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Page 133 of Littlewood:

The dictionary

λ −→ a partition with empty r -core

µi,j −→ the r -quotient of λ

{λ} −→ the Schur function indexed by λ

θ −→ some sign
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A partition λ = (λ1, λ2, . . . ) is a weakly decreasing sequence

λ1 ⩾ λ2 ⩾ λ3 · · ·

such that only finitely λi ̸= 0. The number of nonzero λi , written ℓ(λ), is
called the length and the sum is |λ| := λ1 + λ2 + λ3 + · · · .

For example λ = (6, 4, 3, 3) has ℓ(λ) = 4 and |λ| = 16. Its Young
diagram is given by

The conjugate partition is obtained by reflecting the Young diagram in
the “main diagonal”

so that (4, 4, 4, 2, 1, 1) is the conjugate of (6, 4, 3, 3).
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In Littlewood defines “S-functions of series”. These take as input a
formal power series

f (z) := 1 +
∑
k⩾1

fkz
k .

Then for any λ the S-function s fλ may be defined by the Jacobi–Trudi
determinant

s fλ := det
1⩽i,j⩽ℓ(λ)

(fλi−i+j),

where we set f−k := 0.

If we take

f (z) =
∞∏
i=1

1

1− zxi

then the fk are just the complete homogeneous symmetric functions

fk = hk(X ) :=
∑

1⩽i1⩽···⩽ik

xi1 · · · xik .

Therefore s fλ is just the ordinary Schur function in this case.
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Littlewood’s theorem is about comparing the ordinary Schur functions
with those given by the series

f (z r ) =
∞∏
i=1

1

1− z rxi
=

∑
k⩾0

hkz
kr .

This is best encoded by an operator φr : Λ −→ Λ where r ⩾ 2 which acts
on the hk by

φrhk =

{
hk/r if r | k,
0 otherwise.

Since any symmetric function can be written as a polynomial in the hr we
can extend this action to any f ∈ Λ.

Thus Littlewood computed
φr sλ.
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Cores and quotients

We say µ is contained in λ if its Young diagram fits inside the Young
diagram of λ, written µ ⊆ λ.

So (3, 2, 2, 2) ⊆ (7, 4, 3, 3), and we form the skew shape by removing µ’s
Young diagram from λ’s.

What remains here is a connected skew shape with no 2× 2 square. Such
a shape is called a ribbon. Since it has 8 cells, it is an 8-ribbon. The
height of this ribbon is 3, with definition

ht(λ) = #rows− 1.
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(7, 4, 3, 3)

0

Place “beads” at the positions given by the beta set

β(λ) :=
{
λi − i +

1

2
: i ⩾ 1

}
.
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For fixed r ⩾ 2 moving a bead r places to the left to an empty space is
equivalent to removing an r -ribbon from λ such that what remains is a
partition. For example with r = 4:

(7, 4, 3, 3)

0

Note that the height of a removed ribbon is equal to the number of
beads “jumped over” in the Maya diagram picture!
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For fixed r ⩾ 2 moving a bead r places to the left to an empty space is
equivalent to removing an r -ribbon from λ such that what remains is a
partition. For example with r = 4:

(7, 1, 1)

0

Note that the height of a removed ribbon is equal to the number of
beads “jumped over” in the Maya diagram picture!
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Note that the height of a removed ribbon is equal to the number of
beads “jumped over” in the Maya diagram picture!



For fixed r ⩾ 2 moving a bead r places to the left to an empty space is
equivalent to removing an r -ribbon from λ such that what remains is a
partition. For example with r = 4:

(3, 1, 1)

0

Note that the height of a removed ribbon is equal to the number of
beads “jumped over” in the Maya diagram picture!
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Theorem (Nakayama 1940): For each integer r ⩾ 2 and partition λ
successively removing r -ribbons from λ (in any valid order) leaves a
unique partition r -core(λ) which has no hook of length r .

For any partition the skew shape λ/r -core(λ) has a decomposition
(ribbon tiling)

r -core(λ) =: ν(0) ⊆ ν(1) ⊆ · · · ⊆ ν(k−1) ⊆ ν(k) := λ,

where k = (|λ| − |r -core(λ)|)/r and ν(i)/ν(i−1) is an r -ribbon for
1 ⩽ i ⩽ k.

Lemma: For any ribbon tiling of λ/r -core(λ) the sign

(−1)
∑k

i=1 ht(ν
(i)/ν(i−1))

is the same, and we denote it by sgnr (λ/r -core(λ)).
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0
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λ(2)

λ(3)

So the quotient of λ = (7, 4, 3, 3) is(
λ(0), λ(1), λ(2), λ(3)

)
=

(
(1),∅, (1, 1),∅

)
.

The core can be obtained from the above picture by simply pushing all
beads to the left as far as possible.
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Theorem (Littlewood 1951): For each r ⩾ 2 the above defines a bijection

P −→ Cr × P r

λ 7−→
(
r -core(λ), (λ(0), . . . , λ(r))

)
.

such that
|λ| = |r -core(λ)|+ r

(
|λ(0)|+ · · ·+ |λ(r)|

)
.

In our example we have that

(7, 4, 3, 3) 7−→
(
(3, 1, 1), ((1),∅, (1, 1),∅)

)
,

and of course
17 = 5 + 4 · 3.
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Theorem (Littlewood 1940): For any partition λ and integer r ⩾ 2 we
have that φr sλ = 0 unless r -core(λ) = ∅, in which case

φr sλ = sgnr (λ)
r−1∏
i=0

sλ(i) .

Of course, as we have seen, Littlewood did not phrase his result in this
way. However, all of the ingredients are already in his original statement.

There is a version for skew Schur functions

sλ/µ = det
1⩽i,j⩽ℓ(λ)

(
hλi−µj−i+j

)
.

Theorem (Farahat 1958 & Macdonald 1995): We have that φr sλ/µ = 0

unless r -core(λ) = r -core(µ) and µ(i) ⊆ λ(i) for 0 ⩽ i ⩽ r − 1
(equivalently, λ/µ has a ribbon decomposition), in which case

φr sλ/µ = sgnr (λ/µ)
r−1∏
i=0

sλ(i)/µ(i) .
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How do you prove this?

1. Littlewood’s proof uses an equivalent formulation and evaluates the
Schur function

sλ(x1, . . . , ζ
r−1x1, . . . , xn, . . . , ζ

r−1xn)

where ζ is a primitive r -th root of unity using the ratio of alternants

sλ(x1, . . . , xn) =
det1⩽i,j⩽n(x

λj+n−j
i )

det1⩽i,j⩽n(x
n−j
i )

.

2. Farahat (and Chen, Garsia and Remmel and Lascoux and Macdonald)
simply apply the operator φr to the Jacobi–Trudi determinant and then
manipulate rows and columns. This also works for the skew case.

3. Lascoux, Leclerc and Thibon give more combinatorial proof using
ribbon tableaux and the adjoint relation

⟨φr sλ, hµ⟩ = ⟨sλ, hµ ◦ pr ⟩,

where ⟨·, ·⟩ is the Hall inner product on Λ and ◦ denotes plethysm.
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Inspired by a rediscovery of Littlewood’s theorem by Prasad, Ayyer and
Kumari proved similar factorisation theorems for the characters of the
classical groups Sp(2n,C), O(2n,C) and SO(2n + 1,C). Their proofs
mimic (1) above, “twisting” by a root of unity.

We have shown that their formulae admit lifts to the universal characters,
defined by Koike and Terada using Weyl’s Jacobi–Trudi-type formulae:

spλ :=
1

2
det

1⩽i,j⩽ℓ(λ)

(
hλi−i+j + hλi−i−j+2

)
oλ := det

1⩽i,j⩽ℓ(λ)

(
hλi−i+j − hλi−i−j

)
so±λ := det

1⩽i,j⩽ℓ(λ)

(
hλi−i+j ± hλi−i−j+1

)
.

These now are symmetric functions, and specialising to x±1 , . . . , x±n give
actual characters of the labelled groups.
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The Durfee square of a partition is the largest square which fits inside the
Young diagram

•
•

•

5

3

1

4

2

0

Call the side length d(λ). The Frobenius notation for a partition records
how many cells are below/to the right of each cell on the main diagonal.
For example

(6, 5, 4, 2, 1) = (5, 3, 1 | 4, 2, 0).

Ayyer and Kumari call a partition z-asymmetric if it can be written in
Frobenius notation as

(a1 + z , . . . , ad + z | a1, . . . , ad).

0-asymmetric partitions are just self-conjugate.
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For example

(6, 5, 4, 2, 1) = (5, 3, 1 | 4, 2, 0).

Ayyer and Kumari call a partition z-asymmetric if it can be written in
Frobenius notation as

(a1 + z , . . . , ad + z | a1, . . . , ad).

0-asymmetric partitions are just self-conjugate.
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Theorem: We have that φroλ = 0 unless r -core(λ) is 1-asymmetric, in
which case

φroλ = (−1)|r -core(λ)|/2sgnr (λ/r -core(λ))

× oλ(0)

⌊(r−1)/2⌋∏
i=1

rsλ(i),λ(r−i) ×

{
so−

λ(r/2) r even,

1 r odd.

The factorisations for soλ and spλ are similar and I spare you the details.

All however involve the symmetric function

rsλ,µ := det
1⩽i,j⩽ℓ(λ)+ℓ(µ)


(
hλi−i+j

)
1⩽i,j⩽ℓ(λ)

(
hλi−i−j+1

)
1⩽i⩽ℓ(λ)
1⩽j⩽ℓ(µ)(

hµi−i−j+1

)
1⩽i⩽ℓ(µ)
1⩽j⩽ℓ(λ)

(
hµi−i+j

)
1⩽i,j⩽ℓ(µ)

.


This object arises from the rational representations of GL(n,C), and is
the correct universal character analogue of the Schur function with 2n
variables

sν(x1, 1/x1, . . . , xn, 1/xn).
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The structure of the factorisation is best explained through Weyl’s
formula

oλ =
∑

µ 1-asymmetric

(−1)|µ|/2sλ/µ,

combined with

Theorem (Garvan, Kim and Stanton 1990): Let λ be 1-symmetric. Then

1. r -core(λ) and λ(0) are 1-symmetric, and

2. for 1 ⩽ i ⩽ r − 1,
λ(i) = (λ(r−i))′.

If r is even this means that λ(r/2) is self-conjugate. For example if
λ = (9, 7, 6, 6, 6, 2, 1, 1) then(

4-core(λ), (λ(0), λ(1), λ(2), λ(3))
)
=

(
(2), ((3, 1), (1, 1), (1), (2))

)
.

The formula for φr sλ/µ is the other tool required for this proof (apart
from figuring out the sign).
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Weyl’s formula has a generalisation which involves a sum over
z-asymmetric partitions due to Bressoud and Wei

χλ(z) := det
1⩽i,j⩽ℓ(λ)

(
hλi−i+j + (−1)zhλi−i−j−z+1)

=
∑
µ∈Pz

(−1)(|µ|+(z−1)d(µ))/2sλ/µ.

where here z ⩾ 0 (but can be made to work for all z ∈ Z).

This object has a nice, but more complicated, product form under φr .
This gives a uniform proof of the results for spλ, oλ and soλ.

The key is a generalisation of the theorem of Garvan, Kim and Stanton
to z-asymmetric partitions.

the end
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