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Combinatorial Reciprocity Thm
For a sequence (fn)n∈Z, if both |fn| and |f−n| count some combina-
torial objects of size n ≥ 1, such a result is called a combinatorial
reciprocity theorem [Sta74].

Three notable examples are when fn is
• the binomial coefficient

(n
k

)
,

• the chromatic polynomial χG(n),
• the Ehrhart polynomial EhrP (n).

Theorem 1. [EC1, Theorem 4.1.1 and Proposition 4.2.3] A sequence
(fn)n≥0 satisfies a homogeneous linear recurrence relation if and
only if ∑

n≥0

fnx
n =

P (x)

Q(x)
,

for some polynomials P (x) and Q(x) with degP (x) < degQ(x) and
Q(0) ̸= 0. Moreover, in this case, we have∑

n≥1

f−nx
n = −P (1/x)

Q(1/x)
,

as rational functions.
Recently, Cigler and Krattenthaler [CK20] showed that, the negative
counterpart of the number of Dyck paths of length 2n with bounded
height 2k − 1 is the number of alternating sequences a1 ≤ a2 ≥
a3 ≤ · · · ≥ a2n−1 with 1 ≤ ai ≤ k. They also showed many other
interesting results including a reciprocity between determinants of
these numbers and their connection with orthogonal polynomials.

Orthogonal Polynomials
Polynomials Pn(x) are called orthogonal polynomials with respect to a linear functional L if degPn(x) = n and

L(Pm(x)Pn(x)) = δm,ncn, cn ̸= 0.

It is well known [Chi78, Theorem 4.1] that monic orthogonal polynomials Pn(x) satisfy a three-term recurrence relation:

Pn+1(x) = (x− bn)Pn(x)− λnPn−1(x) for n ≥ 0, P−1(x) = 0, P0(x) = 1,

for some sequences b = (bn)n≥0 and λ = (λn)n≥1. The moment µn(b,λ) of Pn(x) is defined by µn(b,λ) = L(xn).

A Motzkin path is a lattice path weakly above the x-axis in which every step is an up step (1, 1), a horizontal step (1, 0), or a
down step (1,−1). We denote by Motn,r,s the set of Motzkin paths from (0, r) to (n, s), and Mot≤k

n,r,s the set of Motzkin paths in
Motn,r,s that lie weakly below the line y = k. We also define Motn = Motn,0,0 and Mot≤k

n = Mot≤k
n,0,0. The weight wt(π; b,λ) of

a Motzkin path π is defined to be the product of bi for each horizontal step starting at a point with y-coordinate i and λi for each
down step starting at a point with y-coordinate i.

Viennot [Vie83] found the following combinatorial interpretation for the moment: L(xn) = µn(b,λ) =
∑

π∈Motn
wt(π; b,λ). The

generalized bounded moment is defined by

µ≤k
n,r,s(b,λ) =

∑
π∈Mot≤k

n,r,s

wt(π; b,λ).

Let P ∗
n(x) = xnPn(1/x) and δP moves bi to bi+1 and λi to λi+1 in P .

Theorem 2. [Vie83] Let r, s, k be integers with 0 ≤ r, s ≤ k.

∑
n≥0

µ≤k
n,r,s(b,λ)x

n =


xs−rP ∗

r (x)δ
s+1P ∗

k−s(x)
P ∗
k+1(x)

if r ≤ s,

P ∗
s (x)δ

r+1P ∗
k−r(x)

P ∗
k+1(x)

∏r
i=s+1 λi. if r > s.

Negative Moments
Let b2 = (bn−1bn)n≥1 = (b0b1, b1b2, . . . ).

Proposition 3. The sequence (µ≤k
−n,r,s(b, b

2))n≥1 is well
defined if and only if k ̸≡ 1 (mod 3).
By Theorems 1 and 2, we obtain the generating function for
the negative moments of orthogonal polynomials.
Theorem 4. Let r, s, k be integers with 0 ≤ r, s ≤ k. Suppose
that µ≤k

−n,r,s(b,λ) is well defined for n ≥ 1. If r ≤ s, then

∑
n≥1

µ≤k
−n,r,s(b,λ)x

n = −
xPr(x)δ

s+1Pk−s(x)

Pk+1(x)
.

If r > s, then

∑
n≥1

µ≤k
−n,r,s(b,λ)x

n = −
xr−s+1Ps(x)δ

r+1Pk−r(x)

Pk+1(x)

r∏
i=s+1

λi.

We now give a combinatorial interpretation for µ≤k
−n,r,s(b, b

2)

where k ̸≡ 1 (mod 3).
Definition 5. An (ℓ, r, s)-peak-valley sequence is a sequence
(a1, . . . , an) of nonnegative integers such that for i = 1, . . . , n,
• if ai ≡ 0 (mod ℓ), then ai is a valley (ai−1 > ai < ai+1),
• if ai ≡ −1 (mod ℓ), then ai is a peak (ai−1 < ai > ai+1),

where we set a0 = r and an+1 = s. Denote by PV
ℓ,k
n,r,s the set

of (ℓ, r, s)-peak-valley sequences (a1, . . . , an) with 0 ≤ ai ≤ k

for all i = 1, . . . , n and define PV
ℓ,k
n = PV

ℓ,k
n,0,0.

Method 1 (r = s = 0)

By Flajolet’s combinatorial theory of continued fractions
[Fla80], [Vie83] showed that∑

n≥0

µ≤k
n (b,λ)xn =

1

1− b0x−
λ1x

2

1− b1x− . . . −
λkx

2

1− bkx

.

Using this, we have

∑
n≥1

µ≤k
−n(b,λ)x

n =
b−1
0 x

1− b−1
0 x−

b−1
0 b−1

1 λ1

1− b−1
1 x− . . . −

b−1
k−1b

−1
k λk

1− b−1
k x

.

We define the weight wt(π) of a sequence π = (a1, . . . , an) of
nonnegative integers by wt(π) = Va1 · · ·Van.
Theorem 6. Let bi = −V −1

i for all i. Then we have

µ≤3k−1
−n (b, b2) = V0

∑
π∈PV3,3k−1

n−1

wt(π).

We also find a combinatorial interpretation for µ≤3k
−n (b, b2)

using modified (3,0,0)-peak-valley sequences.

Method 2
For integers k and i with 0 ≤ i ≤ k, let ϵi be the standard basis vector
in Rk+1 such that the ith entry is equal to 1 and the other entries are
all 0. We also define the tridiagonal matrix A≤k(b,λ) by

A≤k(b,λ) =


b0 1
λ1 b1 1

. . .
λk−1 bk−1 1

λk bk

 .

By the definition of µ≤k
n,r,s(b,λ), it is easy to see that

µ≤k
n,r,s(b,λ) = ϵTr

(
A≤k(b,λ)

)n
ϵs.

Proposition 7. [HZ23, Lemma 2.7] For nonnegative integers r, s, k, n
with r, s ≤ k and n ≥ 1, if A≤k(b,λ) is invertible, then

µ≤k
−n,r,s(b,λ) = ϵTr

(
A≤k(b,λ)

)−n
ϵs.

Theorem 8. Let bi = −V −1
i for all i. Then we have

µ≤3k−1
−n,r,s (b, b

2) = (−1)⌊r/3⌋+⌊s/3⌋
V0 · · ·Vs

V0 · · ·Vr−1

∑
π∈PV3,3k−1

n−1,r,s

wt(π).

Here, we set V0 · · ·Vr−1 = 1 if r = 0.

We also find a combinatorial interpretation for µ≤3k
−n,r,s(b, b

2) using
modified (3,r,s)-peak-valley sequences.

General Reciprociry Theorem Related to Determinants
Let R(n) be the operator defined on polynomials in bi’s and λi’s
that replaces each bi by bn−i and each λi by λn+1−i. We have
the general reciprocity theorem as follows.

Theorem 9. For positive integers k and m, we have

det
(
µ≤k+m−1
n+i+j+2m−2(b,λ)

)k−1

i,j=0

= C ·R(k+m−1)
(
det

(
µ≤k+m−1
−n−i−j (b,λ)

)m−1

i,j=0

)
,

where C =
(∏k+m−1

i=1 λk−i
i

)
det

(
A≤k+m−1(b,λ)

)n+2m−2
.

This implies the result of Cigler and Krattenthaler [CK20, Theo-
rem 34], which is the general reciprocity theorem for Dyck paths
version (that is, for b = 0).

Let Alt≤k
n be the set of alternating sequences (a1, . . . , an) of

integers such that a1 ≤ a2 ≥ a3 ≤ · · · and 1 ≤ ai ≤ k for
all i.

We prove the following two conjectures proposed in [CK20]
using Theorem 9.

Theorem 10. [CK20, Conjecture 50] For all nonnegative
integers n, k,m, we have

det

2k+2m−1∑
s=0

µ≤2k+2m−1
n+i+j+2m−1,0,s(0,1)

k−1

i,j=0

= (−1)

(
(k2)+(

m
2)
)
(n+1)

det
(∣∣∣Altk+mn+i+j

∣∣∣)m−1

i,j=0
.

Theorem 11. [CK20, Conjecture 53] For all positive integers
n, k,m with k +m ̸≡ 2 (mod 3), we have

det
(
µ≤k+m−1
n+i+j+2m−2(1,1)

)k−1

i,j=0

= (−1)n⌊(k+m)/3⌋ det
(
µ≤k+m−1
−n−i−j (1,1)

)m−1

i,j=0
.
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