Roberto Pagaria

Università di Bologna

Integral points in graphical zonotopes

an application to the Hitchin fibrations

89th Séminaire Lotharingien de Combinatoire

Work in progress with M. Mauri and L. Migliorini

March 27, 2023

Covered topics:

- Zonotopes
- Matroids and poset of flats
- Integral points
- Application to the Hitchin fibration
- 6 Representation theory

Let $\Gamma = (V, E)$ be a graph without loops (possible with multiple edges).

Definition

The graphical zonotope Z_{Γ} of Γ is the integral polytope defined by

$$Z_{\Gamma} := \sum_{(i,j) \in \Gamma} y_{i,j}[0, e_i - e_j] \subset \mathbb{R}^{V(\Gamma)}$$

where $y_{i,j}$ is the number of edges between i and j.

 Z_{Γ} is a Minkowski sum of segments.

Let $\Gamma = (V, E)$ be a graph without loops (possible with multiple edges).

Definition

The graphical zonotope Z_{Γ} of Γ is the integral polytope defined by

$$Z_{\Gamma} := \sum_{(i,j) \in \Gamma} y_{i,j}[0, e_i - e_j] \subset \mathbb{R}^{V(\Gamma)}$$

where $y_{i,j}$ is the number of edges between i and j.

 Z_{Γ} is a Minkowski sum of segments.

Definition (Ehrhart polynomial)

Define $C(Z) = (-1)^d L(Z, -1)$ as the number of integral points in the relative interior of Z.

Consider a translation vector $\omega \in \mathbb{R}^r$.

Example

Let Γ be the graph in the picture and $\omega = (1/2, 1/2, 0)$. The graphical zonotope is

so
$$C(Z_{\Gamma})=23$$
 and $C(Z_{\Gamma}+\omega)=30$.

Graphic matroids

We consider graphs $\Gamma = (V, E)$ possibly with multiple edges and the associated *cycle matroid*.

Cycle matroid	Graph
Groundset	Set of edges
Independent	Forest
Dependent	Containing a cycle
Closure oper.	Adding all dependent edges
Flat	Partition of V with connected blocks

Graphic matroids

We consider graphs $\Gamma = (V, E)$ possibly with multiple edges and the associated *cycle matroid*.

Cycle matroid	Graph
Groundset	Set of edges
Independent	Forest
Dependent	Containing a cycle
Closure oper.	Adding all dependent edges
Flat	Partition of V with connected blocks

Definition

Define the *poset of flats* $S \subseteq \Pi_V$ as the collection of all flats ordered by refinement.

Deletion and contraction

Definition

Let $S \in \mathcal{S}$ be a flat, the *deleted* graph Γ_S is the graph with only edges in the flat S. The *contracted* graph Γ^S is obtained from Γ by contracting all the edges in the flat S.

Deletion and contraction

Definition

Let $S \in \mathcal{S}$ be a flat, the *deleted* graph Γ_S is the graph with only edges in the flat S. The *contracted* graph Γ^S is obtained from Γ by contracting all the edges in the flat S.

Example

Consider the graph Γ with poset of flats $\mathcal S$ and the flat 12|3.

Faces of zonotopes

Proposition

Each face of Z_{Γ} is a translate of Z_{Γ_S} for some flat $S \in \mathcal{S}$.

Faces of zonotopes

Proposition

Each face of Z_{Γ} is a translate of Z_{Γ_S} for some flat $S \in \mathcal{S}$.

Goal: write $C(Z_{\Gamma} + \omega)$ in term of the numbers $C(Z_{\Gamma_S})$ for $S \in \mathcal{S}$.

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let
$$Z = \sum_{i \in E} [0, v_i]$$
 be an integral zonotope and $\omega \in \mathbb{R}^r$. Then $C(Z + \omega) = \sum_{\substack{I \text{ independent set}}} (-1)^{r-|I|} \delta_{(\langle v_i \rangle_{i \in I} + \omega) \cap \mathbb{Z}^r \neq \emptyset} \text{Vol}(I).$

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let
$$Z = \sum_{i \in E} [0, v_i]$$
 be an integral zonotope and $\omega \in \mathbb{R}^r$. Then $C(Z + \omega) = \sum_{\substack{I \text{ independent set}}} (-1)^{r-|I|} \delta_{(\langle v_i \rangle_{i \in I} + \omega) \cap \mathbb{Z}^r \neq \emptyset} \text{Vol}(I).$

Example

Let
$$Z = [0, e_1] + [0, e_1 + e_2] + [0, e_1 - e_2]$$
 and $\omega = (\frac{1}{2}, \frac{1}{2})$.

$$C(Z + \omega) = \text{Vol}(v_2v_3) + \text{Vol}(v_1v_2) + \text{Vol}(v_1v_3) - \text{Vol}(v_2) - \text{Vol}(v_3)$$

= 2 + 1 + 1 - 1 - 1 = 2.

Ardila, Supina, Vindas-Meléndez - The equivariant Ehrhart theory of the permutahedron

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let
$$Z = \sum_{i \in E} [0, v_i]$$
 be an integral zonotope and $\omega \in \mathbb{R}^r$. Then $C(Z + \omega) = \sum_{\substack{I \text{ independent set}}} (-1)^{r-|I|} \delta_{(\langle v_i \rangle_{i \in I} + \omega) \cap \mathbb{Z}^r \neq \emptyset} \text{Vol}(I).$

$$C(Z + \omega) = \sum_{S \text{ flat}} (-1)^{r - \dim S} \delta_{(S + \omega) \cap \mathbb{Z}^r \neq \emptyset} \sum_{\substack{I \text{ independent set} \\ \langle I \rangle = S}} \mathsf{Vol}(I).$$

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let
$$Z = \sum_{i \in E} [0, v_i]$$
 be an integral zonotope and $\omega \in \mathbb{R}^r$. Then $C(Z + \omega) = \sum_{\substack{I \text{ independent set}}} (-1)^{r-|I|} \delta_{(\langle v_i \rangle_{i \in I} + \omega) \cap \mathbb{Z}^r \neq \emptyset} \text{Vol}(I).$

$$C(Z + \omega) = \sum_{S \text{ flat}} (-1)^{r - \dim S} \delta_{(S + \omega) \cap \mathbb{Z}^r \neq \emptyset} \sum_{\substack{I \text{ independent set} \\ \langle I \rangle = S}} \mathsf{Vol}(I).$$

Definition

A set $S \subseteq [r]$ is ω -integral if $\sum_{i \in S} \omega_i \in \mathbb{Z}$. A partition $\underline{S} \vdash [r]$ is ω -integral if all its blocks S_i are ω -integral.

Theorem (Stanley '91, Ardila Beck McWhirter '20)

Let
$$Z = \sum_{i \in E} [0, v_i]$$
 be an integral zonotope and $\omega \in \mathbb{R}^r$. Then $C(Z + \omega) = \sum_{\substack{I \text{ independent set}}} (-1)^{r-|I|} \delta_{(\langle v_i \rangle_{i \in I} + \omega) \cap \mathbb{Z}^r \neq \emptyset} \text{Vol}(I).$

$$C(Z+\omega) = \sum_{S \text{ flat}} (-1)^{r-\dim S} \delta_{(S+\omega) \cap \mathbb{Z}^r \neq \emptyset} \sum_{\substack{I \text{ independent set} \\ \langle I \rangle = S}} \mathsf{Vol}(I).$$

Definition

A set $S \subseteq [r]$ is ω -integral if $\sum_{i \in S} \omega_i \in \mathbb{Z}$. A partition $\underline{S} \vdash [r]$ is ω -integral if all its blocks S_i are ω -integral.

For a graphical zonotope Z_{Γ} and a flat $S \in \mathcal{S}$ we have $\delta_{(\langle S \rangle + \omega) \cap \mathbb{Z}^r \neq \emptyset} = 1$ if and only if S is ω -integral.

If
$$\sum_{i=1}^{r} \omega_i \in \mathbb{Z}$$
, then
$$C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + \sum_{S \in \mathcal{S}} \left(\sum_{\substack{T \geq S \\ T \text{ (wintegral)}}} \mu_{S}(S, T) \right) C(Z_{\Gamma_{S}}).$$

If
$$\sum_{i=1}^r \omega_i \in \mathbb{Z}$$
, then $C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + \sum_{S \in \mathcal{S}} \left(\sum_{\substack{T \geq S \\ T \text{ ω-integral}}} \mu_{\mathcal{S}}(S, T) \right) C(Z_{\Gamma_S})$.

Sketch of proof: We used the theorem by Stanley/ABM and the Möbius inversion on the poset of flats S.

If
$$\sum_{i=1}^{r} \omega_i \in \mathbb{Z}$$
, then
$$C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + \sum_{S \in \mathcal{S}} \left(\sum_{\substack{T \geq S \\ T \ \omega\text{-integral}}} \mu_{\mathcal{S}}(S, T) \right) C(Z_{\Gamma_S}).$$

Sketch of proof: We used the theorem by Stanley/ABM and the Möbius inversion on the poset of flats S.

Example

Consider $\omega = (\frac{1}{2}, \frac{1}{2}, 0)$ and Γ as below

$$13|2 \ 23|1$$
 $| /$
 $1|2|3 \ S_{\omega}$

If
$$\sum_{i=1}^{r} \omega_i \in \mathbb{Z}$$
, then
$$C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + \sum_{S \in \mathcal{S}} \left(\sum_{\substack{T \geq S \\ T \ \omega \text{-integral}}} \mu_{\mathcal{S}}(S, T) \right) C(Z_{\Gamma_S}).$$

Sketch of proof: We used the theorem by Stanley/ABM and the Möbius inversion on the poset of flats S.

Example

Consider $\omega = (\frac{1}{2}, \frac{1}{2}, 0)$ and Γ as below

$$C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + C(Z_{\Gamma_{13|2}}) + C(Z_{\Gamma_{23|1}}) + C(Z_{\Gamma_{1|2|3}})$$
$$30 = 23 + 3 + 3 + 1.$$

Motivation

The Dolbeault moduli space is $M(n,d) = \{\text{ss Higgs bundle over } C \text{ of rank } n \text{ degree } d\} / S\text{-equivalence}$. The cohomology does not work well on singular spaces, it is much better to consider the intersection cohomology IH(M(n,d)).

$$\mathsf{IH}(M(n,d)) \simeq H(A_n, R\chi_* \mathsf{IC}_{M(n,d)})$$

where IC is the perverse intersection complex.

Motivation

The Dolbeault moduli space is $M(n,d) = \{\text{ss Higgs bundle over } C \text{ of rank } n \text{ degree } d\} / S$ -equivalence. The cohomology does not work well on singular spaces, it is much better to consider the *intersection cohomology* IH(M(n,d)).

$$\mathsf{IH}(M(n,d)) \simeq H(A_n, R\chi_* \mathsf{IC}_{M(n,d)})$$

where IC is the perverse intersection complex.

Theorem (Mauri, Migliorini '22)

The Decomposition Theorem specializes to

$$R\chi_*\operatorname{\mathsf{IC}}_{M(n,d)}|_{A_{\mathsf{red}}} = \bigoplus_{\underline{n}\vdash n}\operatorname{\mathsf{IC}}_{\mathcal{S}_{\underline{n}}}(\mathcal{L}_{\underline{n},d}\otimes \Lambda_{\underline{n}})$$

for some local systems $\mathcal{L}_{\underline{n},d}$ and for $\Lambda_{\underline{n}}$ the cohomology sheaf of the relative Picard group $\operatorname{Pic}^0(\overline{C}_{\underline{n}})$ of the normalization of the spectral curve.

The Decomposition Theorem specializes to

$$R\chi_*\operatorname{IC}_{M(n,d)}|_{A_{\operatorname{red}}}=\bigoplus_{\underline{n}\vdash n}\operatorname{IC}_{S_{\underline{n}}}(\mathcal{L}_{\underline{n},d}\otimes\Lambda_{\underline{n}}).$$

We have

$$\mathcal{H}^{\mathsf{top}}(R\chi_* \, \mathsf{IC}_{M(n,d)})_{\mathsf{a}} = \bigoplus_{S \vdash [\ell(\underline{n})]} (\mathcal{L}_{\underline{n}_S,d})_{\mathsf{a}} \otimes \bigotimes_{i=1}^{\ell(S)} \mathcal{H}^{\mathsf{top}}(R\chi_* \, \mathsf{IC}_{M(|S_i|,0)})_{\mathsf{a}}$$

The Decomposition Theorem specializes to

$$R\chi_*\operatorname{IC}_{M(n,d)}|_{A_{\operatorname{red}}}=\bigoplus_{n\vdash n}\operatorname{IC}_{S_{\underline{n}}}(\mathcal{L}_{\underline{n},d}\otimes\Lambda_{\underline{n}}).$$

We have

$$\mathcal{H}^{\mathsf{top}}(R\chi_* \mathsf{IC}_{M(n,d)})_a = \bigoplus_{S \vdash [\ell(n)]} (\mathcal{L}_{\underline{n}_S,d})_a \otimes \bigotimes_{i=1}^{\ell(S)} \mathcal{H}^{\mathsf{top}}(R\chi_* \mathsf{IC}_{M(|S_i|,0)})_a$$

which dimension is

$$C(Z_{\Gamma_{\underline{n}}} + \omega) = \sum_{S \vdash [\ell(\underline{n})]} \mathsf{rk}(\mathcal{L}_{\underline{n}_{S},d}) C(Z_{\Gamma_{S}})$$

where $\omega = (\frac{dn_i}{n})$.

Main problem

Problem: determine $\mathcal{L}_{n,d}$. In particular:

- for which partitions \underline{n} the local system $\mathcal{L}_{n,d}$ is zero?
- 2 determine the rank $rk(\mathcal{L}_{n,d})$.
- 3 determine the monodromy of the local system $\mathcal{L}_{n,d}$.

If
$$\sum_{i=1}^{r} \omega_i \in \mathbb{Z}$$
, then
$$C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + \sum_{S \in \mathcal{S}} \left(\sum_{\substack{T \geq S \\ T \ \omega - integral}} \mu_{\mathcal{S}}(S, T) \right) C(Z_{\Gamma_S}).$$

Corollary

In the case of the complete graph $\Gamma = K_r$ and $\omega = \left(\frac{dn_i}{n}\right)$ we have

$$\mathsf{rk}(\mathcal{L}_{\underline{n},d}) = \sum_{\substack{S \vdash [r] \ S \ \omega \text{-integral}}} (-1)^{\ell(S)-1} \prod_{i=1}^{\ell(S)-1} (|S_i|-1)!$$

If
$$\sum_{i=1}^{r} \omega_i \in \mathbb{Z}$$
, then
$$C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + \sum_{S \in \mathcal{S}} \left(\sum_{\substack{T \geq S \\ T \ \omega \text{-integral}}} \mu_{\mathcal{S}}(S, T) \right) C(Z_{\Gamma_S}).$$

Corollary

In the case of the complete graph $\Gamma=K_r$ and $\omega=(\frac{dn_i}{n})$ we have

$$\mathsf{rk}(\mathcal{L}_{\underline{n},d}) = \sum_{\substack{S \vdash [r] \ S \ \omega \text{-integral}}} (-1)^{\ell(S)-1} \prod_{i=1}^{\iota(S)} (|S_i|-1)!$$

Moreover, $\mathcal{L}_{\underline{n},d}=0$ if $\omega\in\mathbb{Z}^r$, i.e. $\frac{dn_i}{n}\in\mathbb{Z}$ for all i.

This answers to Problem 2.

Shellability

We denote by $S_{\omega} \subset S$ the downward closed subposet of non- ω -integral flats. Let $\Delta(S_{\omega})$ be the the *order complex* of the poset $S_{\omega} \setminus \{\hat{0}\}$.

Shellability

We denote by $\mathcal{S}_{\omega} \subset \mathcal{S}$ the downward closed subposet of non- ω -integral flats. Let $\Delta(\mathcal{S}_{\omega})$ be the the *order complex* of the poset $\mathcal{S}_{\omega} \setminus \{\hat{0}\}$.

Theorem (Mauri, Migliorini, P. '23)

The poset S_{ω} is LEX-shellable. Therefore,

$$C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + \sum_{S \in \mathcal{S}_{\omega}} \operatorname{rk} \widetilde{H}^{\operatorname{top}}(\Delta(\mathcal{S}_{\omega, \geq S})) C(Z_{\Gamma_{S}}).$$

Shellability

We denote by $S_{\omega} \subset S$ the downward closed subposet of non- ω -integral flats. Let $\Delta(S_{\omega})$ be the the *order complex* of the poset $S_{\omega} \setminus \{\hat{0}\}$.

Theorem (Mauri, Migliorini, P. '23)

The poset S_{ω} is LEX-shellable. Therefore,

$$C(Z_{\Gamma} + \omega) = C(Z_{\Gamma}) + \sum_{S \in \mathcal{S}_{\omega}} \operatorname{rk} \widetilde{H}^{\operatorname{top}}(\Delta(\mathcal{S}_{\omega, \geq S})) C(Z_{\Gamma_{S}}).$$

Corollary

If $\omega \notin \mathbb{Z}^r$, i.e. exists i such that $\frac{dn_i}{n} \notin \mathbb{Z}$, then $\mathcal{L}_{\underline{n},d} \neq 0$.

This solves Problem 1.

Orientation character

Let $O\Gamma$ be the oriented graph obtained by replacing every unoriented edge in Γ with the two possible oriented edges.

Definition

Consider the representation a_{Γ} of Aut(Γ) defined by

$$a_{\Gamma}(\sigma) = \operatorname{sgn}(\sigma \colon V(\Gamma) \to V(\Gamma)) \operatorname{sgn}(\sigma \colon E(O\Gamma) \to E(O\Gamma))$$

Orientation character

Let $O\Gamma$ be the oriented graph obtained by replacing every unoriented edge in Γ with the two possible oriented edges.

Definition

Consider the representation a_{Γ} of $Aut(\Gamma)$ defined by

$$a_{\Gamma}(\sigma) = \operatorname{sgn}(\sigma \colon V(\Gamma) \to V(\Gamma)) \operatorname{sgn}(\sigma \colon E(O\Gamma) \to E(O\Gamma))$$

Example

Consider the graph:

with $a \neq b$. Then $\operatorname{Aut}(\Gamma) = \mathbb{Z}/2\mathbb{Z} = \langle (12) \rangle$ and $a_{\Gamma}(\sigma) = (-1)^{a+1}$.

Permutation representations

Consider the group $\operatorname{Aut}(\Gamma) < \mathfrak{S}_r$ and suppose that ω is a $\operatorname{Aut}(\Gamma)$ -invariant vector. Let $\mathcal{C}(Z_{\Gamma} + \omega)$ be the permutation representation of $\operatorname{Aut}(\Gamma)$ on the set of integral points in the interior of $Z_{\Gamma} + \omega$ (dim $\mathcal{C}(Z_{\Gamma} + \omega) = \mathcal{C}(Z_{\Gamma} + \omega)$).

Permutation representations

Consider the group $\operatorname{Aut}(\Gamma) < \mathfrak{S}_r$ and suppose that ω is a $\operatorname{Aut}(\Gamma)$ -invariant vector. Let $\mathcal{C}(Z_\Gamma + \omega)$ be the permutation representation of $\operatorname{Aut}(\Gamma)$ on the set of integral points in the interior of $Z_\Gamma + \omega$ (dim $\mathcal{C}(Z_\Gamma + \omega) = \mathcal{C}(Z_\Gamma + \omega)$).

Theorem (Mauri, Migliorini, P. 2023)

$$\mathcal{C}(Z_{\Gamma} + \omega) = \mathcal{C}(Z_{\Gamma}) \oplus \\ \bigoplus_{S \in \mathcal{S}_{\omega} / \operatorname{Aut}(\Gamma)} \operatorname{Ind}_{\operatorname{Stab}(S)}^{\operatorname{Aut}(\Gamma)} a_{\Gamma^{S}} \otimes \widetilde{H}^{\operatorname{top}}(\Delta(\mathcal{S}_{\omega, \geq S})) \otimes \mathcal{C}(\Gamma_{S}).$$

$$\mathcal{C}(Z_{\Gamma} + \omega) = \mathcal{C}(Z_{\Gamma}) \oplus \bigoplus_{S \in \mathcal{S}_{\omega} / \operatorname{Aut}(\Gamma)} \operatorname{Ind}_{\operatorname{Stab}(S)}^{\operatorname{Aut}(\Gamma)} a_{\Gamma^{S}} \otimes \widetilde{H}^{\operatorname{top}}(\Delta(\mathcal{S}_{\omega, \geq S})) \otimes \mathcal{C}(\Gamma_{S})$$

Example

The automorphism group is $\operatorname{Aut}(\Gamma)=\mathbb{Z}/2\mathbb{Z}=\langle (1,2)\rangle.$ Then:

$$\mathcal{C}(Z_{\Gamma} + \omega) = \mathcal{C}(Z_{\Gamma}) \oplus \mathsf{Reg}^{\oplus 3} \oplus (\mathsf{sgn} \otimes \mathsf{sgn} \otimes 1).$$

$$\mathcal{C}(Z_{\Gamma} + \omega) = \mathcal{C}(Z_{\Gamma}) \oplus \\ \bigoplus_{S \in \mathcal{S}_{\omega} / \operatorname{Aut}(\Gamma)} \operatorname{Ind}_{\operatorname{Stab}(S)}^{\operatorname{Aut}(\Gamma)} a_{\Gamma^{S}} \otimes \widetilde{H}^{\operatorname{top}}(\Delta(\mathcal{S}_{\omega, \geq S})) \otimes \mathcal{C}(\Gamma_{S}).$$

Sketch of proof: We compute the character on both sides:

$$\mathcal{C}(Z_{\Gamma} + \omega) = \mathcal{C}(Z_{\Gamma}) \oplus \\ \bigoplus_{S \in \mathcal{S}_{\omega} / \operatorname{Aut}(\Gamma)} \operatorname{Ind}_{\operatorname{Stab}(S)}^{\operatorname{Aut}(\Gamma)} a_{\Gamma^{S}} \otimes \widetilde{H}^{\operatorname{top}}(\Delta(\mathcal{S}_{\omega, \geq S})) \otimes \mathcal{C}(\Gamma_{S}).$$

Sketch of proof: We compute the character on both sides:

$$\chi_{\mathcal{C}(Z_{\Gamma}+\omega)}(\sigma) = C((Z_{\Gamma}+\omega)^{\sigma})$$

Moreover for $S \in \mathcal{S}^{\sigma}$:

$$\chi_{\widetilde{H}^{\mathsf{top}}(\Delta(\mathcal{S}_{\omega,>S}))}(\sigma) = \pm \mu_{\mathcal{S}^{\sigma}_{\omega}}(S,\hat{1})$$

$$\mathcal{C}(Z_{\Gamma} + \omega) = \mathcal{C}(Z_{\Gamma}) \oplus \\ \bigoplus_{S \in \mathcal{S}_{\omega} / \operatorname{Aut}(\Gamma)} \operatorname{Ind}_{\operatorname{Stab}(S)}^{\operatorname{Aut}(\Gamma)} a_{\Gamma^{S}} \otimes \widetilde{H}^{\operatorname{top}}(\Delta(\mathcal{S}_{\omega, \geq S})) \otimes \mathcal{C}(\Gamma_{S}).$$

Sketch of proof: We compute the character on both sides:

$$\chi_{\mathcal{C}(Z_{\Gamma}+\omega)}(\sigma) = C((Z_{\Gamma}+\omega)^{\sigma})$$

Moreover for $S \in \mathcal{S}^{\sigma}$:

$$\chi_{\widetilde{H}^{\mathsf{top}}(\Delta(\mathcal{S}_{\omega} > \varsigma))}(\sigma) = \pm \mu_{\mathcal{S}^{\sigma}_{\omega}}(S, \hat{1})$$

The result follows from

$$C((Z_{\Gamma} + \omega)^{\sigma}) = C(Z_{\Gamma}^{\sigma}) + \sum_{S \in S^{\sigma}} \pm \mu_{S_{\omega}^{\sigma}}(S, \hat{1})C(Z_{\Gamma_{S}}^{\sigma}) \quad \Box$$

Ardila, Supina, Vindas-Meléndez - The equivariant Ehrhart theory of the permutahedron

Problem: determine $\mathcal{L}_{\underline{n},d}$. In particular:

- for which partitions \underline{n} the local system $\mathcal{L}_{n,d}$ is zero?
- 2 determine the rank $rk(\mathcal{L}_{n,d})$.
- \odot determine the monodromy of the local system $\mathcal{L}_{n,d}$.

Problem: determine $\mathcal{L}_{\underline{n},d}$. In particular:

- for which partitions \underline{n} the local system $\mathcal{L}_{n,d}$ is zero?
- ② determine the rank $rk(\mathcal{L}_{\underline{n},d})$.
- **3** determine the monodromy of the local system $\mathcal{L}_{n,d}$.

Solution:

1 $\mathcal{L}_{\underline{n},d}=0$ if and only if $\omega=\left(\frac{dn_i}{n}\right)\in\mathbb{Z}^r$ and r>1.

Problem: determine $\mathcal{L}_{n,d}$. In particular:

- **1** for which partitions \underline{n} the local system $\mathcal{L}_{n,d}$ is zero?
- \bigcirc determine the rank $\operatorname{rk}(\mathcal{L}_{n,d})$.
- **3** determine the monodromy of the local system $\mathcal{L}_{n,d}$.

Solution:

1 $\mathcal{L}_{n,d} = 0$ if and only if $\omega = (\frac{dn_i}{r}) \in \mathbb{Z}^r$ and r > 1.

2

$$egin{aligned} \operatorname{rk}(\mathcal{L}_{\underline{n},d}) &= \sum_{S \ \omega ext{-integral}} (-1)^{\ell(S)-1} \prod_i (|S_i|-1)! \ &= \dim \widetilde{H}^{\operatorname{top}}(\Delta(\mathcal{S}_\omega)). \end{aligned}$$

Integral points in graphical zonotopes

Problem: determine $\mathcal{L}_{\underline{n},d}$. In particular:

- **1** for which partitions \underline{n} the local system $\mathcal{L}_{n,d}$ is zero?
- ② determine the rank $rk(\mathcal{L}_{\underline{n},d})$.
- **3** determine the monodromy of the local system $\mathcal{L}_{\underline{n},d}$.

Solution:

1 $\mathcal{L}_{\underline{n},d}=0$ if and only if $\omega=\left(\frac{dn_i}{n}\right)\in\mathbb{Z}^r$ and r>1.

2

$$egin{aligned} \operatorname{rk}(\mathcal{L}_{\underline{n},d}) &= \sum_{S \ \omega ext{-integral}} (-1)^{\ell(S)-1} \prod_i (|S_i|-1)! \ &= \dim \widetilde{H}^{\operatorname{top}}(\Delta(\mathcal{S}_\omega)). \end{aligned}$$

• The monodromy is given by the representation of $\operatorname{Aut}(\Gamma_{\underline{n}})$ $\operatorname{sgn} \otimes \widetilde{H}^{\operatorname{top}}(\Delta(\mathcal{S}_{\omega})).$

Thanks for listening!

roberto.pagaria@unibo.it