SLC 89
89th Séminaire Lotharingien de Combinatoire
26-29 March 2023 Centro Residenziale Universitario di Bertinoro, Italy

Alternating Sign Matrices With Reflective Symmetry and Plane Partitions: $n+3$ Pairs of Equivalent Statistics

Hans Höngesberg, joint work with Ilse Fischer
Faculty of Mathematics, University of Vienna, Austria

Correspondence between ASMs and DPPs
 (Andrews 1979, Zeilberger 1996)

ASMs and DPPs of the same order are equinumerous.

Alternating sign matrices (ASMs)

An alternating sign matrix (ASM) of order \mathbf{n} is an $n \times n$-matrix with entries $-1,0$ or +1 such that

- the entries in each row and each column sum to 1 , and
- the nonzero entries alternate in sign along each row and each column.

Descending plane partitions (DPPs)

A descending plane partition (DPP) of order \mathbf{n} is a filling of a shifted Young diagram with positive integers less than or equal to n such that

- the entries weakly decrease along rows
- and strictly decrease down columns, and
- the first part in each row is strictly larger than the length of the row
- but less than or equal to the length of the previous row.

Correspondence between ASMs and MTs
 (Mills, Robbins, Rumsey 1983)

There is a bijective correspondence between

- ASMs of order n and MTs with bottom row $1,2, \ldots, n$ and
- vertically symmetrice ASMs of order $2 n+1$ and MTs with bottom row $0,2, \ldots, 2 n-2$.

Arrowed monotone triangles (AMTs) with $n+3$ statistics
An arrowed monotone triangle (AMT) of order \mathbf{n} is a MT of order n where each entry e carries a decoration from $\{\nwarrow, \nearrow, \nwarrow \chi\}$ such that the following two conditions are satisfied:

- If e has a \nwarrow-neighbor and is equal to it, then e must carry \nearrow
- If e has a \nearrow-neighbor and is equal to it, then e must carry \nwarrow We assign the weight:

$$
u^{\# \nearrow} v^{\# \nwarrow} w^{\# \nearrow} \backslash \prod_{i=1}^{n} X_{i}^{\left(\sum \text { row } i\right)-\left(\sum \text { row } i-1\right)+(\# \nearrow \text { in row } i)-(\# \nwarrow \text { in row } i) . ~}
$$

AMT of order 3

The weight of $\nwarrow_{0} \nwarrow_{1}^{\nwarrow_{2}} \nwarrow_{4}{ }_{4}$ is $u v^{3} w^{2} X_{1}^{3} X_{3}$

Generating function

The generating function of AMTs with bottom row $0,2, \ldots, 2 n-2$ is given by

$$
\prod_{i=1}^{n} \frac{X_{i}^{n-2}}{u-v X_{i}^{-2}} \cdot \frac{\operatorname{det}_{1 \leqslant i, j \leqslant n}\left(\left(u^{2} X_{i}^{2}+u w X_{i}\right)^{j}-\left(v^{2} X_{i}^{-2}+v w X_{i}^{-1}\right)^{j}\right)}{\prod_{1 \leqslant i<j \leqslant n}\left(X_{j}-X_{i}\right)\left(u-v X_{i}^{-1} X_{j}^{-1}\right)}
$$

Which families of (non-intersecting) lattice paths or plane partition objects have the same generating function?

- three signed models in terms of lattice paths
- one signless model in terms of pairs of plane partitions \longrightarrow different proofs by algebraic manipulations and lattice path combinatorics

Pair of plane partitions with $n+3$ statistics

Pairs (P, Q) of plane partitions of the same shape such that - P and Q have n rows allowing rows of length 0 ;

- P is column-strict;
- Q is row-strict;
- row restrictions on P and Q.

The weight is

$$
w^{\binom{n+1}{2}-\# \text { entries in } Q} \prod_{i=1}^{n} X_{i}^{n-1}\left(u X_{i}\right)^{\# 2 i-1 \text { in } P}\left(\nu X_{i}^{-1}\right)^{\# 2 i \text { in } P} .
$$

(P, Q) with three rows and weight $u^{3} v^{2} w \mathrm{X}_{1} \mathrm{X}_{2}^{4} \mathrm{X}_{3}^{2}$

Symplectic tableau

Totally symmetric self-complementary plane partition

			\geqslant			
$\overline{1}$	2		$6 \geqslant$	6	5	
2	2		$4 \geqslant$	3	3	
$\overline{3}$			$2 \geqslant$	2		

Expansion into symmetric functions

Expansion of the generating function into symplectic Schur functions with coefficients given by totally symmetric self-complementary plane partitions

Proof idea

- Transform generating function into Jacobi-Trudi-type formula
- Interpret formula as signed enumeration of lattice paths via Lindström-Gessel-Viennot lemma
- Apply sign-reversing involutions
- Read off pair of plane partitions

