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The Chain Polynomial

Let L be a finite Partially Ordered Set (poset) and ck(L) be the
number of k-element chains of L.
We consider the chain polynomial of L

pL(x) = f (∆(L), x) =
∑
k≥0

ck(L)x
k

which is the f-polynomial of the order complex ∆(L) of L.

∆(L) is the set of all chains of L (it is a simplicial complex)
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The h-polynomial

For some purposes we may focus on the corresponding
h-polynomial of the poset.

hL(x) = h(∆(L), x) = (1− x)npL

(
x

1− x

)
=

=
∑
k≥0

ck(L)x
k(1− x)n−k

where n is the largest size of a chain in L.
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The h-polynomial

hL(x) = h0 + h1x + · · ·+ hnx
n

where the coefficients add to the number of n-chains of L.

If L is Cohen-Macaulay the h-polynomial has nonnegative
coefficients

If L has an R-labeling the coefficients of hL(x) are given a
combinatorial interpretation
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R-labelings

Let λ : C (L) → N be an edge labeling of the Hasse diagram of
L.

We say that λ is an R-labeling of L if in each closed interval
[x , y ] of L there exists a unique increasing maximal chain.

If λ is an R-labeling of L we get that hL(x) =
∑
c
xdes(w)

where c runs in the maximal chains of L
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The Boolean Algebra

Example: Let Ln be the lattice of subsets of [n]
(Boolean algebra of rank n)
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The Eulerian Polynomial

hLn(x) = An(x) =
∑
w∈Sn

xdes(w)

which is the classical n-th Eulerian Polynomial
that counts descents in the Symmetric Group

An(x) =



1 n = 1

1 + x n = 2

1 + 4x + x2 n = 3

1 + 11x + 11x2 + x3 n = 4

1 + 26x + 66x2 + 26x3 + x4 n = 5
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The Eulerian Polynomial

The Eulerian polynomial An(x) = a0 + a1x + · · ·+ an−1x
n−1 is

unimodal

a0 ≤ a1 ≤ · · · ≤ ak ≥ ak+1 ≥ · · · ≥ an−1

palindromic
ak = an−1−k

log-concave
a2k ≥ ak−1ak+1
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The Eulerian Polynomial

gamma-positive

An(x) =
∑
k≥0

γkx
k(1 + x)n−1−2k

γk ≥ 0 for every k

real-rooted
every root of An(x) is real
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Real-rootedness

These are properties we often encounter in algebraic and geometric
combinatorics.
We focus on the property of real-rootedness
which has strong implications for a polynomial.
Let f (x) = f0 + f1x + · · ·+ fnx

n be a polynomial with nonnegative
integer coefficients.
If it is real-rooted, then:

it is unimodal

it is log-concave

if it is also palindromic, it is gamma-positive

10 / 39



Question: For which finite posets does the chain
polynomial (equivalently the h-polynomial) have
only real roots?

11 / 39



The Poset Conjecture

It is not true for all finite posets!

Conjecture (Neggers, 1979)

The chain polynomial of every finite distributive lattice is
real-rooted

equivalent to the poset conjecture

it was finally disproved by Brändén and Stembridge (2007)
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Some positive results

(3 + 1)−avoiding posets (Stanley, 1998)

the face lattices of simplicial (and simple) polytopes
(Brenti-Welker, 2008)

the face lattices of cubical polytopes (Athanasiadis, 2020)
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New results

Theorem (Athanasiadis, K. E. 2022-2023)

the face lattice of Pyr(P) and Prism(P), when the face lattice
of P has a real-rooted h-polynomial

the lattices of flats of near-pencils and uniform matroids

the subspace lattice Ln(q)

the partition lattices Πn and ΠB
n

the noncrossing partition lattice NC (W ) for every finite
irreducible Coxeter group W

rank-selected subposets of Cohen-Macaulay simplicial posets
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Faces Lattices of Polytopes

the face lattice of Pyr(P) and Prism(P), when the face lattice
of P has a real-rooted h-polynomial

This gives new families of convex polytopes whose face lattice has
real-rooted chain polynomial

Question: Is it true for all convex polytopes? (Brenti-Welker 2008)
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Geometric Lattices

the lattices of flats of near-pencils and uniform matroids

the subspace lattice Ln(q)

the partition lattices Πn and ΠB
n

These are examples of geometric (atomic and semimodular)
lattices.
Geometric Lattices are exactly the lattices of flats of matroids!
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Geometric Lattices

Conjecture

Every finite geometric lattice has a real-rooted chain polynomial.

It would give an affirmative answer to the challenging open problem
of the unimodality of the h-polynomial of a geometric lattice.

Theorem (Nyman-Swartz, 2004)

Let L be a geometric lattice of rank n and let

hL(x) = h0 + h1x + · · ·+ an−1x
n−1

Then:

h0 ≤ h1 ≤ · · · ≤ h⌊ n−1
2

⌋

hi ≤ hn−1−i for 0 ≤ i ≤ h⌊ n−1
2

⌋
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New results

the noncrossing partition lattice NC (W ) for every finite
irreducible Coxeter group W

rank-selected subposets of Cohen-Macaulay simplicial posets

Our main question fails for all Cohen-Macaulay posets. But is true
for many families of doubly Cohen-Macaualay posets.

Is it true for all doubly Cohen-Macaulay posets?
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In this talk, we will present results for these two classes of posets:

the Partition Lattices

the Noncrossing Partition Lattices
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The Partition Lattice

The partition lattice Πn consists of all set partitions of [n], partially
ordered by reverse refinement.

It is the intersection lattice of the type A braid arrangement
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The Partition Lattice

hΠn(x) =



1

1 + 2x

1 + 11x + 6x2

1 + 47x + 108x2 + 24x3

1 + 197x + 1268x2 + 1114x3 + 120x4

1 + 870x + 13184x2 + 29383x3 + 12542x4 + 720x5

The number of maximal chains of Πn is n!(n−1)!
2n−1

Theorem (Athanasiadis, K. E. 2022-2023)

The chain polynomial of the partition lattice is real-rooted.
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The Partition Lattice type A

hΠn(x) =
∑
σ∈An

xdes(σ)

An = {1} × {1, 1, 2} × · · · × {1, · · · , 1, · · · , n − 2, n − 2, n − 1}

A4 consists of

1|1|1 with multiplicity 6

1|12 with multiplicity 4

1|13 with multiplicity 2

12|1 with multiplicity 3

12|2 with multiplicity 2

123 with multiplicity 1
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Sketch of Proof

combinatorial interpretation: we used Gessel’s R-labeling.

If y covers x in Πn then y is obtained from x by merging two
blocks of x , B1 and B2.
We set λ(x , y) = max{min(B1),min(B1)}
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Sketch of Proof

real-rootedness: we used the method of interlacing
polynomials

Let f (x), g(x) be real-rooted polynomials.

f(x) interlaces g(x) (f (x) ⪯ g(x)) :
their roots are interpolating with g(x) having the largest root

if f (x) ⪯ g(x) then f(x)+g(x) is real-rooted
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Sketch of Proof

For k ∈ [n − 1] we set hn,k(x) =
∑

σ∈An,k
xdes(σ)

where An,k is the multiset of words (σ1, σ2, · · · , σn−1) ∈ An with
σn−1 = k

hΠn(x) = hn+1,n(x) =
n−1∑
k=1

hn,k(x)

hn+1,k(x) = (n + 1− k)

(
k−1∑
i=1

hn,i (x) + x
n−1∑
i=k

hn,i (x)

)
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Sketch of Proof

by induction on n we prove that:

(hn,n−1(x), hn,n−2(x), · · · , hn,1(x))

is an interlacing sequence of polynomials

so hΠn(x) =
∑n−1

k=1 hn,k(x) is real-rooted
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The Partition Lattice type B

The partition lattice ΠB
n can be defined as the intersection lattice

of the type B braid arrangement.

The number of maximal chains of ΠB
n is (n!)2

hΠB
n
(x) =



1 + 3x

1 + 20x + 15x2

1 + 111x + 359x2 + 105x3

1 + 642x + 5978x2 + 6834x3 + 945x4

1 + 4081x + 92476x2 + 268236x3 + 143211x4 + 10395x5

Theorem (Athanasiadis, K. E. 2022-2023)

The h-polynomial of the Partition Lattice of type B is real-rooted.
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The partition lattice type B

hΠB
n
(x) =

∑
σ∈Bn

xdes(σ)

Bn = {1}× {1, 1, 1, 2}× · · · × {1, · · · , 1, · · · , n− 1, n− 1, n− 1, n}

B3 consists of

1|1|1 with multiplicity 15

1|12 with multiplicity 9

1|13 with multiplicity 3

12|1 with multiplicity 5

12|2 with multiplicity 3

123 with multiplicity 1
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The Noncrossing Partition Lattice

Let W be a finite irreducible Coxeter group.

Definition (absolute order)

We define a partial order ≤ on W, called the absolute order, by
letting a ≤ b if there exists a shortest factorization of a in
reflections which is a prefix of a shortest factorization of b into
reflections.

We set NC (W ) = [e, γ] where e is the identity and γ is a Coxeter
element of W.
It is called the Noncrossing Partition Lattice.
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Noncrossing Partition Lattice

Noncrossing partitions are central objects of study in
Catalan-Coxeter combinatorics.

Chains enumeration in noncrossing partition lattices has been
studied by:

Edelman (1980)

Reiner (1997)

Stanley (1997)

Athanasiadis-Reiner (2004)

Reading (2008)

Kim (2011)

Chapuy-Douvropoulos (2022)
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Noncrossing Partition Lattice

Theorem (Athanasiadis, K. E. 2022-2023)

The noncrossing partition lattice NC (W ) has a real-rooted chain
polynomial for every irreducible finite Coxeter group W.
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Noncrossing Partition Lattice for type A

Let W = An−1 (symmetric group of degree n)

The elements of NC (An−1) can be viewed as the set partitions
of [n] that ”do not cross”

{{1, 3}, {2, 4}} is not in NC (A3)

The cardinality of NC (An−1) is given by the nth Catalan
number Cn = 1

n+1

(2n
n

)
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Noncrossing Partition Lattice for type A

NC (An−1) has n
n−2 maximal chains

hNC(An−1)(x) counts chains on the set of parking functions of
length n-1 (Pn−1)

hNC(An−1)(x) =
∑

w∈Pn−1

xdes(w) =
1

n

∑
w∈[n]n−1

xdes(w)

P3

123, 13|2, 2|13, 23|1, 3|12, 3|2|1 1|12, 12|1, 2|1|1,
1|13, 13|1, 3|1,12, 2|12, 2|2|1,1|1|1
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Noncrossing Partition Lattice for type A
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Noncrossing Partition Lattice for type B

Let W = Bn (the hyperoctahedral group of degree n)

NC (Bn) has n
n maximal chains

hNC(Bn)(x) =
∑

w∈[n]n
xdes(w)

n = 3

123, 13|2, 2|13, 23|1, 3|12, 3|2|1

1|12, 12|1, 2|1|1, 1|13, 13|1, 3|1|1, 2|23, 23|2, 3|2|2

1|1|1, 2|2|2, 3|3|3

12|2, 2|12, 2|2|1, 23|3, 3|23, 3|3|2, 13|3, 3|13, 3|3|1
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Noncrossing Partition Lattice for type D

NC (Dn) has 2(n − 1)n maximal chains

hNC(Dn)(x) =
∑
w∈Dn

xdes(w)

Dn = {(±w1,w2, · · · ,wn) : w1,w2, · · · ,wn ∈ [n − 1]}

and k is considered a descent if |wk | > |wk+1| or wk = wk+1 > 0

n = 3

1|12 12|1 2|1|1 12|2 2|12 2|2|1 1|1|1 2|2|2

−112 − 12|1 − 2|1|1 − 12|2 − 2|12 − 22|1 − 11|1 − 22|2
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Noncrossing Partition Lattices for the Dihedral and the Exceptional Groups

hNC(W )(x) =



1 + (n − 1)x if W = In

1 + 28x + 21x2 if W = H3

1 + 275x + 842x2 + 232x3 if W = H4

1 + 100x + 265x2 + 66x3 if W = F4

1 + 826x + 10778x2 + 21308x3 + 8141x4 + 418x5

if W = E6

1 + 4152x + 110958x2 + 446776x3 + 412764x4

+85800x5 + 2431x6 if W = E7

1 + 25071x + 1295238x2 + 9523785x3 + 17304775x4

+8733249x5 + 1069289x6 + 17342x7 if W = E8
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Last Remarks

Can we use the methods we develop it this research to attack
other interesting problems?

The h∗-polynomials come from counting lattice points in
lattice polytopes and behave similarly to the h-polynomials.

Question: Are the h∗-polynomials of matroid polytopes unimodal?
Are they real-rooted?
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Thank you for your attention!
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