property: if m ∈ Mλ and m ̸= λt
2 then the element λt−m must be a

part of λ, otherwise the partition is refinable. We obtain:

|Mλ| ≤
⌊
λt
2

⌋

Strategy

If N ≥ 3 we can take the corresponding πn or πn,d
and to obtain a new unrefinable partition λ ⊢ N we
start to remove 1 ≤ a1 < a2 < . . . < ah ≤ n and
to add n + 1 ≤ α1 < α2 < . . . < αj (if N = Tn,d
α1 might be equal to d) such that:

h∑
i=1

ai =

j∑
l=1

αl

Now we can estimate the value of λt = αj:

Mλ = h + (λt − n− j) ≤
⌊
λt
2

⌋

Upper Bound

Proposition 1:
If λ ⊢ Tn necessarily h > j and we have:

n ≤ λt ≤ 2n-4

Proposition 2:

If λ ⊢ Tn,d we obtain:

d λt ≤
1 2n − 2
2 2n − 3
3 2n − 4

n− (2k − 1) 2n − 4
n− 2k 2n − 5

Maximal Unrefinable Partitions

Definition
Let N ∈ N . An unrefinable partition λ = (λ1, . . . , λt) is
called maximal if

λt = max
(λ′1,λ

′
2,...,λ

′
t)∈UN

λ′t

We denote by ŨN the set of the maximal unrefinable par-
titions of N .

If we observe an unrefinable partition we can define three areas:

•The ais elements are all in the First area and in the Free area;

•The αls elements are all in the Last area, except when α1 = d;

• If exists an ai in the First area necessarily must exist a corresponding αi =
λt − ai in the Last area.

1 λt − n− 1

λt − n n

n + 1 λt

First
area

Free
area

Last
area

Tn Existence

Theorem 1:
Let N = Tn such that n ≥ 6:

• if j = h− 1 only one maximal un-
refinable partition

π̃n = (1, 2, . . . , n− 3, n + 1, 2n− 4) ;

• if j = h − 2 maximal unrefinable partitions
exist if and only if n is an odd number and we
can divide them into 4 families according to
the removed elements in the Free area:

(n − 4, n − 3, n − 2), (n − 3, n − 2, n),

(n − 4, n − 2, n − 1), (n − 2, n − 1, n).

Tn,d Existence

Theorem 2:
When N = Tn,d we obtain:

• only one maximal partition when d = 1, d = 2:

(1, 2, . . . , n− 2, 2n− 2) ;

(1, 2, . . . , n− 2, 2n− 3) ;

• if d = 3 and n is odd exist only one maximal partition

(1, 2, 3, . . . , n− 2, 2n− 4) ;

• when d = 4 and n is even exist the maximal partition

(1, 2, 3, 4, . . . , n− 2, 2n− 5) ;

• When d = n−(2k−1) we found 4 families of maximal unrefinable
partitions:
(n− 4, n− 3, n− 2), (n− 3, n− 2, n),
(n− 4, n− 2, n− 1), (n− 2, n− 1, n).

• If d = n− 2k we have 8 families, the first 4 when h is even, and
the other when is odd:

(n− 5, n− 4, n− 3) (n− 4, n− 2, n)
(n− 5, n− 2, n− 1) (n− 3, n− 1, n)

(n− 5, n− 4, n− 2) (n− 4, n− 3, n)
(n− 5, n− 3, n− 1) (n− 2, n− 1, n)

A New Representation

We observe that all the maximal unrefinable partitions
that belong to families may be represented considering
only the ais<

λt
2 by the anti-symmetric property.

For example if we take
λ = (1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 16, 18, 20, 30) ∈ ŨT17
we have:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ • •
• • • • • • • • • ◦ • ◦ • ◦
29 28 27 26 25 24 23 22 21 20 19 18 17 16

and we can write λ ∼ λ∗ = (10, 12, 14)

The Bijections

By the new representation we can describe two func-
tions:

• if λt = 2n−4 we define ϕ such that ϕ(λ∗i ) =
⌊
λt
2

⌋
−λ∗i

• if λt = 2n− 5 we define ψ as ψ(λ∗i ) = 2λ∗i − 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ •

ϕ
135

Main Theorem

Let n ≥ 6

n 2k 2k − 1∣∣∣ŨTn∣∣∣ 1 |Dk|

Let n ≥ 11 e 1 ≤ d ≤ n − 1:
n even even even
d {1, 2} odd even∣∣∣ŨTn,d∣∣∣ 1 1 +

∣∣∣Dn−d+1
2

∣∣∣ ∣∣Dodd

n−d+2
∣∣

n odd odd odd
d {1, 2, 3} even odd∣∣∣ŨTn,d∣∣∣ 1 1 +

∣∣∣Dn−d+1
2

∣∣∣ ∣∣Dodd

n−d+2
∣∣
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