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I. Four types of objects counted by
n−1∏
i=0
(3i+1)!(n+i)!
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Alternating Sign Matrices = ASMs

⎛⎜⎜⎜⎜⎝

0 1 0 0 0
1 -1 0 1 0
0 1 0 -1 1
0 0 1 0 0
0 0 0 1 0

⎞⎟⎟⎟⎟⎠

Square matrix with entries in {0,±1} such
that in each row and each column

● the non–zero entries appear with alter-
nating signs, and

● the sum of entries is 1.

How many?

n 1 2 3 4

(1) (1 0
0 1

) ,(0 1
1 0

) 3! + ⎛⎜⎝
0 1 0
1 −1 1
0 1 0

⎞⎟⎠ 42

ASMs generalize permutation matrices!
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The number of n ×n ASMs

Theorem (Zeilberger 1996). The number of n × n alternating sign

matrices is

1!4!7!⋯(3n −2)!
n!(n + 1)!⋯(2n − 1)! =

n−1∏
i=0
(3i + 1)!
(n + i)! .

● Conjectured by Mills, Robbins and Rumsey in the 1980s.

● Zeilberger gave the first proof (of a generalization including an ad-

ditional parameter) in 1996.

● Recommended reading: “Dave ROBBINS’s ART of GUESSING”

● Kuperberg gave another proof (of the special case) using methods

from statistical physics such as the Yang-Baxter equation.
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ASMs in statistical physics

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0
1 0 −1 1 0
0 1 0 −1 1
0 0 1 0 0
0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠
ASM
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Square ice

Bijection: 1’s correspond to horizontal water molecules and −1’s correspond to ver-
tical water molecules.

The connection was first mentioned in 1992 in a paper by Elkies, Kuperberg, Larsen
and Propp.
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Square ice → 6-vertex configuration
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Square ice
6-vertex configuration with DWBC

Bijection: Hydrogen bonds correspond to inward pointing edges
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6-vertex configuration → fully packed loop

configurations

6-vertex configuration fully packed loop configuration

Bijection: To obtain the fully packed loop configuration (= collection of paths and loops), choose for
“odd” vertices the inward pointing edges and for the “even” vertices the outward pointing edges.

The Razumov-Stroganov (ex-)conjecture states that the stationary distribution of the O(1) loop
model is proportional to the number of fully packed loop configurations with given link patterns. The
proof was given by Cantini and Sportiello in 2011.
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ASMs and Bumpless Pipe Dreams

⎛⎜⎜⎜⎜⎜⎝

0 0 1 0 0
1 0 −1 1 0
0 1 0 −1 1
0 0 1 0 0
0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎠

1

1 2

2

3

3

4

4

5

5

Bijection: 1’s correspond to right-turns, while −1’s correspond to left-turns.

In 1982, Grothendieck polynomials have been introduced to study the K-theory of
the complete flag variety and they can be written as a certain generating function
of reduced bumpless pipe dreams (as revealed by Weigandt in 2020).
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Plane partitions

A plane partition in an a × b × c box is a subset

PP ⊆ {1,2, . . . , a} × {1,2, . . . , b} × {1,2, . . . , c}
with

(i, j, k) ∈ PP ⇒ (i′, j′, k′) ∈ PP ∀(i′, j′, k′) ≤ (i, j, k).

a = 5, b = 3, c = 5
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Cyclically symmetric plane partitions = CSPPs

An n ×n ×n plane partition PP is cyclically symmetric if

(i, j, k) ∈ PP ⇒ (j, k, i) ∈ PP.
In 1979, George Andrews proved that the number of n×n×n cyclically

symmetric plane partitons is

n−1∏
i=0
(3i + 2)(3i)!
(n + i)! .
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A determinant in Andrews’ proof

In his proof, Andrews shows that the number of CSPPs of order n is

given by the following determinant

det0≤i,j≤n−1 (δi,j + (i + j
i
))

and then proves that

det0≤i,j≤n−1 (δi,j + (i + j
i
)) = n−1∏

i=0
(3i + 2)(3i)!
(n + i)! .

Then he also considered the following more general determinant:

det0≤i,j≤n−1 (δi,j + (k + i + j
i
)) ∶=Dn(k)
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Dn(k) for small values of n
2

k + 5
(k + 4)(k + 5)

1

12
(k + 4)2(k + 9)(k +11)

1

72
(k +4)2(k + 6)(k +9)(k +11)2

(k +4)2(k + 6)2(k + 11)2(k +13)(k +15)(k + 17)
8640

(k +4)2(k +6)2(k + 8)(k + 10)(k +11)(k +13)(k + 15)2(k +17)2
518400

(k + 4)2(k +6)2(k +8)2(k + 10)2(k +15)2(k + 17)3(k +19)(k + 21)(k +23)
870912000

Surprise:

Dn(2) = n−1∏
i=0
(3i + 1)!
(n + i)!
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Combinatorial interpretation for Dn(2)
Christian Krattenthaler (2003):

7
7

6
6

3

6

5
5

1

4

2

Cyclically symmetric lozenge tilings of a hexagon with side lengths n+2, n,n+2, n,n+2, n
with a central hole of size 2.

To obtain the combinatorial interpretation for any k, replace 2 by k!
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Column strict shifted plane partitions of a fixed class aka DPPs

● With each strict partition (= partition with distinct parts), we associate a shifted Ferrers diagram.
The shifted Ferrers diagram of (5,4,2,1) is

.

● A column strict shifted plane partition is a filling of a shifted Ferrers diagram with positive integers
such that the rows are weakly decreasing and the columns are strictly decreasing.

Example.

7 7 6 6 3
6 5 5 1

4 2

● A column strict shifted plane partition is of class k if the first part of each row exceeds the length
of the row by precisely k. (Mills, Robbins and Rumsey 1987; Andrews 1979) The example is of class
2.

● There is a simple bijection between column strict shifted plane partitions of class k where the length
of the top row does not exceed n and cyclically symmetric rhombus tilings of a hexagon with side
lengths n + k,n,n + k,n,n + k,n with a central triangular hole of size k.
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Totally symmetric self-complementary plane partitions

Figure by Di Francesco / Zinn-
Justin

● Totally symmetric:(i, j, k) ∈ PP ⇒ σ(i, j, k) ∈ PP ∀σ ∈ S3
(MacMahon 1899, 1915/16)

● Self-complementary:
Equal to its complement in the 2n×2n×2n box
(Mills, Robbins and Rumsey 1986)

Theorem (Andrews 1994). The number of

TSSCPPs in a 2n×2n×2n box is (also)
n−1∏
i=0
(3i+1)!
(n+i)! .
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Alternating sign triangles = ASTs

An AST of order n is a triangular array of 1’s, −1’s and 0’s with n centered rows

● ● ● ● ● ● ●● ● ● ● ●● ● ●●
such that

(1) the non-zero entries alternate in each row and each column,

(2) all row sums are 1, and

(3) the topmost non-zero entry of each column is 1 (if such an entry exists).

Example:

0 0 1 0 0 0 0
1 −1 1 0 0

1 −1 1
1

17



ASTs of order 3

1 0 0 0 0
1 0 0

1

RRRRRRRRRRRRRR
0 0 0 1 0

1 0 0
1

RRRRRRRRRRRRRR
0 0 0 0 1

1 0 0
1

RRRRRRRRRRRRRR
1 0 0 0 0

0 0 1
1

0 1 0 0 0
0 0 1

1

RRRRRRRRRRRRRR
0 0 0 0 1

0 0 1
1

RRRRRRRRRRRRRR
0 0 1 0 0

1 −1 1
1

Theorem (Ayyer, Behrend, and F., 2020). The number of ASTs

with n rows is
n−1∏
i=0
(3i+1)!(n+i)! .
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II. Alternating Sign Triangles and Trapezoids
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Number of −1’s in ASMs and ASTs

Let A be an ASM or an AST. Then we define

µ(A) =# of −1’s in A.

Obviously

∣{A ∈ASM(n) ∣ µ(A) = 0}∣ = n! = ∣{A ∈AST(n) ∣ µ(A) = 0}∣.

Generalization of our theorem: Let m,n be non-negative integers.

Then

∣{A ∈ASM(n) ∣ µ(A) =m}∣ = ∣{A ∈AST(n) ∣ µ(A) =m}∣.

20



Inversion numbers

Let π = (π1, . . . , πn) be a permutation and A be the permutation matrix

of π, that is πi is the column of the unique 1 in row i. Then

inv(A) = ∑
1≤i′<i≤n,1≤j′≤j≤n

ai′jaij′

is the number of inversions in π. We use this to define the inversion

number of ASMs.

Let A = (ai,j)1≤i≤n,i≤j≤2n−i be an AST. We define

inv(A) = ∑
i′<i,j′≤j

ai′jaij′.
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Generalization of the generalization of our theorem: Let m,n, i

be non-negative integers. Then

∣{A ∈ASM(n) ∣ µ(A) =m, inv(A) = i}∣
= ∣{A ∈AST(n) ∣ µ(A) =m, inv(A) = i}∣.
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The case n = 3
ASM

⎛⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎠
⎛⎜⎝
1 0 0
0 0 1
0 1 0

⎞⎟⎠
⎛⎜⎝
0 1 0
1 0 0
0 0 1

⎞⎟⎠
⎛⎜⎝
0 1 0
0 0 1
1 0 0

⎞⎟⎠
µ 0 0 0 0

inv 0 1 1 2

AST
1 0 0 0 0

1 0 0
1

0 1 0 0 0
0 0 1

1

1 0 0 0 0
0 0 1

1

0 0 0 0 1
1 0 0

1

ASM
⎛⎜⎝
0 0 1
1 0 0
0 1 0

⎞⎟⎠
⎛⎜⎝
0 0 1
0 1 0
1 0 0

⎞⎟⎠
⎛⎜⎝
0 1 0
1 −1 1
0 1 0

⎞⎟⎠
µ 0 0 1

inv 2 3 1

AST
0 0 0 1 0

1 0 0
1

0 0 0 0 1
0 0 1

1

0 0 1 0 0
1 −1 1

1
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Refined ASM-Theorem

Observation: There is a unique 1 in the top row of an ASM.

Theorem (Zeilberger, 1996): The number of n × n ASMs with a 1

in the top row and column r is

(n + r −2
n − 1 )

(2n − r − 1)!
(n − r)!

n−2∏
j=0
(3j + 1)!
(n + j)! =An,r.

Find a statistic on ASTs that has the same distribution as the column

of the 1 in the top row of an ASM!
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Equivalent statistic on ASTs

In an AST, the elements of a column add up to 0 or 1. We say that

a column is a 1-column if they add up to 1.

Let T be an AST with n rows. Define

ρ(T ) = (#1-columns in the left half of T that have a 0 at the bottom)
+ (#1-columns in the right half of T that have a 1 at the bottom) + 1.

This statistic was introduced by Behrend.

Theorem (F. 2019). The number of ASTs T with n rows and ρ(T ) = r
is equal to An,r.
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The case n = 3
ASM

⎛
⎝
1 0 0
0 1 0
0 0 1

⎞
⎠

⎛
⎝
1 0 0
0 0 1
0 1 0

⎞
⎠

⎛
⎝
0 1 0
1 0 0
0 0 1

⎞
⎠

⎛
⎝
0 1 0
0 0 1
1 0 0

⎞
⎠

µ 0 0 0 0
inv 0 1 1 2

Top 1 1 1 2 2
ρ 1 3 2 2

AST
1 0 0 0 0

1 0 0
1

0 1 0 0 0
0 0 1

1

1 0 0 0 0
0 0 1

1

0 0 0 0 1
1 0 0

1

ASM
⎛
⎝
0 0 1
1 0 0
0 1 0

⎞
⎠

⎛
⎝
0 0 1
0 1 0
1 0 0

⎞
⎠

⎛
⎝
0 1 0
1 −1 1
0 1 0

⎞
⎠

µ 0 0 1
inv 2 3 1

Top 1 3 3 2
ρ 1 3 2

AST
0 0 0 1 0

1 0 0
1

0 0 0 0 1
0 0 1

1

0 0 1 0 0
1 −1 1

1

Remark. The statistics inv can also be replaced by inv of the rotated or reflected ASM and/or the
reflected AST. Rotation by 90○ and reflection replaces inv by 3 − inv. However, also after such a
replacement it is not possible to have a bijection that preserves all three statistics.
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Back to Andrews’ determinant

Dn(k) = det0≤i,j≤n−1 (δi,j + (k + i + j
i
))

Recall:

● Dn(2) is the number of n × n ASMs as well as the number of ASTs

with n rows.

● Dn(k) is the number of cyclically symmetric lozenge tilings of a

hexagon with central triangular hole of size k.

Is there a combinatorial realization of Dn(k) in terms of

ASM-like objects ?
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Alternating sign trapezoids

For n ≥ 1, l ≥ 2∗, an (n, l)-alternating sign trapezoid is an array of 1’s, −1’s and 0’s
with n centered rows and l elements in the bottom row, arranged as follows

● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ● ●
⋱ . .

.

● ● ● ●
,

such that the following conditions are satisfied.

(1) In each row and column, the non-zero entries alternate.

(2) All row sums are 1.

(3) The topmost non-zero entry in each column is 1.

(4) The column sums are 0 for the middle l − 2 columns.

∗Can be extended to l = 1.
28



Example

A (5,4)-alternating sign trapezoid.

0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 −1 1 0 0

0 1 0 −1 0 1 −1 1
0 0 0 1 −1 1

1 0 −1 1

ASTs with n rows are equivalent to (n−1,3)-alternating sign trapezoids.

(Delete the bottom row of the AST.)
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Alternating sign trapezoids and cyclically symmetric rhombus

tilings of a holey hexagon

Theorem (Behrend, F. 2018). There is the same number of (n, l)-alternating sign
trapezoids as there is of cyclically symmetric rhombus tilings of a hexagon with side
lengths n + l − 1, n,n + l − 1, n,n + l − 1, n that has a central triangular hole of size l − 1.

7
7

6
6

3

6

5
5

1

4

2
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Product formula

Corollary. The number of (n, l)-alternating sign trapezoids is

2n
n−1∏
i=0 qi(l)

n−i−1,
where

qi(l) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(l+3i)(2+l+3i)(4+l+3i)(l+2i)(2+l+2i)(4+4i) , i even,

2(−12+l+32i)(12+l+32i)(32+l+32i)(l+2i)(2+l+2i)(l+i) , i odd.
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Three statistics on alternating sign trapezoids

● A 1-column is a column with sum 1.

● A 10-column is a 1-column whose bottom element is 0.

Simple fact: An (n, l)-alternating sign trapezoid has n 1-columns

The statistics on (n, l)-alternating sign trapezoids T :

p(T ) =# of 10-columns among the n leftmost columns,

q(T ) =# of 10-columns among the n rightmost columns,

r(T ) =# of 1-columns among the n leftmost columns.

In the example above, we have p(T ) = 1,q(T ) = 0, r(T ) = 2.
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Column strict shifted plane partitions of a fixed class aka DPPs

● With each strict partition (= partition with distinct parts), we associate a shifted Ferrers diagram.
The shifted Ferrers diagram of (5,4,2,1) is

.

● A column strict shifted plane partition is a filling of a shifted Ferrers diagram with positive integers
such that the rows are weakly decreasing and the columns are strictly decreasing.

Example.

7 7 6 6 3
6 5 5 1

4 2

● A column strict shifted plane partition is of class k if the first part of each row exceeds the length
of the row by precisely k. (Mills, Robbins and Rumsey 1987; Andrews 1979) The example is of class
2.

● There is a simple bijection between column strict shifted plane partitions of class k where the length
of the top row does not exceed n and cyclically symmetric rhombus tilings of a hexagon with side
lengths n + k,n,n + k,n,n + k,n with a central triangular hole of size k.
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Three statistics on column strict shifted plane

partitions

For d ∈ {1, . . . , k} and a column strict shifted plane partition C = (ci,j) of class k, we
define

pd(C) =# (i, j) s.t. ci,j = j − i + d,
q(C) =# of 1’s,

r(C) =# of rows.

In the example above, we have p1(C) = 1,q(C) = 1, r(C) = 3.
Theorem (F. 2019). The number of (n, l)-alternating sign trapezoids T with p(T ) =
p,q(T ) = q, r(T ) = r is equal to the number of column strict shifted plane partitions of
class l − 1 with pd(C) = p,q(C) = q, r(C) = r, where the length of the first row does not
exceed n.

Hans Höngesberg could add another statistic (number of −1’s on the alternating sign
trapezoid side). He also provides a statistic-preserving bijection for the case r = 1.

34



The case n = 2, l = 4
Alternating sign trapezoids:

1 0 0 0 0 0
1 0 0 0

1 0 0 0 0 0
0 0 0 1

0 1 0 0 0 0
0 0 0 1

0 0 1 0 0 0
1 −1 0 1(0,0,2) (0,0,1) (1,0,1) (0,0,1)

0 0 0 1 0 0
1 0 −1 1

0 0 0 0 1 0
1 0 0 0

0 0 0 0 0 1
1 0 0 0

0 0 0 0 0 1
0 0 0 1(0,0,1) (0,1,1) (0,0,1) (0,0,0)

Column strict shifted plane partitions:

∅ 4 5 1 5 2 5 3 5 4 5 5
5 5

4
d = 1 (0,0,0) (0,0,1) (0,1,1) (1,0,1) (0,0,1) (0,0,1) (0,0,1) (0,0,2)
d = 2 (0,0,0) (0,0,1) (0,1,1) (0,0,1) (1,0,1) (0,0,1) (0,0,1) (0,0,2)
d = 3 (0,0,0) (0,0,1) (0,1,1) (0,0,1) (0,0,1) (1,0,1) (0,0,1) (0,0,2)

.
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Proofs
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Monotone triangles

Triangular arrays of integers with monotonicity requirements:

⎛⎜⎜⎜⎜⎝

0 1 0 0 0
1 -1 0 1 0
0 1 0 -1 1
0 0 1 0 0
0 0 0 1 0

⎞⎟⎟⎟⎟⎠
⇒
⎛⎜⎜⎜⎜⎝

0 1 0 0 0
1 0 0 1 0
1 1 0 0 1
1 1 1 0 1
1 1 1 1 1

⎞⎟⎟⎟⎟⎠
⇒

2
1 4

1 2 5
1 2 3 5

1 2 3 4 5

Monotone triangles with bottom row 1,2, . . . , n⇔ n ×n ASMs
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Formula for the number of monotone triangles with

prescribed bottom row

Antisymmetrizer:

ASymY1,...,Yn
F (Y1, . . . , Yn) = ∑

σ∈Sn
sgnσF (Yσ(1), . . . , Yσ(n))

Define

Mn(x) = CTY1,...,Yn

ASymY1,...,Yn
[ n∏
i=1(1 + Yi)xi ∏1≤i<j≤n(1 + Yj + YiYj)]
∏

1≤i<j≤n(Yj − Yi)
,

where CTY1,...,Yn denotes the constant term w.r.t. Y1, . . . , Yn.

Theorem (F., 2006). The number of monotone triangles with bottom row b1, . . . , bn
is Mn(b1, . . . , bn).
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Truncated monotone triangles: (s, t)-trees

8

t9

t10s1 s2 s3 t

● s = (s1, s2, . . . , sl) weakly decreasing sequence: prescribes the number

of entries deleted at the bottom of the ↗-diagonals.

● t = (tn−r+1, . . . , tn) weakly increasing sequence: prescribes the number

of entries deleted at the bottom of the ↘-diagonals.
39



The number of (s, t)-trees
Forward difference operator: ∆x p(x) = p(x + 1) − p(x)
Backward difference operator: ∆x p(x) = p(x) − p(x −1)

The evaluation of

(−∆x1)s1⋯(−∆xl)sl∆tn−r+1
xn−r+1⋯∆tn

xnMn(x)
at x = (b1, . . . , bn) is the number of (s, t)-trees of order n with the fol-

lowing properties:

● The bottom entry of the i-th ↗-diagonal is bi for 1 ≤ i ≤ n − r.
● The bottom entry of the i-th ↘-diagonal is bi for n − r +1 ≤ i ≤ n.
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From alternating sign triangles to truncated

monotone triangles

0 0 0 1 0 0 0 0 0 0 0
1 0 −1 0 0 0 1 0 0

0 0 0 1 0 −1 1
0 1 −1 0 1

0 0 1
1

1-column = a column with sum 1.

● An AST with n rows has precisely n 1-columns.

● First goal: Constant term formula for the number of ASTs with

prescribed positions of the 1-columns.
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0 0 0 1 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 −1 1 0 0
0 0 0 0 1 −1 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0

⇓
0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 1 0 0
0 1 0 0 1 0 1 1 1 0 0
0 1 0 0 1 1 1 1 1 0 0

42



−5 −4 −3 −2 −1 0 1 2 3 4 5
0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 1 0 0
0 1 0 0 1 0 1 1 1 0 0
0 1 0 0 1 1 1 1 1 0 0

⇓
−2−4 2−4 0 3−4 −1 2 3−4 −1 1 2 3−4 −1 0 1 2 3

● Orange entries are redundant. Delete them in order to obtain an (s, t)-tree.
● Number of deleted entries in a fixed diagonal equals the absolute value of the
bottom entry in the truncated diagonal.
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The number of ASTs with prescribed positions of

the 1-columns

Using the formula for the number of (s, t)-tree, we can deduce the

following (after a few pages of calculations).

Theorem (F. 2019). The number of ASTs with n rows that have

the 1-columns in positions j1, j2, . . . , jn−1, where we count from the left

starting with 0 and disregard the central column, is the coefficient of

X
j1
1 X

j2
2 . . .X

jn−1
n−1 in

n−1∏
i=1 (1 +Xi) ∏

1≤i<j≤n−1(1 +Xi +XiXj)(Xj −Xi).
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Total number of ASTs

The number of ASTs with n rows is the constant term of

∑
0≤j1<j2<...<jn−1

n−1
∏
i=1
(1 +X−1i )Xji

i ∏
1≤i<j≤n−1

(1 +X−1i +X−1i X−1j )(X−1j −X−1i )

=
n−1∏
i=1(1 +Xi)Xi−2n+2

i ∏
1≤i<j≤n−1(1 +Xj +XiXj)(Xi −Xj)
n−1∏
i=1 (1 −

n−1∏
j=i Xj)

.

“Trick:” Apply the symmetrizer w.r.t. X1, . . . ,Xn. The constant term

is then multiplied by n!.

“Magic:” The symmetrizer can actually be computed!
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End of the proof

Lemma. Let n ≥ 1. Then

ASymX1,...,Xn

⎡⎢⎢⎢⎢⎢⎣
∏

1≤i<j≤n
(1 +Xj +XiXj)

n

∏
i=1
Xi−1
i

⎛
⎝1 −

n

∏
j=i
Xj

⎞
⎠
−1⎤⎥⎥⎥⎥⎥⎦

= n

∏
i=1
(1 −Xi)−1 ∏

1≤i<j≤n
(1 +Xi +Xj)(Xj −Xi)

(1 −XiXj) .

After some further steps, one can see that the number is the constant term of

(−1)(n−12 ) ∑
0≤b1<b2<...<bn−1

det1≤i,j≤n−1 ((1 +Xj)iXi−2n+2+bj
j ) ,

and this leads directly to an expression that gives the number of totally symmet-
ric self-complementary plane partitions in a 2n × 2n × 2n box (Lindström-Gessel-
Viennot). See my TAMS-paper from 2019.
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The number of alternating sign trapezoids with

prescribed positions of the 1-columns

Theorem (Schreier-Aigner). The number of (n, l)-alternating sign

trapezoids with the 1-columns in positions 0 ≤ j1 < j2 < . . . < jn ≤ 2n − 1
where we index the columns from left to right starting with 0 and

disregard the l−2 central columns is the coefficient of X
j1
1 X

j2
2 . . .X

jn
n in

m∏
i=1(1 +Xi)

n∏
i=m+1X

−l+3
i (1 +Xi)l−2 ∏

1≤i<j≤n(Xj −Xi)(1 +Xi +XiXj),
where m is maximal such that jm ≤ n − 1.
Only for l = 3 (ASTs!), there is no dependency on m.
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Crucial step in the enumeration of AS-trapezoids

Definition.

SubsetsmF (Y1, . . . , Yn)
= ∑

σ∈Sn
σ(1)<σ(2)<...<σ(m),σ(m+1)<σ(m+2)<...<σ(n)

F (Yσ(1), . . . , Yσ(n))

The number is the constant term of
n

∑
m=0

Subsetsm

n

∏
i=m+1

(1 + Yi)l−1 m

∏
i,j=1

1

1 + Yi + Yj
n

∏
i,j=m+1

1

1 − YiYj
× m

∏
i=1

n

∏
j=m+1

1 + Yj + YiYj
(Yj − Yi)(1 + Yi + Yj)(1 − YiYj).
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Using the Cauchy determinant, it follows that

n

∏
i=m+1

(1 + Yi)l−1 m

∏
i,j=1

1

1 + Yi + Yj
n

∏
i,j=m+1

1

1 − YiYj
× m

∏
i=1

n

∏
j=m+1

1 + Yj + YiYj
(Yj − Yi)(1 + Yi + Yj)(1 − YiYj)

=
det1≤i,j≤n ⎛⎝

⎧⎪⎪⎨⎪⎪⎩
1

1+Yi+Yj , i ≤m
(1+Yi)l−1
1−YiYj , i >m

⎞
⎠

∏
1≤i<j≤n(Yj − Yi)2

.

Applying Subsetsm and summing over all m then gives

det1≤i,j≤n ( 1
1+Yi+Yj + (1+Yi)l−11−YiYj )

∏
1≤i<j≤n(Yj − Yi)2

.

After some further manipulations we obtain Andrews generalization of the determi-
nant for the number of cyclically symmetric plane partitions. See my Adv. Math.
paper from 2019.
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III. A Littlewood-type identity related to ASMs
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The classical (unbounded) Littlewood identity

∑
λ

sλ(X1, . . . ,Xn) = n

∏
i=1

1

1 −Xi
∏

1≤i<j≤n
1

1 −XiXj

,

Proof: RSK and exploiting its symmetry.

We rewrite the classical Littlewood identity:

s(λ1,...,λn)(X1, . . . ,Xn) = det1≤i,j≤n (X
λj+n−j
i )

∏1≤i<j≤n(Xi −Xj) =
ASymX1,...,Xn

[∏ni=1Xλi+n−i
i ]

∏1≤i<j≤n(Xi −Xj) ,

with ASymX1,...,Xn
f(X1, . . . ,Xn) = ∑σ∈Sn sgnσ ⋅ f(Xσ(1), . . . ,Xσ(n))

Change of variables: λ1 ≥ ⋅ ⋅ ⋅ ≥ λn ≥ 0⇒ λ1 + n − 1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kn

> λ2 + n − 2´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
kn−1

> . . . > λn
k̄1

≥ 0

ASymX1,...,Xn
[∑0≤k1<k2<...<knXk1

1 X
k2

2 ⋯Xkn
n ]

∏1≤i<j≤n(Xj −Xi) = n

∏
i=1

1

1 −Xi
∏

1≤i<j≤n
1

1 −XiXj
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Littlewood-type identity related to ASMs

In two of my papers from 2019:

ASymX1,...,Xn
[∏1≤i<j≤n(1 +Xj +XiXj)∑0≤k1<k2<...<knXk1

1 X
k2

2 ⋯Xkn
n ]

∏1≤i<j≤n(Xj −Xi)
= n

∏
i=1

1

1 −Xi
∏

1≤i<j≤n
1 +Xi +Xj

1 −XiXj

Since then Hans Höngesberg and I realized that we can introduce two additional
parameters:

ASymX1,...,Xn
[∏1≤i<j≤n(Q + (Q + r)Xi +Xj +XiXj)∑0≤k1<k2<...<kn∏ni=1 (Xi(1+Xi)

Q+Xi

)ki]
∏1≤i<j≤n(Xj −Xi)

= n

∏
i=1

Q +Xi

Q −X2
i

∏1≤i<j≤nQ(1 +Xi)(1 +Xj) + rXiXj

∏
1≤i<j≤n(Q −XiXj)

Set Q = 1 and r = −1 to obtain the previous identity.

I would love to see a combinatorial proof of this identity! arXiv:2301.00175
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Combinatorial interpretation of the LHS
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Gelfand-Tsetlin patterns

A Gelfand-Tsetlin pattern is a triangular array of integers of the form

a1,1
a2,1 a2,2

. . . . . . . . .
an,1 . . . . . . an,n

with weak increase in ↗- and ↘-direction.
The weight of a Gelfand-Tsetlin pattern is

n∏
i=1X

∑j ai,j−∑j ai−1,j
i and sλ(X1, . . . ,Xn) is the

sum of weights of all Gelfand-Tsetlin patterns with bottom row (0, . . . ,0, λl, . . . , λ1).
Example:

3
3 5

2 4 6
1 3 5 7

1 1 4 7 8
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Arrowed Gelfand-Tsetlin patterns

An arrowed Gelfand-Tsetlin pattern is a Gelfand-Tsetlin pattern where each entry is decorated with
an element from {↖,↗,↖↗,∅} such that for the little triangles in the pattern

y
x z

we have the following:

● If x = y and decor(x) ∈ {↗,↖↗}, then z = y = x and decor(z) ∈ {↖,↖↗}, and

● if y = z and decor(z) ∈ {↖,↖↗}, then x = y = z and decor(x) ∈ {↗,↖↗}.
Both instances contribute −1 to the sign.

Summary: Arrows between diagonal neighbors indicate that the entries are different, except when
we have two such occurrences appearing in a little triangle. In this case, we have a contribution of
−1 to the sign.

Example:

↖3↗

3 ↖5
2↗ ↖4 6

1↗ 3↗ 4↗ ↖7↗
↖1 3↗ ↖3↗ 7 ↖8
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Generating function

We associate the following weight to a given arrowed Gelfand-Tsetlin pattern A = (ai,j)1≤j≤i≤n:
W(A) = sgn(A) ⋅ t#∅u#↗v#↖w#↖↗

n

∏
i=1
X
∑ij=1 ai,j−∑

i−1
j=1 ai−1,j+#↗in row i −#↖in row i

i

The weight of our example is

−t3u5v3w3X3
1X

4
2X

4
3X

6
4X

6
5 .

Compare to the Schur function weight for Gelfand-Tsetlin patterns!

Theorem (F. and Schreier-Aigner). The generating function of arrowed Gelfand-Tsetlin patterns
with bottom row k1, . . . , kn is

ASymX1,...,Xn
[∏1≤i≤j≤n (v +wXi + tXj + uXiXj)∏ni=1Xki−1

i ]
∏1≤i<j≤n(Xj −Xi) .

This is a generalization of Hall-Littlewood polynomials (set t = 1, u = v = 0 and w = −t).
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Application to our LHS

Our Littlewood-type identity, slightly rewritten:

ASymX1,...,Xn
[∏1≤i≤j≤n (1 +wXi +Xj +XiXj)∑0≤k1<k2<...<knXk1−1

1 Xk2−1
2 ⋯Xkn−1

n ]
∏1≤i<j≤n(Xj −Xi)

= n

∏
i=1
X−1i + (1 +w) +Xi

1 −Xi
∏

1≤i<j≤n
1 +Xi +Xj +wXiXj

1 −XiXj

The left-hand side is the generating function of all arrowed Gelfand-Tsetlin patterns
with strictly increasing bottom row of non-negative integers when setting t = u = v = 1.
Combinatorial interpretation of the RHS of the Littlewood-type identity: dec-
orated two-line arrays (straightforward).
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Bounded classical Littlewood identity

Bounded? ∑0≤k1<k2<...<kn → ∑0≤k1<k2<...<kn≤m

∑
λ⊆(mn)

sλ(X1, . . . ,Xn) = det1≤i,j≤n (Xj−1
i −Xm+2n−j

i )
∏ni=1(1 −Xi)∏1≤i<j≤n(Xj −Xi)(1 −XiXj)

Macdonald in his book.
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Bounded Littlewood identity related to ASMs

1

∏
1≤i<j≤n

(Xj −Xi)ASymX1,...,Xn

⎡⎢⎢⎢⎢⎣
∏

1≤i<j≤n
(Q + (Q + r)Xi +Xj +XiXj)

× ∑
0≤k1<k2<...<kn≤m

(X1(1 +X1)
Q +X1

)
k1 (X2(1 +X2)

Q +X2
)
k2⋯(Xn(1 +Xn)

Q +Xn

)
kn⎤⎥⎥⎥⎥⎦

= det1≤i,j≤n (aj,m,n(Q,r;Xi))
∏

1≤i≤j≤n
(Q −XiXj) ∏

1≤i<j≤n
(Xj −Xi)

with

aj,m,n(Q,r;X) = (1 +QX−1)Xj(1 +X)j−1(Q + rX +QX)n−j
−X2nQ−n ((1 +X)X

Q +X )
m

(1 +X) (QX−1)j (1 +QX−1)j−1(Q + rQX−1 +Q2X−1)n−j.

● The proof has more than 7 pages, but it is elementary.

● Moritz Gangl has a nice application of this relating AS-pentagons to Magog-pentagons. Note that
there are some old conjectures on the relation between Gog trapezoids and Magog trapezoids that
are still open.
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The case Q = 1
ASymX1,...,Xn

[∏1≤i≤j≤n(1 +wXi +Xj +XiXj)∑0≤k1<k2<...<kn≤mXk1−1
1 Xk2−1

2 ⋯Xkn−1
n ]

∏
1≤i<j≤n(Xj −Xi)

= n

∏
i=1
(X−1i + 1 +w +Xi)

× det1≤i,j≤n (X
j−1
i (1 +Xi)j−1(1 +wXi)n−j −Xm+2n−j

i (1 +X−1i )j−1(1 +wX−1i )n−j)
n∏
i=1(1 −Xi) ∏

1≤i<j≤n(1 −XiXj)(Xj −Xi)
.

LHS: Generating function of arrowed Gelfand-Tsetlin patterns with strictly increasing
bottom that are bounded by m.

What about the RHS ? Ð→ I have a combinatorial interpretation for the RHS
as well.
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1,4,60,3328,678912 . . .

RHS of the new Littlewood-type identity for Q = 1:
det1≤i,j≤n (Xj−1

i (1 +Xi)j−1(1 +wXi)n−j −Xm+2n−j
i (1 +X−1i )j−1(1 +wX−1i )n−j)

n∏
i=1
(1 −Xi) ∏

1≤i<j≤n
(1 −XiXj)(Xj −Xi)

Setting all Xi = 1,w = −1 and m = n − 1, we obtain

1,4,60,3328,678912, . . . = 2n(n−1)/2 n−1∏
j=0

(4j + 2)!
(n +2j + 1)!.

● This is a consequence of our Theorem 1 below.

● In fact, these theorems involve the additional parameter m, and the special case m = n − 1 is an
unpublished conjecture of Florian Schreier-Aigner from 2018.

● Note that m = n −1 just means that we consider arrowed Gelfand-Tsetlin patterns with bottom row
(0,1, . . . , n − 1).
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These numbers also appear in recent work of Di Francesco related to the twenty
vertex model and domino tilings.

He showed that both families of objects are counted by

det0≤i,j≤n−1 (2i(i + 2j + 1
2j + 1 ) − (

i − 1
2j + 1))

and conjectured the following theorem, which was subsequently proven by Koutschan.

Theorem.

det0≤i,j≤n−1 (2i(i + 2j + 1
2j + 1 ) − (

i − 1
2j + 1)) = 2n(n−1)/2

n−1
∏
j=0

(4j + 2)!
(n + 2j + 1)!.
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Explicit product formulas in case Xi = 1 and w = −1
Theorem 1 (F. and Schreier-Aigner, 2023). For (X1, . . . ,Xn) = (1, . . . ,1) and
w = −1, we have that

det1≤i,j≤n (Xj−1
i (1 +Xi)j−1(1 +wXi)n−j −Xm+2n−j

i (1 +X−1i )j−1(1 +wX−1i )n−j)
n∏
i=1(1 −Xi) ∏

1≤i<j≤n(1 −XiXj)(Xj −Xi)
is

2n
n

∏
i=1
(m −n + 3i + 1)i−1(m −n + i + 1)i

(m−n+i+22 )
i−1 (i)i

.

We have signless versions for the objects (decorated Gelfand-Tsetlin patterns) in the
theorem.

Open problem: Find a bijection between Di Francesco’s twenty vertex configura-
tions and our objects for m = n − 1.
See our paper arXiv:2302.04164 for details.
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Explicit product formulas in case Xi = 1 and w = 0
Theorem 2 (F. and Schreier-Aigner, 2023). For (X1, . . . ,Xn) = (1, . . . ,1) and w = 0,
we have that

det1≤i,j≤n (Xj−1
i (1 +Xi)j−1(1 +wXi)n−j −Xm+2n−j

i (1 +X−1i )j−1(1 +wX−1i )n−j)
n∏
i=1(1 −Xi) ∏

1≤i<j≤n(1 −XiXj)(Xj −Xi)
is

3(n+12 )
n

∏
i=1
(2n +m + 2 − 3i)i

(i)i .

Also here we have signless versions for the objects in the theorem.
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IV. Introducing n + 3 parameters in the ASM-DPP

relation

Goal: Take the (multivariate) generating function of arrowed monotone triangles
and find corresponding plane partitions related to DPPs with the same generating

function.
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Arrowed monotone triangles → monotone triangles

Claim: When setting u = v = 1,w = −1 and (X1, . . . ,Xn) = (1, . . . ,1) in the generating
function of arrowed monotone triangles, we obtain the number of monotone triangles
with bottom row (k1, . . . , kn).
Why?

● Fix a monotone triangle and consider all arrowed monotone triangles that can be
obtained by decorating the entries of that monotone triangle.

● Namely, an entry in the monotone triangle that is equal to its ↖-neighbor can
only be decorated by ↗, while an entry that is equal to its ↗-neighbor can only
be decorated by ↖.
● Let l be the number of entries of the first type and r be the number of
entries of the second type. All other entries can be decorated by any element in
{↖,↗,↖↗} and we let f be their number.

● Setting (x1, . . . , xn) = (1, . . . ,1) in the generating function, we see that the contribu-
tion of the fixed monotone triangle is

ulvr(u + v +w)f
and this reduces to 1 when setting u = v = 1 and w = −1.
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Arrowed monotone triangles with bottom row (1,2)
In the following, we use ↖e↗ instead of ↖↗e in our arrowed monotone triangles.

AMT W SBCSPP AMT W SBCSPP

↖1
↖1 ↖2

v3 ∅ ↖2
↖1↗ 2↗

uvwX1X
2
2

2 2

1

↖1↗
↖1 ↖2

v2wX1 1
↖1↗

↖1 2↗
uvwX1X

2
2 2,1 1

1↗
↖1 ↖2

uv2X2
1 1 1

2↗
↖1 2↗

u2vX3
1X2

2 1 1

1

↖1
↖1 ↖2↗

v2wX2 2
↖2↗

↖1↗ 2↗
uw2X2

1X
2
2

2 2

1 1

↖2
↖1 2↗

uv2X1X2 2 1
1↗

↖1 2↗
u2vX2

1X
2
2

2 2 1

1

↖1↗
↖1 ↖2↗

vw2X1X2 2,1
2↗

↖1↗ 2↗
u2wX3

1X
2
2

2 2 1

1 1

↖1
↖1 2↗

uv2X2
2 2 2

↖2
1↗ 2↗

u2vX1X
3
2

2 2 2

1

↖2↗
↖1 2↗

uvwX2
1X2

2 1

1

↖2↗

1↗ 2↗
u2wX2

1X
3
2

2 2 2

1 1

1↗
↖1 ↖2↗

uvwX2
1X2 2,1 1

2↗

1↗ 2↗
u3X3

1X
3
2

2 2 2

1 1 1
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What is a SBCSPP?

Example:

● ● ● ● ● ● ●
● ● ● ● ●
● ● ● ●
● ● ●
● ● ●
● ●
●

This is the Ferrers diagram of the partition (8,6,5,3,3,2,1), where an integer partition is simply a
weakly decreasing sequence of non-negative integers. In Frobenius notation, we write (7,4,2∣6,4,2).
Balanced shape: Let λ = (a1, . . . , al∣b1, . . . , bl) be a partition in Frobenius notation, i.e., ai is the number
of cells right of the diagonal cell (i, i) in the same row, while bi is the number of cells below (i, i) in
the same column. We say that λ is balanced if, for all i, either ai = bi or ai = bi +1. The weight is

W(λ) = wl+∑li=1(bi−ai).
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Set-valued balanced column strict plane partitions

A set-valued balanced column strict plane partition (SBCSPP) D of shape λ and order n is a
filling of a balanced shape with non-empty subsets of {1,2, . . . , n} such that strictly above the diagonal
the subsets are singletons, and

1. rows decrease weakly in the sense that the maxima of the sets form a decreasing sequence if
read from left to right, and

2. columns decrease strictly in the sense that for two adjacent cells in a column, all elements in
the top cell are strictly greater than all elements in the bottom cell.

The weight of D is as follows

W(D) =W(λ) ⋅ u#of cells strictly above the main diagonal ⋅ v(n+12 )−#of entries on and below the main diagonal

⋅w#of entries−#of cells ⋅ n∏
i=1
X# of i in D
i .

The exponents of the u, v,w,X1, . . . ,Xn are the n +3 statistics from the title.
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Example:

8 8 8 7 7 6 4 1

7 7 7 6 5 5

6 6 5 4 4 4

5 4 3 3,2 3 2

3 2 2,1 1

2 1

1

Letting n = 9, the weight is

u16v26w3X5
1X

5
2X

4
3X

5
4X

4
5X

4
6X

5
7X

3
8 .
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The case n = 2
AMT W SBCSPP AMT W SBCSPP

↖1
↖1 ↖2 v3 ∅ ↖2

↖1↗ 2↗ uvwX1X
2
2

2 2

1

↖1↗
↖1 ↖2 v2wX1 1

↖1↗
↖1 2↗ uvwX1X

2
2 2,1 1

1↗
↖1 ↖2 uv2X2

1 1 1
2↗

↖1 2↗ u2vX3
1X2

2 1 1

1

↖1
↖1 ↖2↗ v2wX2 2

↖2↗
↖1↗ 2↗ uw2X2

1X
2
2

2 2

1 1

↖2
↖1 2↗ uv2X1X2 2 1

1↗
↖1 2↗ u2vX2

1X
2
2

2 2 1

1

↖1↗
↖1 ↖2↗ vw2X1X2 2,1

2↗
↖1↗ 2↗ u2wX3

1X
2
2

2 2 1

1 1

↖1
↖1 2↗ uv2X2

2 2 2
↖2

1↗ 2↗ u2vX1X
3
2

2 2 2

1

↖2↗
↖1 2↗ uvwX2

1X2
2 1

1

↖2↗

1↗ 2↗ u2wX2
1X

3
2

2 2 2

1 1

1↗
↖1 ↖2↗ uvwX2

1X2 2,1 1
2↗

1↗ 2↗ u3X3
1X

3
2

2 2 2

1 1 1
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Theorem (F. and Schreier-Aigner, 2021). The generating function

of arrowed monotone triangles with bottom row 1,2, . . . , n is equal

to the generating function of set-valued balanced column-strict plane

partitions with parts in {1,2, . . . , n}.

But why should we care?

It is an n + 3-parameter generalization of the ASM-DPP relation!
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SBCSPPs → DPPs

Claim: When setting u = v = 1,w = −1 and (X1, . . . ,Xn) = (1, . . . ,1) in the generating
function of SBCSPPs of order n, we obtain the number of DPPs of order n.

What do we need to do?

● For a given SBCSPP of shape (a1, . . . , al∣b1, . . . , bl), the weight reduces to

(−1)l+∑li=1(bi−ai)+(# of entries)−(# of cells) = (−1)# of entries

● We define two sign-reversing involutions to “cancel” certain subsets.

● The remaining set will be a set of positive SBCSPP’s that is in easy bijective
correspondence with the set of DPPs.
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The first sign-reversing involution
● A principal SBCSPP has singletons in each cell. We can associate a principal SBCSPP to each
SBCSPP by just keeping the maximum in each cell.

9 8 8 7 7 5 3 2

7 6 5 4 3 3

6 5 4 3 2

4 4 3 1

3 3

2 1

1

9,8 8 8 7 7 5 3 2

7 6 5 4 3

6,5 5 4 3 2

4 4 3,2,1 1

3 3,2

2 1

1

● If for a fixed principal SBCSPP with more than one SBCSPP associated with it, there is the
following sign-reversing involution: Fix the topmost and leftmost cell c that can contain more than
one entry, and let e be the minimal possible entry for this cell (i.e., e − 1 is in the cell below). If c
contains e remove it, otherwise add it.

In the example: c = (1,1) and e = 8.
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The second sign-reversing involution

● Principal SBCSPPs that have no other SBCSPP associated with it are characterized as follows: for
each diagonal entry d, the entries below in the same column are d −1, d − 2, . . . ,1.

7 7 7 7 7 5 3 2

6 5 5 4 3 3

5 4 2 2 2

4 3 1 1

3 2

2 1

1

7 7 7 7 7 5 1 1

6 5 5 4 3 3

5 4 2 2 2

4 3 1 1

3 2

2 1

1

● We define a sign-reversing involution on the subset of the remaining SBCSPPs for which at least
one of the following is satisfied: the SBCSPP contains a 1 strictly above the diagonal or ai /= bi +1
for an i.

● If ai /= bi +1 for an i, choose the minimal such i. If there is no 1 in row 1, . . . , i−1, add a 1 at the end
of row i. Otherwise remove the topmost and rightmost 1.

In our examples, we have a2 /= b2 + 1. In the left example, we add a 1 to the second row, while in the
other example, we delete the last 1 from the first row.



Analyzing the positive remainder

What remains are SBCSPPs such that (1) all cells contain a single element, (2) ai = bi +1, (3) weakly
below a diagonal entry we have consecutive integers ending with 1, and (4) there are no 1’s above
the diagonal. All such SBCSPPs have weight 1.

7 6 6 5 5 5 3 2

6 4 4 4 3 3

5 3 2 2 2

4 2 1

3 1

2

1

(1)⇒ 7 6 6 5 5 5 3 2

4 4 4 3 3

2 2 2

(2)⇒ 6 5 5 4 4 4 2 1

3 3 3 2 2

1 1 1

(1) Remove all cells strictly below the main diagonal and obtain a column strict shifted plane
partition (CSSPP). From ai = bi + 1, it follows that the first part of each row is one less than the
length.

(2) Since there is no 1 in the plane partition, we may subtract 1 from each entry and obtain a column
strict shifted plane partition such that the first part of each row is two less than the length of
its row.



(3) By conjugating the partition in each row, such CSSPPs with parts no greater than n−1 are in
easy bijective correspondence with CSSPPs with parts no greater than n+1 such that the first part
of each row exceeds its length by precisely 2.

(4) To obtain the corresponding DPP, we subtract 1 from each entry and remove all 0s.

6 5 5 4 4 4 2 1

3 3 3 2 2

1 1 1

(3)⇒ 8 7 6 6 3 1

5 5 3

3

(4)⇒ 7 6 5 5 2

4 4 2

2

Lattice paths help in understanding that (3) leads to another CSSPP.

3 5

5

3

3

8

7

6

6

1

4

6

5 5

4 4

2

1

22

333

1 1 1
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Would a weight-preserving bijection between arrowed monotone triangles and SBCSPPs
imply an ASM-DPP bijection?

“Natural” approach: Consider the SBCSPPs that are left after the two sign-reversing involutions
(they are equinumerous with DPPs), take the corresponding arrowed monotone triangles in the
weight-preserving bijection and delete the arrows to obtain monotone triangles and thus ASMs.

Case n = 2.
AMT W SBCSPP AMT W SBCSPP

↖1
↖1 ↖2

v3 ∅ ↖2
↖1↗ 2↗

uvwX1X
2
2

2 2

1

↖1↗
↖1 ↖2

v2wX1 1
↖1↗

↖1 2↗
uvwX1X

2
2 2,1 1

1↗
↖1 ↖2

uv2X2
1 1 1

2↗
↖1 2↗

u2vX3
1X2

2 1 1

1

↖1
↖1 ↖2↗

v2wX2 2
↖2↗

↖1↗ 2↗
uw2X2

1X
2
2

2 2

1 1

↖2
↖1 2↗

uv2X1X2 2 1
1↗

↖1 2↗
u2vX2

1X
2
2

2 2 1

1

↖1↗
↖1 ↖2↗

vw2X1X2 2,1
2↗

↖1↗ 2↗
u2wX3

1X
2
2

2 2 1

1 1

↖1
↖1 2↗

uv2X2
2 2 2

↖2
1↗ 2↗

u2vX1X
3
2

2 2 2

1

↖2↗
↖1 2↗

uvwX2
1X2

2 1

1

↖2↗

1↗ 2↗
u2wX2

1X
3
2

2 2 2

1 1

1↗
↖1 ↖2↗

uvwX2
1X2 2,1 1

2↗

1↗ 2↗
u3X3

1X
3
2

2 2 2

1 1 1

The two SBCSPPs that remain after applying the two sign-reversing involutions are ∅ and 2 2 2

1
. If

we ignore the arrows in the corresponding arrowed monotone triangles, we obtain the bijection to
monotone triangles.
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Already for n = 3, this can’t work!

For n = 3, the following 7 SBCSPP are left after applying the two sign-reversing involutions (we also
provide the weights):

(∅, v6),( 2 2 2

1
, u2v4X1X

3
2) ,
⎛⎜⎝

3 2 2 2

2

1

, u3v3X1X
4
2X3

⎞⎟⎠ ,
⎛⎜⎝

3 3 2 2

2

1

, u3v3X1X
3
2X

2
3

⎞⎟⎠ ,
⎛⎜⎝

3 3 3 2

2

1

, u3v3X1X
2
2X

3
3

⎞⎟⎠ ,
⎛⎜⎝

3 3 3 3

2

1

, u3v3X1X2X
4
3

⎞⎟⎠ ,
⎛⎜⎝

3 3 3 3

2 2 2 2

1 1

, u5vX2
1X

4
2X

4
3

⎞⎟⎠ .

Crucial observation 1: Only for one of these SBCSPPs, the exponent of X1 in the weight is greater
than 1.
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∗1∗
↖1 ∗2∗

↖1 ↖2 ∗3∗
v3X1X2X3(uX1 + vX−11 +w)(uX2 + vX−12 +w)(uX3 + vX−13 +w)

∗1∗
↖1 ∗3∗

↖1 ∗2∗ 3↗
uv2X1X

2
2X

2
3(uX1 + vX−11 +w)(uX2 + vX−12 +w)(uX3 + vX−13 +w)

∗2∗
∗1∗ 2↗

↖1 ↖2 ∗3∗
uv2X2

1X
2
2X3(uX1 + vX−11 +w)(uX2 + vX−12 +w)(uX3 + vX−13 +w)

∗2∗
∗1∗ ∗3∗

↖1 ∗2∗ 3↗
uvX2

1X
2
2X

2
3(uX1 + vX−11 +w)(uX2 + vX−12 +w)2(uX3 + vX−13 +w)

∗2∗
↖2 ∗3∗

∗1∗ 2↗ 3↗
u2vX2

1X
2
2X

3
3(uX1 + vX−11 +w)(uX2 + vX−12 +w)(uX3 + vX−13 +w)

∗3∗
∗1∗ 3↗

↖1 ∗2∗ 3↗
u2vX3

1X
2
2X

2
3(uX1 + vX−11 +w)(uX2 + vX−12 +w)(uX3 + vX−13 +w)

∗3∗
∗2∗ 3↗

∗1∗ 2↗ 3↗
u3X3

1X
3
2X

3
3(uX1 + vX−11 +w)(uX2 + vX−12 +w)(uX3 + vX−13 +w)

Crucial observation 2: For two (out of the 7) monotone triangles, the exponents of X1 in the weight
of the associated arrowed monotone triangles is at least 2 (namely for those that have a 3 at the
top).

Therefore, “forgetting arrows” can’t work!
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Vertical symmetric ASMs and lozenge tilings

⎛⎜⎜⎜⎜⎝

0 0 0 1 0 0 0
0 1 0 −1 0 1 0
1 −1 0 1 0 −1 1
0 0 1 −1 1 0 0
0 1 −1 1 −1 1 0
0 0 1 −1 1 0 0
0 0 0 1 0 0 0

⎞⎟⎟⎟⎟⎠
⇔ ←→

A1
A2

A3
E1

E2

E3

Perfect analogy: There is the same number of vertically symmetric ASMs as there
is of cyclically symmetric lozenge tilings with a hole of size 2 that exhibit also a
vertical symmetry.

Now: lozenge tilings correspond to families of non-intersecting lattice paths.
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Theorem (F. and Höngesberg, 2022). For n ≥ 1, the generating function of arrowed monotone
triangles with bottom row 0,2, . . . ,2n−2 is equal to the signed generating function of certain n lattice
paths.

x

y

When Xi = 1, u = v = 1 and w = −1, we have constructed a sign-reversing involution and a bijection that
takes us from the families of lattice paths from the theorem to the families of non-intersecting lattice
paths that correspond to lozenge tilings.
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V. Schur function expansion, TSPPs and a

Cauchy-type identity
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Formula for the generating function

The generating function of arrowed monotone triangles with bottom row 1,2, . . . , n and of SBCSPPs
of order n is

n

∏
i=1
Xn
i

ASymX1,...,Xn
[∏1≤p≤q≤n (uXq + vX−1p +w)]
∏1≤i<j≤n(Xj −Xi) = n

∏
i=1
Xn
i

det1≤i,j≤n ((uXi +w)j − (−vX−1i )j)
∏1≤i<j≤n(Xj −Xi) .

This is obviously a symmetric function in X1,X2, . . . ,Xn.

Schur polynomial expansion of ∏ni=1Xn−1
i

ASymX1,...,Xn
[∏1≤p<q≤n (uXq+vX−1p +w)]
∏1≤i<j≤n(Xj−Xi)

?

For n = 3:
v3 + uv2s(1,1)(x1, x2, x3) + uvws(1,1,1)(x1, x2, x3) + u2vs(2,1,1)(x1, x2, x3) + u3s(2,2,2)(x1, x2, x3)

(BTW, this is the generating function of a natural variation of arrowed monotone triangles, which
we call down-arrowed monotone triangles.)
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The case n = 3
v3 + uv2s(1,1)(x1, x2, x3) + uvws(1,1,1)(x1, x2, x3) + u2vs(2,1,1)(x1, x2, x3) + u3s(2,2,2)(x1, x2, x3)

T : ∅

π(T ): ∅

ωπ(T )(u, v)): v3 uv2 uvw u2v u3

Here we see all totally symmetric plane partitions in a 2×2×2 box, its slightly modified “profile” along
the diagonal y = x together with a certain weight.
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Thin partitions

Definition. A partition in Frobenius notation (a1, . . . , al∣b1, . . . , bl) is said to be thin (a.k.a. modified
balanced) if ai < bi.
Thin partitions whose parts do not exceed n − 1 are counted by the n-th Catalan number. That is
why we see C3 = 5 Schur polynomials in the expansion above.

We consider totally symmetric plane partitions.

T diag(T ) π(T )
Suppose diag(T ) = (a1, . . . , al∣b1, . . . , bl) is the diagonal profil of the totally symmetry plane partition T
in Frobenius notation, then it is not terribly hard to see that π(T ) = (a1, . . . , al∣b1 +1, . . . , bl +1) is a thin
partition.

The weight of a thin partition λ = (a1, . . . , al∣b1, . . . , bl) of order n is defined to be

ωλ(u, v) = u∑li=1(ai+1)v(n2)−∑li=1 biw∑li=1(bi−ai).
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Theorem (F. Aigner, I. Fischer, M. Konvalinka, P. Nadeau, V. Tewari, FPSAC
2020). The generating function of down-arrowed monotone triangles of order n has
the following Schur polynomial expansion.

∑
T ∈TSPPn−1

ωπ(T )(u, v) ⋅ sπ(T )(X1, . . . ,Xn)

Conjectured by F. Aigner and F. Bergeron.
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The vertical symmetric case

Theorem (F. and Höngesberg, 2022) For n ≥ 1, the generating function of arrowed monotone
triangles with bottom row 0,2, . . . ,2n − 2 is equal to the generating function of pairs (P,Q) of plane
partitions of the same shape with n rows (allowing also rows of length zero) such that

● P is a columnstrict plane partitions such that the entries of P in the i-th row from the bottom
are no greater than 2i,

● Q is a rowstrict plane partition such that the entries of Q in the i-th row from the bottom are
no greater than i,

and the weight of such a pair is given by the following monomial.

w(
n+1
2
)−#of entries in Q

n

∏
i=1
Xn−1
i (uXi)#of 2i − 1 in P(vX−1i )#of 2i in P

● The P ’s are in bijective correspondence with symplectic tableaux and the Q’s are in bijective
correspondence with TSSCPPs. In this form it was independently conjectured by F. Schreier-Aigner.

● Bijective proof? Cauchy-type identity Ð→ RSK?
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The case n = 2
(∅,∅) ( 1 , 1 ) ( 2 , 1 ) ( 3 , 1 ) ( 4 , 1 ) ( 1 , 2 ) ( 2 , 2 ) ( 3 , 2 ) ( 4 , 2 ) ( 1 1 , 2 1 )
w3X1X2 w2uX2

1X2 w2vX2 w2uX1X
2
2 w2vX1 w2uX2

1X2 w2vX2 w2uX1X
2
2 w2vX1 wu2X3

1X2

( 2 1 , 2 1 ) ( 3 1 , 2 1 ) ( 4 1 , 2 1 ) ( 2 2 , 2 1 ) ( 3 2 , 2 1 ) ( 4 2 , 2 1 ) ( 3 3 , 2 1 )
wuvX1X2 wu2X2

1X
2
2 wuvX2

1 wv2X−11 X2 wuvX2
2 wv2 wu2X1X

3
2

( 4 3 , 2 1 ) ( 4 4 , 2 1 ) ( 2

1
,
1

1
) ( 3

1
,
1

1
) ( 4

1
,
1

1
) ( 3

2
,
1

1
) ( 4

2
,
1

1
) ( 2

1
,
2

1
) ( 3

1
,
2

1
)

wuvX1X2 wv2X1X
−1
2 wuvX1X2 wu2X2

1X
2
2 wuvX2

1 wuvX2
2 wv2 wuvX1X2 wu2X2

1X
2
2

( 4

1
,
2

1
) ( 3

2
,
2

1
) ( 4

2
,
2

1
) ( 2 1

1
,
2 1

1
) ( 2 2

1
,
2 1

1
) ( 3 1

1
,
2 1

1
) ( 3 2

1
,
2 1

1
) ( 3 3

1
,
2 1

1
)

wuvX2
1 wuvX2

2 wv2 u2vX2
1X2 uv2X2 u3X3

1X
2
2 u2vX1X

2
2 u3X2

1X
3
2

( 3 1

2
,
2 1

1
) ( 3 2

2
,
2 1

1
) ( 3 3

2
,
2 1

1
) ( 4 1

1
,
2 1

1
) ( 4 2

1
,
2 1

1
) ( 4 3

1
,
2 1

1
) ( 4 4

1
,
2 1

1
)

u2vX1X
2
2 uv2X−11 X2

2 u2vX3
2 u2vX3

1 uv2X1 u2vX2
1X2 uv2X2

1X
−1
2

( 4 1

2
,
2 1

1
) ( 4 2

2
,
2 1

1
) ( 4 3

2
,
2 1

1
) ( 4 4

2
,
2 1

1
)

uv2X1 v3X−11 uv2X2 v3X−12
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VI. A complicated bijection for the ASM-DPP

relation
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Descending Plane Partitions = DPPs

● A strict partition is a partition λ = (λ1, . . . , λl) with distinct parts, i.e., λ1 > λ2 > . . . >
λl > 0. The shifted Young diagram of shape (5,3,2) is as follows.

● A column strict shifted plane partition is a filling of a shifted Young diagram with
positive integers such that rows decrease weakly and columns decrease strictly.

6 6 5 5 2

5 4 4

3 1
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● A DPP is such a column strict PP where the first part in each row is greater than
the length of its row and less than or equal to the length of the previous row. Ugly
condition?

7
7

6
6

3

6

5
5

1

4

2

● DPPs with parts no greater than 3: ∅, 2 , 3 , 3 1 , 3 2 , 3 3 ,
3 3

2

● The number of DPPs with parts no greater than n is also
n−1∏
i=0
(3i+1)!
(n+i)! (Andrews).
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Bijection 1 (Bijective Proof of the Product Formula)

ASMn = set of n × n ASMs

ASMn,i = set of n ×n ASMs (ap,q)1≤p,q≤n with a1,i = 1
Bn = set of (2n −1)-subsets of [3n − 2] = {1,2, . . . ,3n − 2}; ∣Bn ∣ = (3n−22n−1)
Bn,i = set of elements of Bn whose median is n + i −1; ∣Bn,i ∣ = (n+i−2n−1 )(2n−i−1n−1 )
DPPn = set of DPPs with parts no greater than n

We have constructed a bijection between the following sets:

DPPn−1 ×Bn,1 ×ASMn,i Ð→DPPn−1 ×ASMn−1 ×Bn,i

Then we also have a bijection

DPPn−1 ×Bn,1 ×ASMn Ð→DPPn−1 ×ASMn−1 ×Bn .

Iterating this, we obtain a bijection

DPP0 × ⋅ ⋅ ⋅ ×DPPn−1 ×B1,1 ×⋯×Bn,1 ×ASMn Ð→DPP0× ⋅ ⋅ ⋅ ×DPPn−1 ×B1×⋯×Bn .
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Example: DPP2×B3,1×ASM3,2 Ð→DPP2×ASM2×B3,2

for x = 0
(∅,12345, 0 1 0

1 0 0
0 0 1

) ↔ (∅, 1 0
0 1 ,23457) (∅,12345, 0 1 0

1 −1 1
0 1 0

) ↔ (∅, 0 1
1 0 ,23456) (∅,12345, 0 1 0

0 0 1
1 0 0

) ↔ (∅, 1 0
0 1 ,23456)

(∅,12346, 0 1 0
1 0 0
0 0 1

) ↔ (∅, 1 0
0 1 ,13457) (∅,12346, 0 1 0

1 −1 1
0 1 0

) ↔ (∅, 0 1
1 0 ,13456) (∅,12346, 0 1 0

0 0 1
1 0 0

) ↔ (∅, 1 0
0 1 ,13456)

(∅,12347, 0 1 0
1 0 0
0 0 1

) ↔ (∅, 1 0
0 1 ,12457) (∅,12347, 0 1 0

1 −1 1
0 1 0

) ↔ (∅, 0 1
1 0 ,12456) (∅,12347, 0 1 0

0 0 1
1 0 0

) ↔ (∅, 1 0
0 1 ,12456)

(∅,12356, 0 1 0
1 0 0
0 0 1

) ↔ (2, 1 0
0 1 ,13456) (∅,12356, 0 1 0

1 −1 1
0 1 0

) ↔ (2, 0 1
1 0 ,12456) (∅,12356, 0 1 0

0 0 1
1 0 0

) ↔ (2, 1 0
0 1 ,12456)

(∅,12357, 0 1 0
1 0 0
0 0 1

) ↔ (2, 1 0
0 1 ,13457) (∅,12357, 0 1 0

1 −1 1
0 1 0

) ↔ (2, 0 1
1 0 ,12457) (∅,12357, 0 1 0

0 0 1
1 0 0

) ↔ (2, 1 0
0 1 ,12457)

(∅,12367, 0 1 0
1 0 0
0 0 1

) ↔ (2, 1 0
0 1 ,13467) (∅,12367, 0 1 0

1 −1 1
0 1 0

) ↔ (2, 0 1
1 0 ,12467) (∅,12367, 0 1 0

0 0 1
1 0 0

) ↔ (2, 1 0
0 1 ,12467)

(2,12345, 0 1 0
1 0 0
0 0 1

) ↔ (∅, 1 0
0 1 ,23467) (2,12345, 0 1 0

1 −1 1
0 1 0

) ↔ (∅, 0 1
1 0 ,23467) (2,12345, 0 1 0

0 0 1
1 0 0

) ↔ (∅, 0 1
1 0 ,23457)

(2,12346, 0 1 0
1 0 0
0 0 1

) ↔ (∅, 1 0
0 1 ,13467) (2,12346, 0 1 0

1 −1 1
0 1 0

) ↔ (∅, 0 1
1 0 ,13467) (2,12346, 0 1 0

0 0 1
1 0 0

) ↔ (∅, 0 1
1 0 ,13457)

(2,12347, 0 1 0
1 0 0
0 0 1

) ↔ (∅, 1 0
0 1 ,12467) (2,12347, 0 1 0

1 −1 1
0 1 0

) ↔ (∅, 0 1
1 0 ,12467) (2,12347, 0 1 0

0 0 1
1 0 0

) ↔ (∅, 0 1
1 0 ,12457)

(2,12356, 0 1 0
1 0 0
0 0 1

) ↔ (2, 1 0
0 1 ,23456) (2,12356, 0 1 0

1 −1 1
0 1 0

) ↔ (2, 0 1
1 0 ,23456) (2,12356, 0 1 0

0 0 1
1 0 0

) ↔ (2, 0 1
1 0 ,13456)

(2,12357, 0 1 0
1 0 0
0 0 1

) ↔ (2, 1 0
0 1 ,23457) (2,12357, 0 1 0

1 −1 1
0 1 0

) ↔ (2, 0 1
1 0 ,23457) (2,12357, 0 1 0

0 0 1
1 0 0

) ↔ (2, 0 1
1 0 ,13457)

(2,12367, 0 1 0
1 0 0
0 0 1

) ↔ (2, 1 0
0 1 ,23467) (2,12367, 0 1 0

1 −1 1
0 1 0

) ↔ (2, 0 1
1 0 ,23467) (2,12367, 0 1 0

0 0 1
1 0 0

) ↔ (2, 0 1
1 0 ,13467)

The python code is available at https://www.fmf.uni-lj.si/~konvalinka/asmcode.html.
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Bijection 2 (ASMs and DPPs)

DPPn,i = subset of DPPn with DPPs that have i − 1 occurrences of n.

We have constructed a bijection between the following sets:

DPPn−1 ×ASMn,i Ð→ ASMn−1 ×DPPn,i

● Once such a bijection is constructed, it follows that

∣DPPn−1 ∣ ⋅ ∣ASMn,i ∣ = ∣ASMn−1 ∣ ⋅ ∣DPPn,i ∣.

● By induction, we can assume ∣DPPn−1 ∣ = ∣ASMn−1 ∣ and so ∣ASMn,i ∣ = ∣DPPn,i ∣.
● Summing this over all i implies ∣DPPn ∣ = ∣ASMn ∣.
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Example DPP3×ASM4,2 Ð→ASM3×DPP4,2 for x = 0
(∅, 0 1 0 0

1 0 0 0
0 0 1 0
0 0 0 1

) ↔ ( 1 0 0
0 0 1
0 1 0

, 4 2 1 ) (∅, 0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1

) ↔ ( 0 1 0
1 −1 1
0 1 0

, 4 1 1 ) (∅, 0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

) ↔ ( 0 0 1
1 0 0
0 1 0

, 4 1 ) (∅, 0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) ↔ ( 1 0 0
0 1 0
0 0 1

, 4 2 )
(∅, 0 1 0 0

1 −1 1 0
0 1 −1 1
0 0 1 0

) ↔ ( 1 0 0
0 1 0
0 0 1

, 4 1 ) (∅, 0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0

) ↔ ( 1 0 0
0 1 0
0 0 1

, 4 ) (∅, 0 1 0 0
0 0 1 0
1 0 −1 1
0 0 1 0

) ↔ ( 0 1 0
0 0 1
1 0 0

, 4 ) (∅, 0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

) ↔ ( 1 0 0
0 0 1
0 1 0

, 4 1 1 )
(∅, 0 1 0 0

1 −1 1 0
0 0 0 1
0 1 0 0

) ↔ ( 1 0 0
0 1 0
0 0 1

, 4 1 1 ) (∅, 0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

) ↔ ( 0 0 1
0 1 0
1 0 0

, 4 ) (∅, 0 1 0 0
0 0 1 0
1 −1 0 1
0 1 0 0

) ↔ ( 1 0 0
0 0 1
0 1 0

, 4 2 ) (∅, 0 1 0 0
0 0 0 1
1 −1 1 0
0 1 0 0

) ↔ ( 1 0 0
0 0 1
0 1 0

, 4 )
(∅, 0 1 0 0

0 0 1 0
0 0 0 1
1 0 0 0

) ↔ ( 0 1 0
1 −1 1
0 1 0

, 4 1 ) (∅, 0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

) ↔ ( 1 0 0
0 0 1
0 1 0

, 4 1 ) ( 2 ,
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

) ↔ ( 1 0 0
0 1 0
0 0 1

, 4 3 ) ( 2 ,
0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1

) ↔ ( 0 1 0
1 0 0
0 0 1

, 4 3 )
( 2 ,

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

) ↔ ( 0 1 0
1 0 0
0 0 1

, 4 2 ) ( 2 ,
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) ↔ ( 1 0 0
0 0 1
0 1 0

, 4 3 ) ( 2 ,
0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

) ↔ ( 0 1 0
1 −1 1
0 1 0

, 4 3 ) ( 2 ,
0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0

) ↔ ( 0 0 1
1 0 0
0 1 0

, 4 3 )
( 2 ,

0 1 0 0
0 0 1 0
1 0 −1 1
0 0 1 0

) ↔ ( 0 1 0
1 −1 1
0 1 0

, 4 2 ) ( 2 ,
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

) ↔ ( 0 0 1
1 0 0
0 1 0

, 4 2 ) ( 2 ,
0 1 0 0
1 −1 1 0
0 0 0 1
0 1 0 0

) ↔ ( 0 1 0
0 0 1
1 0 0

, 4 3 ) ( 2 ,
0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

) ↔ ( 0 0 1
0 1 0
1 0 0

, 4 3 )
( 2 ,

0 1 0 0
0 0 1 0
1 −1 0 1
0 1 0 0

) ↔ ( 0 1 0
0 0 1
1 0 0

, 4 2 ) ( 2 ,
0 1 0 0
0 0 0 1
1 −1 1 0
0 1 0 0

) ↔ ( 0 0 1
0 1 0
1 0 0

, 4 2 ) ( 2 ,
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

) ↔ ( 0 1 0
0 0 1
1 0 0

, 4 1 ) ( 2 ,
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

) ↔ ( 0 0 1
0 1 0
1 0 0

, 4 1 )
( 3 3 ,

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

) ↔ ( 1 0 0
0 1 0
0 0 1

, 4 2 1 ) ( 3 3 ,
0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1

) ↔ ( 1 0 0
0 1 0
0 0 1

,
4 3 1

2 ) ( 3 3 ,
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

) ↔ ( 0 0 1
1 0 0
0 1 0

,
4 3 2

2 ) ( 3 3 ,
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) ↔ ( 1 0 0
0 1 0
0 0 1

, 4 2 2 )
( 3 3 ,

0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

) ↔ ( 1 0 0
0 1 0
0 0 1

,
4 3 2

2 ) ( 3 3 ,
0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0

) ↔ ( 1 0 0
0 1 0
0 0 1

,
4 3 3

2 ) ( 3 3 ,
0 1 0 0
0 0 1 0
1 0 −1 1
0 0 1 0

) ↔ ( 0 1 0
0 0 1
1 0 0

,
4 3 3

2 ) ( 3 3 ,
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

) ↔ ( 0 1 0
1 −1 1
0 1 0

,
4 3 3

2 )
( 3 3 ,

0 1 0 0
1 −1 1 0
0 0 0 1
0 1 0 0

) ↔ ( 0 1 0
1 0 0
0 0 1

,
4 3 2

2 ) ( 3 3 ,
0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

) ↔ ( 0 0 1
0 1 0
1 0 0

,
4 3 3

2 ) ( 3 3 ,
0 1 0 0
0 0 1 0
1 −1 0 1
0 1 0 0

) ↔ ( 1 0 0
0 0 1
0 1 0

,
4 3 1

2 ) ( 3 3 ,
0 1 0 0
0 0 0 1
1 −1 1 0
0 1 0 0

) ↔ ( 1 0 0
0 0 1
0 1 0

,
4 3 3

2 )
( 3 3 ,

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

) ↔ ( 0 1 0
1 −1 1
0 1 0

,
4 3 2

2 ) ( 3 3 ,
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

) ↔ ( 1 0 0
0 0 1
0 1 0

,
4 3 2

2 ) ( 3 3
2 ,

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

) ↔ ( 1 0 0
0 1 0
0 0 1

,
4 3

2 ) ( 3 3
2 ,

0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1

) ↔ ( 0 1 0
1 0 0
0 0 1

,
4 3

2 )
( 3 3

2 ,
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

) ↔ ( 0 1 0
1 0 0
0 0 1

,
4 3 1

2 ) ( 3 3
2 ,

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) ↔ ( 1 0 0
0 0 1
0 1 0

,
4 3

2 ) ( 3 3
2 ,

0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

) ↔ ( 0 1 0
1 −1 1
0 1 0

,
4 3

2 ) ( 3 3
2 ,

0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0

) ↔ ( 0 0 1
1 0 0
0 1 0

,
4 3

2 )
( 3 3

2 ,
0 1 0 0
0 0 1 0
1 0 −1 1
0 0 1 0

) ↔ ( 0 1 0
1 −1 1
0 1 0

,
4 3 1

2 ) ( 3 3
2 ,

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

) ↔ ( 0 0 1
1 0 0
0 1 0

,
4 3 1

2 ) ( 3 3
2 ,

0 1 0 0
1 −1 1 0
0 0 0 1
0 1 0 0

) ↔ ( 0 1 0
0 0 1
1 0 0

,
4 3

2 ) ( 3 3
2 ,

0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

) ↔ ( 0 0 1
0 1 0
1 0 0

,
4 3

2 )
( 3 3

2 ,
0 1 0 0
0 0 1 0
1 −1 0 1
0 1 0 0

) ↔ ( 0 1 0
0 0 1
1 0 0

,
4 3 1

2 ) ( 3 3
2 ,

0 1 0 0
0 0 0 1
1 −1 1 0
0 1 0 0

) ↔ ( 0 0 1
0 1 0
1 0 0

,
4 3 1

2 ) ( 3 3
2 ,

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

) ↔ ( 0 1 0
0 0 1
1 0 0

,
4 3 2

2 ) ( 3 3
2 ,

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

) ↔ ( 0 0 1
0 1 0
1 0 0

,
4 3 2

2 )
( 3 2 ,

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

) ↔ ( 1 0 0
0 1 0
0 0 1

, 4 3 3 ) ( 3 2 ,
0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1

) ↔ ( 0 1 0
1 0 0
0 0 1

, 4 3 3 ) ( 3 2 ,
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

) ↔ ( 0 1 0
1 −1 1
0 1 0

, 4 ) ( 3 2 ,
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) ↔ ( 1 0 0
0 0 1
0 1 0

, 4 3 3 )
( 3 2 ,

0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

) ↔ ( 0 1 0
1 −1 1
0 1 0

, 4 3 3 ) ( 3 2 ,
0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0

) ↔ ( 0 0 1
1 0 0
0 1 0

, 4 3 3 ) ( 3 2 ,
0 1 0 0
0 0 1 0
1 0 −1 1
0 0 1 0

) ↔ ( 1 0 0
0 0 1
0 1 0

, 4 2 2 ) ( 3 2 ,
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

) ↔ ( 0 0 1
1 0 0
0 1 0

, 4 1 1 )
( 3 2 ,

0 1 0 0
1 −1 1 0
0 0 0 1
0 1 0 0

) ↔ ( 0 1 0
0 0 1
1 0 0

, 4 3 3 ) ( 3 2 ,
0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

) ↔ ( 0 0 1
0 1 0
1 0 0

, 4 3 3 ) ( 3 2 ,
0 1 0 0
0 0 1 0
1 −1 0 1
0 1 0 0

) ↔ ( 0 1 0
1 0 0
0 0 1

, 4 1 1 ) ( 3 2 ,
0 1 0 0
0 0 0 1
1 −1 1 0
0 1 0 0

) ↔ ( 0 1 0
1 0 0
0 0 1

,
4 3 3

2 )
( 3 2 ,

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

) ↔ ( 0 1 0
1 0 0
0 0 1

, 4 1 ) ( 3 2 ,
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

) ↔ ( 0 0 1
1 0 0
0 1 0

,
4 3 3

2 ) ( 3 1 ,
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

) ↔ ( 1 0 0
0 1 0
0 0 1

, 4 3 2 ) ( 3 1 ,
0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1

) ↔ ( 0 1 0
1 0 0
0 0 1

, 4 3 2 )
( 3 1 ,

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

) ↔ ( 0 1 0
1 0 0
0 0 1

, 4 2 2 ) ( 3 1 ,
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) ↔ ( 1 0 0
0 0 1
0 1 0

, 4 3 2 ) ( 3 1 ,
0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

) ↔ ( 0 1 0
1 −1 1
0 1 0

, 4 3 2 ) ( 3 1 ,
0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0

) ↔ ( 0 0 1
1 0 0
0 1 0

, 4 3 2 )
( 3 1 ,

0 1 0 0
0 0 1 0
1 0 −1 1
0 0 1 0

) ↔ ( 0 1 0
1 −1 1
0 1 0

, 4 2 2 ) ( 3 1 ,
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

) ↔ ( 0 0 1
1 0 0
0 1 0

, 4 2 2 ) ( 3 1 ,
0 1 0 0
1 −1 1 0
0 0 0 1
0 1 0 0

) ↔ ( 0 1 0
0 0 1
1 0 0

, 4 3 2 ) ( 3 1 ,
0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

) ↔ ( 0 0 1
0 1 0
1 0 0

, 4 3 2 )
( 3 1 ,

0 1 0 0
0 0 1 0
1 −1 0 1
0 1 0 0

) ↔ ( 0 1 0
0 0 1
1 0 0

, 4 2 2 ) ( 3 1 ,
0 1 0 0
0 0 0 1
1 −1 1 0
0 1 0 0

) ↔ ( 0 0 1
0 1 0
1 0 0

, 4 2 2 ) ( 3 1 ,
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

) ↔ ( 0 1 0
1 0 0
0 0 1

, 4 ) ( 3 1 ,
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

) ↔ ( 0 0 1
1 0 0
0 1 0

, 4 )
( 3 ,

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

) ↔ ( 1 0 0
0 1 0
0 0 1

, 4 3 1 ) ( 3 ,
0 1 0 0
1 −1 1 0
0 1 0 0
0 0 0 1

) ↔ ( 0 1 0
1 0 0
0 0 1

, 4 3 1 ) ( 3 ,
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

) ↔ ( 0 1 0
1 0 0
0 0 1

, 4 2 1 ) ( 3 ,
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

) ↔ ( 1 0 0
0 0 1
0 1 0

, 4 3 1 )
( 3 ,

0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0

) ↔ ( 0 1 0
1 −1 1
0 1 0

, 4 3 1 ) ( 3 ,
0 1 0 0
1 −1 0 1
0 1 0 0
0 0 1 0

) ↔ ( 0 0 1
1 0 0
0 1 0

, 4 3 1 ) ( 3 ,
0 1 0 0
0 0 1 0
1 0 −1 1
0 0 1 0

) ↔ ( 0 1 0
1 −1 1
0 1 0

, 4 2 1 ) ( 3 ,
0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

) ↔ ( 0 0 1
1 0 0
0 1 0

, 4 2 1 )
( 3 ,

0 1 0 0
1 −1 1 0
0 0 0 1
0 1 0 0

) ↔ ( 0 1 0
0 0 1
1 0 0

, 4 3 1 ) ( 3 ,
0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

) ↔ ( 0 0 1
0 1 0
1 0 0

, 4 3 1 ) ( 3 ,
0 1 0 0
0 0 1 0
1 −1 0 1
0 1 0 0

) ↔ ( 0 1 0
0 0 1
1 0 0

, 4 2 1 ) ( 3 ,
0 1 0 0
0 0 0 1
1 −1 1 0
0 1 0 0

) ↔ ( 0 0 1
0 1 0
1 0 0

, 4 2 1 )
( 3 ,

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

) ↔ ( 0 1 0
0 0 1
1 0 0

, 4 1 1 ) ( 3 ,
0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0

) ↔ ( 0 0 1
0 1 0
1 0 0

, 4 1 1 )
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A short introduction to signed sets

A signed set is a pair of disjoint finite sets: S = (S+, S−) with S+ ∩S− = ∅.
● The size of a signed set S is ∣S∣ = ∣S+∣ − ∣S−∣.
● The opposite signed set of S is −S = (S−, S+).
● The Cartesian product of signed sets S and T is

S × T = (S+ × T + ∪ S− × T −, S+ × T − ∪S− × T +).

● The disjoint union of signed sets S and T is

S ⊔ T = (S × ({0},∅)) ∪ (T × ({1},∅)).

● The disjoint union of a family of signed sets St indexed with a signed set T is

⊔
t∈T
St = ⋃

t∈T
(St × {t}).
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Our approach

● We translate some of my non-bijective proofs into combinatorics!

● Note that ∣S ⊔T ∣ = ∣S∣ + ∣T ∣, ∣ −S∣ = −∣S∣, and ∣S ×T ∣ = ∣S∣ ⋅ ∣T ∣, and so we

can deal with all arithmetic operations accept for division. (The

latter explains the “redundant” factors in our bijections.)

● In the original proofs, signs are unavoidable and this makes it nec-

essary to work with signed sets.

● Is there a non-bijective proof that avoids signs? Is there a bijective

proof that avoids signed sets (and can this proof be translated into

a computation)?
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Crucial example: Signed intervals

For a, b ∈ Z, we set

[a, b] = ⎧⎪⎪⎨⎪⎪⎩
([a, b],∅) if a ≤ b
(∅, [b + 1, a − 1]) if a > b ,

where [a, b] stands for an interval in Z in the usual sense.

The signed sets in our constructions are typically signed boxes (=

Cartesian products of signed intervals) and disjoint unions of signed

boxes.

97



Sijections

The role of bijections for signed sets is played by “signed bijections”, which we call
sijections.

A sijection ϕ from S to T , ϕ∶S ⇒ T , is an involution on the set (S+ ∪ S−) ⊔ (T + ∪ T −)
with ϕ(S+ ⊔ T −) = S− ⊔ T +.

S+

S

T+

T

U+

U

S+

S

T+

T

This implies: ∣S∣ = ∣S+∣ − ∣S−∣ = ∣T +∣ − ∣T −∣ = ∣T ∣
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The fundamental sijection

Given a, b, c ∈ Z, construct a sijection

α = αa,b,c∶ [a, c]⇒ [a, b] ⊔ [b + 1, c].
Construction: For a ≤ b ≤ c and c < b < a, there is nothing to prove. For, say, a ≤ c < b,
we have that [b + 1, c] = −[c + 1, b] is “contained” in [a, b], but due to its opposite sign

this subset “cancels” and what remains is [a, c].

ca b

The cases b < a ≤ c, b ≤ c < a, and c < a ≤ b are analogous.
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Cartesian product and disjoint union of sijections

● S1 ×⋯×Sk⇒T 1 ×⋯×T k: Suppose we have sijections ϕi∶Si⇒ T i, i = 1, . . . , k. Then define ϕ = ϕ1 ×⋯×ϕk
by

ϕ(s1, . . . , sk) = {(ϕ1(s1), . . . , ϕk(sk)) if ϕi(si) ∈ T i for i = 1, . . . , k(s1, . . . , sj−1, ϕj(sj), sj+1, . . . , sk) if ϕj(sj) ∈ Sj, ϕi(si) ∈ T i for i < j
if (s1, . . . , sk) ∈ S1 × ⋅ ⋅ ⋅ ×Sk and

ϕ(t1, . . . , tk) = {(ϕ1(t1), . . . , ϕk(tk)) if ϕi(ti) ∈ Si for i = 1, . . . , k(t1, . . . , tj−1, ϕj(tj), tj+1, . . . , tk) if ϕj(tj) ∈ T j, ϕi(ti) ∈ Si for i < j
if (t1, . . . , tk) ∈ T 1 × ⋅ ⋅ ⋅ × T k.
● ⊔t∈T St⇒⊔t∈T̃ St: Suppose we have signed sets T , T̃ and a sijection ψ∶T ⇒ T̃ . Furthermore, suppose

that for every t ∈ T ⊔ T̃ , we have a signed set St and a sijection ϕt∶St⇒ Sψ(t) satisfying ϕψ(t) = ϕ−1t . Then
define ϕ = ⊔t∈T⊔T̃ ϕt by

ϕ(st, t) = {(ϕt(st), t) if st ∈ St, ϕt(st) ∈ St(ϕt(st), ψ(t)) if st ∈ St, ϕt(st) ∈ Sψ(t) .
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Composition of sijections

Suppose S,T ,U are signed sets and ϕ ∶ S ⇒ T , ψ ∶ T ⇒ U , then we can construct a
sijection ψ○ϕ ∶ S → U by alternating applications of ϕ (solid lines) and ψ (dashed lines)
as sketched next.

S+

S

T +

T

U+

U

S+

S

T +

T

The special case S− = U− = ∅ is the Garsia-Milne involution principle.
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VII. DASASMs and the six-vertex model approach
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Symmetry classes of ASMs

● Vertically symmetric ASMs: ai,j = ai,n+1−j
n odd: Kuperberg (2002)

● Half-turn symmetric ASMs: ai,j = an+1−i,n+1−j
n even: Kuperberg (2002)

n odd: Razumov/Stroganov (2005)

● Diagonally symmetric ASMs: ai,j = aj,i
no formula ?

● Quarter-turn symmetric ASMs: ai,j = aj,n+1−i
n even: Kuperberg (2002)

n odd: Razumov/Stroganov (2005)
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Symmetry classes of ASMs (Part 2)

● Horizontally and vertically symmetric ASMs: ai,j = ai,n+1−j =
an+1−i,j
n odd: Okada (2004)

● Diagonally and antidiagonally symmetric ASMs: ai,j = aj,i =
an+1−j,n+1−i
n odd: Conjecture by Robbins (1980s)

● All symmetries: ai,j = aj,i = ai,n+1−j
no formula ?

Half of the cases were dealt with in a famous Annals paper by Kuper-

berg (2002):

Symmetry classes of alternating sign matrices under one roof
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Diagonally and antidiagonally symmetric ASMs=DASASMs

Example:

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0
0 1 −1 0 1 0 0
1 −1 0 1 −1 1 0
0 0 1 −1 1 0 0
0 1 −1 1 0 −1 1
0 0 1 0 −1 1 0
0 0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

d(n) = number of n ×n DASASMs

Conjecture (Robbins, 1980s): d(2n + 1) = n∏
i=1

(3ii )(2i−1i )
Sequence starts as follows: 1,3,15,126,1782,42471,1706562 . . .
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DASASM-triangles

● DASASM ⇒ fundamental triangle (DASASM-triangle)

0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 −1 0 1 0 0 0

0 0 0 0 0 0 0 1 0
0 1 −1 0 1 0 −1
−1 0 1 −1 0

1 0 0
−1
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Translation into six-vertex model:

● DASASM-triangle ⇒ orientations of triangular graph

Orient edges such that

● all degree 4 vertices are “balanced”, and

● all top edges are oriented upward.

1-1 correspondence with fundamental domains of DASASMs
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Example

0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 −1 0 1 0 0 0

0 0 0 0 0 0 0 1 0
0 1 −1 0 1 0 −1
−1 0 1 −1 0

1 0 0
−1
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Dictionary

degree 4 vertices
1 -1 0 0 0 0

left boundary
1 -1 0 0

right boundary
1 -1 0 0

bottom vertex
1 -1
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Why does this work?

1

0
0
0
1
0
0
−1
0
1
0 0 −1 0 0 1

−1
0
0
0
1
0
0
0

−1

● Along straight lines, change orientation iff you encounter ±1.
● As for turns, change orientation iff you encounter 0.

110



Weighted enumeration

● Principle: sometimes it is easier to prove a generalization!

● Assign to each vertex v a weight W(v).
●Weight W(C) of a configuration (=orientation of the triangular graph

Tn):
W(C) = ∏

v∈CW(v)
● Generating function (partition function):

Zn = ∑
C admissible orientation of order n triangular graph

W(C)

● Specialization of the parameters will give the number of configura-

tions, i.e. the number of (2n + 1) × (2n + 1) DASASMs.
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Very strange vertex weights

The weight of a vertex depends on the orientations of the surrounding

edges and the label of the vertex.

Notation: x−1 = x̄ and σ(x) = x − x̄; u is the label and q is a global

parameter.

Bulk vertices Left boundary Right boundary

W( , u) =W( , u) = 1 W( , u) =W( , u) = 1 W( , u) =W( , u) = 1
W( , u) =W( , u) = σ(q2u)

σ(q4) W( , u) =W( , u) = σ(qu)
σ(q)

W( , u) =W( , u) = σ(q2ū)
σ(q4) W( , u) =W( , u) = σ(qū)

σ(q)

All degree 1 vertices have weight 1.

If u = 1 and q = eiπ/6, all weights are 1!
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Label of a vertex

Each colored path is assigned a parameter ui as follows.

u1u1 u2 u2u3 u3u4 u4

u4

u5 u5u6

u2u5

● A degree 4 vertex is

contained in two col-

ored paths ui and uj ⇒
label uiuj
● All boundary vertices

have a unique path ui

⇒ label ui

Generating function: Zn(u1, . . . , un;un+1).
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Yang-Baxter equation

Theorem. If xyz = q2 and o1, o2, . . . , o6 ∈ {in,out}, then

= xx

y

y z

z

o6o6

o5 o5

o4o4

o3o3

o2o2

o1o1

.

A diagram stands for the generating function of all orientations of the graph such
that the external edges have the prescribed orientations o1, o2, . . . , o6, degree 4 vertices
are balanced, and the vertex weights are as given in the table, where the letter close
to a vertex indicates its label (rotate until the label is in the SW corner).
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Left and right reflection equation

Theorem (Reflection equations). Suppose o1, o2, o3, o4 ∈ {in,out}. If
x = q2ūv and y = uv, then

=
x

x

y yu

u

v

v

o1o1 o2o2

o3 o3

o4 o4 ,

and if x = q2ūv and y = ūv̄, then

=

x

x
yy u

u

v

vo1 o1

o2 o2

o3 o3 o4o4

.

⇒ Symmetry of Zn(u1, . . . , un;un+1) in u1, . . . , un.
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u1 u2 u3 u4 u1u2u3 u1 u3 u2 u4
x2

u1u2u3 u1 u3 u2 u4

x2

u1u2u3

u1 u3 u2 u4

x2

u1u2u3 u1 u3 u2 u4

x2

u1u2u3 u1 u3 u2 u4

x2

u1u2u3

u1 u3 u2 u4
x2

u1u2u3 u1 u3 u2 u4 u1u3u2
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Another important property

Lemma.

Zn(u1, . . . , un; q2ū1)
= 1
2
((W( , u1) +W( , u1) +W( , u1) +W( , u1))Zn−1(u2, . . . , un;u1)

+(−1)n+1(W( , u1) +W( , u1) −W( , u1) −W( , u1))Zn−1(u2, . . . , un;−u1))Ω,
where

Ω =W( , u1) n

∏
i=2

W( , u1ui)W( , q2ū1ui).
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Zn(u1, . . . , un;un+1) at un+1 = 1
Theorem (BFK 2015).

Zn(u1, . . . , un;1)
= σ(q2)n
σ(q)2nσ(q4)n2

n∏
i=1σ(qui)σ(qūi)σ(q

2ui)σ(q2ūi)

× ∏
1≤i<j≤n(

σ(q2uiuj)σ(q2ūiūj)
σ(uiūj) )

2

det1≤i,j≤n( q2 + q̄2 + u2i + ū2j
σ(q2uiuj)σ(q2ūiūj)).

Yet another problem: If we set (u1, . . . , un) = (1, . . . ,1), then we obtain
0
0.
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Schur function expression for Zn(u1, . . . , un; 1) at

q = eiπ/6
Theorem (BFK 2015).

Zn(u1, . . . , un;1)∣q=eiπ/6 = 3−(n2)
× s(n,n−1,n−1,n−2,n−2,...,1,1)(u21, ū21, . . . , u2n, ū2n,1)

Now we may use the formula

sλ(1, . . . ,1) = ∏
1≤i<j≤k

λi − λj + j − i
j − i

to conclude the proof of the DASASM (ex-)conjecture.
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Thanks for the interest!
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