Some real-rooted polynomials in algebraic combinatorics

Katerina Kalampogia-Evangelinou

Department of Mathematics, National and Kapodistrian University of Athens, Greece
joint work with Christos Athanasiadis

The Chain Polynomial

Let L be a finite Partially Ordered Set (poset) and $c_{k}(L)$ be the number of k-element chains of L.
We consider the chain polynomial of L

$$
p_{L}(x)=f(\Delta(L), x)=\sum_{k \geq 0} c_{k}(L) x^{k}
$$

which is the f -polynomial of the order complex $\Delta(L)$ of L .

- $\Delta(L)$ is the set of all chains of L (it is a simplicial complex)

The h-polynomial

For some purposes we may focus on the corresponding h-polynomial of the poset.

$$
\begin{aligned}
h_{L}(x)=h & (\Delta(L), x)=(1-x)^{n} p_{L}\left(\frac{x}{1-x}\right)= \\
= & \sum_{k \geq 0} c_{k}(L) x^{k}(1-x)^{n-k}
\end{aligned}
$$

where n is the largest size of a chain in L.

The h-polynomial

$$
h_{L}(x)=h_{0}+h_{1} x+\cdots+h_{n} x^{n}
$$

where the coefficients add to the number of n-chains of L.

- If L is Cohen-Macaulay the h-polynomial has nonnegative coefficients
- If L has an R -labeling the coefficients of $h_{L}(x)$ are given a combinatorial interpretation

R-labelings

- Let $\lambda: C(L) \rightarrow \mathbb{N}$ be an edge labeling of the Hasse diagram of L.
- We say that λ is an R-labeling of L if in each closed interval $[x, y]$ of L there exists a unique increasing maximal chain.

If λ is an R-labeling of L we get that $h_{L}(x)=\sum_{c} x^{\operatorname{des}(w)}$ where c runs in the maximal chains of L

The Boolean Algebra

Example: Let L_{n} be the lattice of subsets of [n] (Boolean algebra of rank n)

The Eulerian Polynomial

$$
h_{L_{n}}(x)=A_{n}(x)=\sum_{w \in \mathfrak{S}_{n}} x^{\operatorname{des}(w)}
$$

which is the classical n-th Eulerian Polynomial that counts descents in the Symmetric Group

$$
A_{n}(x)= \begin{cases}1 & n=1 \\ 1+x & n=2 \\ 1+4 x+x^{2} & n=3 \\ 1+11 x+11 x^{2}+x^{3} & n=4 \\ 1+26 x+66 x^{2}+26 x^{3}+x^{4} & n=5\end{cases}
$$

The Eulerian Polynomial

The Eulerian polynomial $A_{n}(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$ is

- unimodal

$$
a_{0} \leq a_{1} \leq \cdots \leq a_{k} \geq a_{k+1} \geq \cdots \geq a_{n-1}
$$

- palindromic

$$
a_{k}=a_{n-1-k}
$$

- log-concave

$$
a_{k}^{2} \geq a_{k-1} a_{k+1}
$$

The Eulerian Polynomial

- gamma-positive

$$
A_{n}(x)=\sum_{k \geq 0} \gamma_{k} x^{k}(1+x)^{n-1-2 k}
$$

$\gamma_{k} \geq 0$ for every k

- real-rooted

$$
\text { every root of } A_{n}(x) \text { is real }
$$

Real-rootedness

These are properties we often encounter in algebraic and geometric combinatorics.
We focus on the property of real-rootedness
which has strong implications for a polynomial.
Let $f(x)=f_{0}+f_{1} x+\cdots+f_{n} x^{n}$ be a polynomial with nonnegative integer coefficients.
If it is real-rooted, then:

- it is unimodal
- it is log-concave
- if it is also palindromic, it is gamma-positive

Question: For which finite posets does the chain polynomial (equivalently the h-polynomial) have only real roots?

The Poset Conjecture

It is not true for all finite posets!

Conjecture (Neggers, 1979)

The chain polynomial of every finite distributive lattice is real-rooted

- equivalent to the poset conjecture
- it was finally disproved by Brändén and Stembridge (2007)

Some positive results

- $(3+1)$-avoiding posets (Stanley, 1998)
- the face lattices of simplicial (and simple) polytopes (Brenti-Welker, 2008)
- the face lattices of cubical polytopes (Athanasiadis, 2020)

Theorem (Athanasiadis, K. E. 2022-2023)

- the face lattice of $\operatorname{Pyr}(P)$ and Prism (P), when the face lattice of P has a real-rooted h-polynomial
- the lattices of flats of near-pencils and uniform matroids
- the subspace lattice $L_{n}(q)$
- the partition lattices Π_{n} and Π_{n}^{B}
- the noncrossing partition lattice $N C(W)$ for every finite irreducible Coxeter group W
- rank-selected subposets of Cohen-Macaulay simplicial posets

Faces Lattices of Polytopes

- the face lattice of $\operatorname{Pyr}(P)$ and $\operatorname{Prism}(P)$, when the face lattice of P has a real-rooted h-polynomial

This gives new families of convex polytopes whose face lattice has real-rooted chain polynomial

Question: Is it true for all convex polytopes? (Brenti-Welker 2008)

Geometric Lattices

- the lattices of flats of near-pencils and uniform matroids
- the subspace lattice $L_{n}(q)$
- the partition lattices Π_{n} and Π_{n}^{B}

These are examples of geometric (atomic and semimodular) lattices.
Geometric Lattices are exactly the lattices of flats of matroids!

Geometric Lattices

Conjecture

Every finite geometric lattice has a real-rooted chain polynomial.
It would give an affirmative answer to the challenging open problem of the unimodality of the h-polynomial of a geometric lattice.

Theorem (Nyman-Swartz, 2004)

Let L be a geometric lattice of rank n and let

$$
h_{L}(x)=h_{0}+h_{1} x+\cdots+a_{n-1} x^{n-1}
$$

Then:

- $h_{0} \leq h_{1} \leq \cdots \leq h_{\left\lfloor\frac{n-1}{2}\right\rfloor}$
- $h_{i} \leq h_{n-1-i}$ for $0 \leq i \leq h_{\left\lfloor\frac{n-1}{2}\right\rfloor}$

New results

- the noncrossing partition lattice $N C(W)$ for every finite irreducible Coxeter group W
- rank-selected subposets of Cohen-Macaulay simplicial posets

Our main question fails for all Cohen-Macaulay posets. But is true for many families of doubly Cohen-Macaualay posets.

Is it true for all doubly Cohen-Macaulay posets?

In this talk, we will present results for these two classes of posets:

- the Partition Lattices
- the Noncrossing Partition Lattices

The Partition Lattice

The partition lattice Π_{n} consists of all set partitions of $[n$], partially ordered by reverse refinement.

It is the intersection lattice of the type A braid arrangement

The Partition Lattice

$$
h_{\Pi_{n}}(x)=\left\{\begin{array}{l}
1 \\
1+2 x \\
1+11 x+6 x^{2} \\
1+47 x+108 x^{2}+24 x^{3} \\
1+197 x+1268 x^{2}+1114 x^{3}+120 x^{4} \\
1+870 x+13184 x^{2}+29383 x^{3}+12542 x^{4}+720 x^{5}
\end{array}\right.
$$

The number of maximal chains of Π_{n} is $\frac{n!(n-1)!}{2^{n-1}}$

Theorem (Athanasiadis, K. E. 2022-2023)

The chain polynomial of the partition lattice is real-rooted.

The Partition Lattice type A

$$
h_{\Pi_{n}}(x)=\sum_{\sigma \in A_{n}} x^{\operatorname{des}(\sigma)}
$$

$$
A_{n}=\{1\} \times\{1,1,2\} \times \cdots \times\{1, \cdots, 1, \cdots, n-2, n-2, n-1\}
$$

A_{4} consists of

- 1|1|1 with multiplicity 6
- 1|12 with multiplicity 4
- 1|13 with multiplicity 2
- 12|1 with multiplicity 3
- 12|2 with multiplicity 2
- 123 with multiplicity 1

Sketch of Proof

- combinatorial interpretation: we used Gessel's R-labeling.

If y covers x in Π_{n} then y is obtained from x by merging two blocks of x, B_{1} and B_{2}.
We set $\lambda(x, y)=\max \left\{\min \left(B_{1}\right), \min \left(B_{1}\right)\right\}$

Sketch of Proof

- real-rootedness: we used the method of interlacing polynomials

Let $f(x), g(x)$ be real-rooted polynomials.

- $f(x)$ interlaces $g(x)(f(x) \preceq g(x))$: their roots are interpolating with $\mathrm{g}(\mathrm{x})$ having the largest root

- if $f(x) \preceq g(x)$ then $f(x)+g(x)$ is real-rooted

Sketch of Proof

For $k \in[n-1]$ we set $h_{n, k}(x)=\sum_{\sigma \in A_{n, k}} x^{\operatorname{des}(\sigma)}$ where $A_{n, k}$ is the multiset of words $\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{n-1}\right) \in A_{n}$ with $\sigma_{n-1}=k$

$$
\begin{gathered}
h_{\Pi_{n}}(x)=h_{n+1, n}(x)=\sum_{k=1}^{n-1} h_{n, k}(x) \\
h_{n+1, k}(x)=(n+1-k)\left(\sum_{i=1}^{k-1} h_{n, i}(x)+x \sum_{i=k}^{n-1} h_{n, i}(x)\right)
\end{gathered}
$$

Sketch of Proof

by induction on n we prove that:
$\left(h_{n, n-1}(x), h_{n, n-2}(x), \cdots, h_{n, 1}(x)\right)$
is an interlacing sequence of polynomials
so $h_{\Pi_{n}}(x)=\sum_{k=1}^{n-1} h_{n, k}(x)$ is real-rooted

The Partition Lattice type B

The partition lattice Π_{n}^{B} can be defined as the intersection lattice of the type B braid arrangement.

The number of maximal chains of Π_{n}^{B} is $(n!)^{2}$

$$
h_{\Pi_{n}^{B}}(x)=\left\{\begin{array}{l}
1+3 x \\
1+20 x+15 x^{2} \\
1+111 x+359 x^{2}+105 x^{3} \\
1+642 x+5978 x^{2}+6834 x^{3}+945 x^{4} \\
1+4081 x+92476 x^{2}+268236 x^{3}+143211 x^{4}+10395 x^{5}
\end{array}\right.
$$

Theorem (Athanasiadis, K. E. 2022-2023)

The h-polynomial of the Partition Lattice of type B is real-rooted.

The partition lattice type B

$$
\begin{gathered}
h_{\Pi_{n}^{B}}(x)=\sum_{\sigma \in B_{n}} x^{\operatorname{des}(\sigma)} \\
B_{n}=\{1\} \times\{1,1,1,2\} \times \cdots \times\{1, \cdots, 1, \cdots, n-1, n-1, n-1, n\}
\end{gathered}
$$

B_{3} consists of

- 1|1|1 with multiplicity 15
- 1|12 with multiplicity 9
- 1|13 with multiplicity 3
- 12|1 with multiplicity 5
- 12|2 with multiplicity 3
- 123 with multiplicity 1

The Noncrossing Partition Lattice

Let W be a finite irreducible Coxeter group.
Definition (absolute order)
We define a partial order \leq on W , called the absolute order, by letting $a \leq b$ if there exists a shortest factorization of a in reflections which is a prefix of a shortest factorization of b into reflections.

We set $N C(W)=[e, \gamma]$ where e is the identity and γ is a Coxeter element of W.
It is called the Noncrossing Partition Lattice.

Noncrossing Partition Lattice

Noncrossing partitions are central objects of study in Catalan-Coxeter combinatorics.

Chains enumeration in noncrossing partition lattices has been studied by:

- Edelman (1980)
- Reiner (1997)
- Stanley (1997)
- Athanasiadis-Reiner (2004)
- Reading (2008)
- Kim (2011)
- Chapuy-Douvropoulos (2022)

Noncrossing Partition Lattice

Theorem (Athanasiadis, K. E. 2022-2023)

The noncrossing partition lattice $N C(W)$ has a real-rooted chain polynomial for every irreducible finite Coxeter group W.

Noncrossing Partition Lattice for type A

Let $W=A_{n-1}$ (symmetric group of degree n)

- The elements of $N C\left(A_{n-1}\right)$ can be viewed as the set partitions of $[n]$ that "do not cross"

$$
\{\{1,3\},\{2,4\}\} \text { is not in } N C\left(A_{3}\right)
$$

- The cardinality of $N C\left(A_{n-1}\right)$ is given by the nth Catalan number $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$

Noncrossing Partition Lattice for type A

- $N C\left(A_{n-1}\right)$ has n^{n-2} maximal chains
- $h_{N C\left(A_{n-1}\right)}(x)$ counts chains on the set of parking functions of length n-1 $\left(P_{n-1}\right)$

$$
h_{N C\left(A_{n-1}\right)}(x)=\sum_{w \in P_{n-1}} x^{\operatorname{des}(w)}=\frac{1}{n} \sum_{w \in[n]^{n-1}} x^{\operatorname{des}(w)}
$$

$$
P_{3}
$$

```
123,13|2, 2|13, 23|1,3|12, 3|2|1 1|12, 12|1, 2|1|1,
1|13, 13|1, 3|1,12, 2|12, 2|2|1,1|1|1
```

Noncrossing Partition Lattice for type A

Noncrossing Partition Lattice for type B

Let $W=B_{n}$ (the hyperoctahedral group of degree n)

- $N C\left(B_{n}\right)$ has n^{n} maximal chains

$$
\begin{gathered}
h_{N C\left(B_{n}\right)}(x)=\sum_{w \in[n]^{n}} x^{\operatorname{des}(w)} \\
n=3 \\
123,13|2,2| 13,23|1,3| 12,3|2| 1 \\
1|12,12| 1,2|1| 1,1|13,13| 1,3|1| 1,2|23,23| 2,3|2| 2 \\
1|1| 1,2|2| 2,3|3| 3 \\
12|2,2| 12,2|2| 1,23|3,3| 23,3|3| 2,13|3,3| 13,3|3| 1
\end{gathered}
$$

Noncrossing Partition Lattice for type D

- $N C\left(D_{n}\right)$ has $2(n-1)^{n}$ maximal chains

$$
\begin{gathered}
h_{N C\left(D_{n}\right)}(x)=\sum_{w \in D_{n}} x^{\operatorname{des}(w)} \\
D_{n}=\left\{\left(\pm w_{1}, w_{2}, \cdots, w_{n}\right): w_{1}, w_{2}, \cdots, w_{n} \in[n-1]\right\}
\end{gathered}
$$

and k is considered a descent if $\left|w_{k}\right|>\left|w_{k+1}\right|$ or $w_{k}=w_{k+1}>0$

$$
n=3
$$

$1 \mid 12$	$12 \mid 1$	$2\|1\| 1$	$12 \mid 2$	$2 \mid 12$	$2\|2\| 1$	$1\|1\| 1$	$2\|2\| 2$
-112	$-12 \mid 1$	$-2\|1\| 1$	$-12 \mid 2$	$-2 \mid 12$	$-22 \mid 1$	$-11 \mid 1$	$-22 \mid 2$

Noncrossing Partition Lattices for the Dihedral and the Exceptional Groups

$$
h_{N C(W)}(x)=\left\{\begin{array}{lc}
1+(n-1) x & \text { if } W=I_{n} \\
1+28 x+21 x^{2} & \text { if } W=H_{3} \\
1+275 x+842 x^{2}+232 x^{3} & \text { if } W=H_{4} \\
1+100 x+265 x^{2}+66 x^{3} & \text { if } W=F_{4} \\
1+826 x+10778 x^{2}+21308 x^{3}+8141 x^{4}+418 x^{5} \\
1+4152 x+110958 x^{2}+446776 x^{3}+412764 x^{4} \\
+85800 x^{5}+2431 x^{6} & \text { if } W=E_{6} \\
1+25071 x+1295238 x^{2}+9523785 x^{3}+17304775 x^{4} \\
+8733249 x^{5}+1069289 x^{6}+17342 x^{7} & \text { if } W=E_{8}
\end{array}\right.
$$

Last Remarks

- Can we use the methods we develop it this research to attack other interesting problems?
- The h^{*}-polynomials come from counting lattice points in lattice polytopes and behave similarly to the h-polynomials.

Question: Are the h^{*}-polynomials of matroid polytopes unimodal? Are they real-rooted?

Thank you for your attention!

