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The Chain Polynomial

Let L be a finite Partially Ordered Set (poset) and cx(L) be the
number of k-element chains of L.
We consider the chain polynomial of L

pr(x) = F(A(L), x) =) cr(L)x*

k>0

which is the f-polynomial of the order complex A(L) of L.

@ A(L) is the set of all chains of L (it is a simplicial complex)
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The h-polynomial

For some purposes we may focus on the corresponding
h-polynomial of the poset.

) = (L)) = (1= x)p () =

1—x

= ch 1 —X)n_k

where n is the largest size of a chain in L.
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The h-polynomial

hL(X) =ho+ hx+ -+ hyx"

where the coefficients add to the number of n-chains of L.

e If L is Cohen-Macaulay the h-polynomial has nonnegative
coefficients

o If L has an R-labeling the coefficients of h;(x) are given a
combinatorial interpretation
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R-labelings

o Let A: C(L) — N be an edge labeling of the diagram of
L.

@ We say that A is an R-labeling of L if in each closed interval
[x,y] of L there exists a unique increasing maximal chain.

If X is an R-labeling of L we get that h;(x) = Zxdes(w)
C

where ¢ runs in the maximal chains of L
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The Boolean Algebra

Example: Let L, be the lattice of subsets of [n]
(Boolean algebra of rank n)

a3
3 9 1
14 s 3 .23
2 ¥ L
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3, 2 >
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The Eulerian Polynomial

hiy(x) = An(x) = 3 s

WEGn

which is the classical n-th

Polynomial
that counts

in the Symmetric Group
1
1+x
Ap(x) =14+ 4x+x°
14+ 11x+11x% + x3
1+ 26x + 66x2 4 26x3 + x*

n=1
n=
n=
n=
n=>5
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The Eulerian Polynomial

The Eulerian polynomial A,(x) = ap + aix +

@ unimodal

ap<a<---<ag > At =

@ palindromic
ak = dn—1—k

@ log-concave
2
aj > Ak—13k+1

e + anilxn_

1

is
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The Eulerian Polynomial

@ gamma-positive

An(x) = Z 'ykxk(l + x)"flfzk
k>0

Yk > 0 for every k

e real-rooted
every root of A,(x) is real
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Real-rootedness

These are properties we often encounter in algebraic and geometric
combinatorics.

We focus on the property of real-rootedness
which has strong implications for a polynomial.
Let f(x) = fo+ fix+ -+ + fx" be a polynomial with nonnegative
integer coefficients.
If it is real-rooted, then:
@ it is unimodal
@ it is log-concave

e if it is also palindromic, it is gamma-positive
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Question: For which finite posets does the chain
polynomial (equivalently the h-polynomial) have
only real roots?
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The Poset Conjecture

It is not true for all finite posets!

Conjecture ( , 1979)

The chain polynomial of every finite distributive lattice is
real-rooted

@ equivalent to the poset conjecture

e it was finally disproved by Brandén and Stembridge (2007)
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Some positive results

e (3+ 1)—avoiding posets (Stanley, 1998)

@ the face lattices of simplicial (and simple) polytopes
(Brenti-Welker, 2008)

o the face lattices of cubical polytopes (Athanasiadis, 2020)
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New results

Theorem (Athanasiadis, K. E. 2022-2023)

the face lattice of Pyr(P) and Prism(P), when the face lattice
of P has a real-rooted h-polynomial

the lattices of flats of near-pencils and uniform matroids
the subspace lattice L,(q)
the partition lattices I, and N&

the noncrossing partition lattice NC(W) for every finite
irreducible Coxeter group W

rank-selected subposets of Cohen-Macaulay simplicial posets
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Faces Lattices of Polytopes

@ the face lattice of Pyr(P) and Prism(P), when the face lattice
of P has a real-rooted h-polynomial

This gives new families of convex polytopes whose face lattice has
real-rooted chain polynomial

Question: Is it true for all convex polytopes? ( 2008)
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Geometric Lattices

@ the lattices of flats of near-pencils and uniform matroids
@ the subspace lattice L,(q)
@ the partition lattices M, and N5

These are examples of geometric (atomic and semimodular)
lattices.
Geometric Lattices are exactly the lattices of flats of matroids!
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Geometric Lattices

Conjecture

Every finite geometric lattice has a real-rooted chain polynomial.

It would give an affirmative answer to the challenging open problem
of the unimodality of the h-polynomial of a geometric lattice.

Theorem ( , 2004)
Let L be a geometric lattice of rank n and let

hi(x) = ho + hix+ -+ + ap_1x" !

Then:
° hOShlg“‘Sth;lJ
2
© hi < hp1-ifor0<i<hn,
2
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New results

@ the noncrossing partition lattice NC(W) for every finite
irreducible group W

@ rank-selected subposets of simplicial posets

Our main question fails for all Cohen-Macaulay posets. But is true
for many families of doubly Cohen-Macaualay posets.

Is it true for all doubly Cohen-Macaulay posets?
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In this talk, we will present results for these two classes of posets:

@ the Partition Lattices

@ the Noncrossing Partition Lattices
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The Partition Lattice

The partition lattice 1, consists of all set partitions of [n], partially
ordered by reverse refinement.

X3 ’Xj
X-'Y3 X=X, 123

12/3 13/2 1/23

1/2/3

Aq M 7

It is the intersection lattice of the type A braid arrangement
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The Partition Lattice

1
1+ 2x

14 11x + 6x2

1+ 47x 4 108x? + 24x3

1+ 197x + 1268x2 + 1114x3 + 120x*

1 4 870x + 13184x2 + 29383x3 + 12542x* + 720x°

nl(n—1)!
2n—1

The number of maximal chains of 1, is

Theorem (Athanasiadis, K. E. 2022-2023)

The chain polynomial of the partition lattice is real-rooted.
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The Partition Lattice type A

n, () = 3 x4()

oEA,
Ap={1} x {1,1,2} x -+ x {1,---,1,--- ,n—2,n—2,n—1}

Ay consists of

1|1|1 with multiplicity 6
1112 with multiplicity 4
1|13 with multiplicity 2
12|1 with multiplicity 3
12|2 with multiplicity 2
123 with multiplicity 1
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Sketch of Proof

@ combinatorial interpretation: we used Gessel's R-labeling.

If y covers x in [, then y is obtained from x by merging two
blocks of x, By and B;.
We set A(x, y) = max{min(Bj), min(B)}
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Sketch of Proof

@ real-rootedness: we used the method of interlacing
polynomials

Let f(x), g(x) be real-rooted polynomials.
e f(x) interlaces g(x) (f(x) = g(x)) :
their roots are interpolating with g(x) having the largest root

f"

Ay ar 4
T ALK A

J

e if f(x) = g(x) then f(x)+g(x) is real-rooted
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Sketch of Proof

For k € [n— 1] we set hpk(x) = > ca , xdes(7)

where A, « is the multiset of words (01,02, ,0,-1) € A, with
on-1=k
n—1
b, (x) = hy1n(x) =D bnk(x)
k=1

hn+1,k( ) n+1— (Zhnl(x +thnl )
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Sketch of Proof

by induction on n we prove that:

(hn,n—1(x), hnn—2(x), -+, B 1(x))

is an interlacing sequence of polynomials

so hn,(x) = ZZ;} hn k(x) is real-rooted
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The Partition Lattice type B

The partition lattice M2 can be defined as the intersection lattice
of the type B braid arrangement.

The number of maximal chains of M8 is (n!)?

14 3x

1+ 20x + 15x2

hps(x) = ¢ 14 111x + 359x2 + 105x3

1+ 642x + 5978x2 + 6834x3 + 945x*

1 + 4081x + 92476x> 4 268236x3 + 143211x* + 10395x>

Theorem (Athanasiadis, K. E. 2022-2023)

The h-polynomial of the Partition Lattice of type B is real-rooted.
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The partition lattice type B

h|-|B Z Xdes(cr

oc€eB,
B,={1} x{1,1,1,2} x ---x{1,---,1,--- ,n—1,n—1,n—1,n}

B3 consists of

11|1 with multiplicity 15
1|12 with multiplicity 9
1|13 with multiplicity 3
12|1 with multiplicity 5
12|2 with multiplicity 3
123 with multiplicity 1
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The Noncrossing Partition Lattice

Let W be a finite irreducible Coxeter group.

Definition (absolute order)

We define a partial order < on W, called the absolute order, by
letting a < b if there exists a shortest factorization of a in
reflections which is a prefix of a shortest factorization of b into
reflections.

We set NC(W) = [e, 7] where e is the identity and ~y is a Coxeter
element of W.
It is called the Noncrossing Partition Lattice.
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Noncrossing Partition Lattice

Noncrossing partitions are central objects of study in
Catalan-Coxeter combinatorics.

Chains enumeration in noncrossing partition lattices has been
studied by:
e Edelman (1980)
Reiner (1997)
Stanley (1997)
Athanasiadis-Reiner (2004)
Reading (2008)
Kim (2011)
Chapuy-Douvropoulos (2022)
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Noncrossing Partition Lattice

Theorem (Athanasiadis, K. E. 2022-2023)

The noncrossing partition lattice NC(W) has a real-rooted chain
polynomial for every irreducible finite Coxeter group W.
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Noncrossing Partition Lattice for type A

Let W = A,—1 (symmetric group of degree n)

@ The elements of NC(A,_1) can be viewed as the set partitions
of [n] that "do not cross”

{{1,3},{2,4}} is not in NC(As)

@ The cardinality of NC(A,_1) is given by the nth Catalan

number C, = n}rl (2:)
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Noncrossing Partition Lattice for type A

e NC(A,-1) has "2 maximal chains

® hnc(a,_,)(x) counts chains on the set of parking functions of
length n-1 (Pp—1)

1
_ des(w) __ des(w
hncea, p(x) = D, x*W == 7 xde)

weP,_1 WE[n]"_l

P3

123,132, 2|13, 23|1, 3]12, 3|2|1 1|12, 12|1,2|1]1,
1|13,13|1,3|1,12, 212, 2|2|1,1]1|1
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Noncrossing Partition Lattice for type B

Let W = B, (the hyperoctahedral group of degree n)

e NC(B,) has n" maximal chains

des(w)
huc(e)(x) = D x

we([n]"

n=3

123,132, 2(13,23|1, 3/12, 3|2|1
1]12,12|1,2[1|1, 1|13, 13|1, 3|1|1,2[23,23|2, 3]2|2
1]1/1,2)2|2,3/3|3
12)2,2(12,2|2|1,23|3, 3|23, 3/3|2, 133, 3/13, 3|3|1
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Noncrossing Partition Lattice for type D

e NC(Dp) has 2(n— 1)" maximal chains

hNC Dy Z Xdes(w)
weD,
Dp = {(£w1,wa, - ,wy) : wi,wo, -+, w, € [n—1]}
and k is considered a if [wi| > |wis1| or wx = wyy1 >0
n=3

112 12]1 211 122 212 221 111 222
—112 —12)1 —2[11 —1202 —212 —22]1 —11]1 —222
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Noncrossing Partition Lattices for the Dihedral and the Exceptional Groups

hnewy(x) =

1+ (n—1)x if W=1I,
1+ 28x + 21x? if W = Hjs
14 275x + 842x? 4 232x3 if W= H,
1 + 100x + 265x2 + 66x3 if W=F,
1 4 826x + 10778x% + 21308x3 + 8141x* + 418x°
if W=Es
1 + 4152x + 110958x2 + 446776x> + 412764x%
+85800x° 4 2431x° if W=E

1+ 25071x + 1295238x? + 9523785x3 + 17304775x*

+8733249x5 + 1069289x° + 17342x"  if W = Fg
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Last Remarks

@ Can we use the methods we develop it this research to attack
other interesting problems?

@ The h*-polynomials come from counting lattice points in
lattice polytopes and behave similarly to the h-polynomials.

Question: Are the h*-polynomials of matroid polytopes unimodal?
Are they real-rooted?
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Thank you for your attention!
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