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Correspondence between ASMs and DPPs
(Andrews 1979, Zeilberger 1996)

ASMs and DPPs of the same order are equinumerous.

Alternating sign matrices (ASMs)

An alternating sign matrix (ASM) of order n is an n× n-matrix
with entries −1, 0 or +1 such that
• the entries in each row and each column sum to 1, and
• the nonzero entries alternate in sign along each row and each
column.

Descending plane partitions (DPPs)

A descending plane partition (DPP) of order n is a filling of a
shifted Young diagram with positive integers less than or equal to
n such that
• the entries weakly decrease along rows
• and strictly decrease down columns, and
• the first part in each row is strictly larger than the length of the
row
• but less than or equal to the length of the previous row.

ASM of order 4 and DPP of order > 6
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Reflective symmetry in ASMs
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Correspondence between ASMs and MTs
(Mills, Robbins, Rumsey 1983)

There is a bĳective correspondence between
• ASMs of order n and MTs with bottom row 1, 2, . . . , n and
• vertically symmetrice ASMs of order 2n+ 1 and MTs with
bottom row 0, 2, . . . , 2n− 2.

Arrowed monotone triangles (AMTs) with n+ 3 statistics

An arrowed monotone triangle (AMT) of order n is a MT of
order nwhere each entry e carries a decoration from {↖,↗,↖↗}

such that the following two conditions are satisfied:
• If e has a↖-neighbor and is equal to it, then e must carry↗.
• If e has a↗-neighbor and is equal to it, then e must carry↖.
We assign the weight:
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The weight of
↖3↗

↖1 ↖4
↖0↗ ↖2 4↗

is uv3w2X3
1X3.

Generating function

The generating function of AMTs with bottom row
0, 2, . . . , 2n− 2 is given by
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Which families of (non-intersecting) lattice paths or plane
partition objects have the same generating function?

• three signed models in terms of lattice paths
• one signless model in terms of pairs of plane partitions
−→ different proofs by algebraic manipulations and lattice path
combinatorics

Pair of plane partitions with n+ 3 statistics

Pairs (P,Q) of plane partitions of the same shape such that
• P and Q have n rows allowing rows of length 0;
• P is column-strict;
• Q is row-strict;
• row restrictions on P and Q.
The weight is
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Symplectic tableau Totally symmetric
self-complementary plane partition
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Expansion into symmetric functions

Expansion of the generating function into symplectic Schur
functions with coefficients given by totally symmetric
self-complementary plane partitions

Proof idea

• Transform generating function into Jacobi–Trudi-type formula
• Interpret formula as signed enumeration of lattice paths via
Lindström–Gessel–Viennot lemma
• Apply sign-reversing involutions
• Read off pair of plane partitions
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