A diagrammatic representation of the Temperley-Lieb

 algebra of type \widetilde{B}Elisa Sasso ${ }^{1}$
elisa.sasso2@unibo.it joint work with R. Biagioli ${ }^{1}$ and G. Fatabbi ${ }^{2}$
${ }^{1}$ University of Bologna
${ }^{2}$ University of Perugia

SLC 90 Bad Boll, September 4, 2023

A brief overview

- In 1971, N. Temperley e E. Lieb introduced the TL algebra to solve a statistical mechanics problem.
- Penrose (1971) and Kauffman (1987) showed that the TL algebra can be realized as a diagram algebra.
- In 1987, Jones presented the TL algebra in terms of abstract generators and relations.
- In 1995, Graham defined the so-called generalized Temperley-Lieb algebra $\mathrm{TL}(\Gamma)$ as a quotient of the Iwahori-Hecke algebra of a Coxeter system of arbitrary type Γ.

Definition

We define a Coxeter system to be a pair (W, S) where

- S is a set of generators;
- $W=\left\langle S \mid(s t)^{m_{s t}}=1\right\rangle$ where $m_{s t} \in \mathbb{N}, m_{s t}=m_{t s}$ for all $s, t \in S$ and $m_{s t}=1$ iff $s=t$.

Definition

We define a Coxeter system to be a pair (W, S) where

- S is a set of generators;
- $W=\left\langle S \mid(s t)^{m_{s t}}=1\right\rangle$ where $m_{s t} \in \mathbb{N}, m_{s t}=m_{t s}$ for all $s, t \in S$ and $m_{s t}=1$ iff $s=t$.

Coxeter graph「

The relations

More explicitly

- $s^{2}=1$ for all $s \in S$;
- $s t=t s$ if $m_{s t}=2$ (commutation relation);
- $\underbrace{s t s \cdots}_{m_{s t}}=\underbrace{t s t \cdots}_{m_{s t}}$, if $3 \leq m_{s t}<\infty$ (braid relation).

Reduced expressions

For $w \in W$, the length of w, denoted by $\ell(w)$, is the minimum length / of an expression $s_{1} \cdots s_{l}$ of w with $s_{i} \in S$. The expressions of length $\ell(w)$ are called reduced.

Reduced expressions

For $w \in W$, the length of w, denoted by $\ell(w)$, is the minimum length / of an expression $s_{1} \cdots s_{l}$ of w with $s_{i} \in S$. The expressions of length $\ell(w)$ are called reduced.

Matsumoto's Theorem

Any reduced expression of w can be obtained from any other reduced expression of w using only braid and commutation relations.

Fully commutative elements

Definition

An element w is fully commutative (FC) if any reduced expression of w can be obtained from any other reduced expression of w using only commutation relations.

Fully commutative elements

Definition

An element w is fully commutative (FC) if any reduced expression of w can be obtained from any other reduced expression of w using only commutation relations.

For example, let $\mathbf{w}=s_{1} s_{4} s_{3} s_{2} s_{1}$ be a reduced expression of $w \in W\left(A_{4}\right)$.

Fully commutative elements

Definition

An element w is fully commutative (FC) if any reduced expression of w can be obtained from any other reduced expression of w using only commutation relations.

For example, let $\mathbf{w}=s_{1} s_{4} s_{3} s_{2} s_{1}$ be a reduced expression of $w \in W\left(A_{4}\right)$. Then

$$
s_{4} s_{3} s_{1} s_{2} s_{1} \text { and } s_{4} s_{3} s_{2} s_{1} s_{2}
$$

are both reduced expression of w, so w is not fully commutative.

Diagrams

A k-diagram consists of a finite number of disjoint plane curves, called edges, embedded in a box having k nodes on the top (north) face and k nodes on the bottom (south) face.

Diagrams

A k-diagram consists of a finite number of disjoint plane curves, called edges, embedded in a box having k nodes on the top (north) face and k nodes on the bottom (south) face.

Product

We can define an associative product by concatenation.

TL algebra

The (diagram) Temperley-Lieb algebra $\mathbb{D}\left(A_{n}\right)$ is the $\mathbb{Z}[\delta]$-algebra having the diagrams as basis with the multiplication defined above subject to the following relation.

$$
\square=\delta
$$

TL algebra

The (diagram) Temperley-Lieb algebra $\mathbb{D}\left(A_{n}\right)$ is the $\mathbb{Z}[\delta]$-algebra having the diagrams as basis with the multiplication defined above subject to the following relation.

$$
\square=\delta
$$

Example

Figure: Basis diagrams of $\mathbb{D}\left(A_{2}\right)$.

Question

What about the generalized TL algebras?

Decorated diagrams

Consider $\Omega=\{\bullet, \circ, \Delta\}$. We can decorate a k-diagram with the elements of Ω^{*}.
(D0) All decorated edges can be deformed so as to take •-decorations to the left wall of the diagram and \circ or \triangle-decorations to the right wall simultaneously without crossing any other edges.

Decorated diagrams

Consider $\Omega=\{\bullet, \circ, \Delta\}$. We can decorate a k-diagram with the elements of Ω^{*}.
(D0) All decorated edges can be deformed so as to take •-decorations to the left wall of the diagram and \circ or \triangle-decorations to the right wall simultaneously without crossing any other edges.

Diagram algebra

Now we define

- a set of relations

Diagram algebra

Now we define

- a set of relations

$$
\begin{aligned}
& \dot{\delta}=\Delta \\
& \text { (r1) } \\
& \text { (r2) } \\
& \text { (r3) } \\
& \text { (r4) } \\
& \square=\triangle=\delta \\
& \text { (r5) }
\end{aligned}
$$

- an associative diagram product by concatenation.

We consider a subfamily of the decorated diagrams, called admissible diagrams.

Figure: Admissible loops.

We consider a subfamily of the decorated diagrams, called admissible diagrams.

Figure: Admissible loops.

The admissible diagrams form a $\mathbb{Z}[\delta]$-algebra, denoted by $\mathbb{D}\left(\widetilde{B}_{n+1}\right)$, which is generated by the simple diagrams defined as follows.

TL algebra of type \widetilde{B}

The Temperley-Lieb algebra of type $\widetilde{B}_{n+1}, \operatorname{TL}\left(\widetilde{B}_{n+1}\right)$, is the $\mathbb{Z}[\delta]$-algebra generated by $\left\{b_{0}, b_{1}, \ldots, b_{n+1}\right\}$ with defining relations:
(1) $b_{i}^{2}=\delta b_{i}$ for all $i \in\{0,1, \ldots, n+1\}$;
(2) $b_{i} b_{j}=b_{j} b_{i}$ if $|i-j|>1$ and $\{i, j\} \neq\{0,2\}$, or $\{i, j\}=\{0,1\}$;
(3) $b_{i} b_{j} b_{i}=b_{i}$ if $i, j \in\{1, \ldots, n\}$ and $|i-j|=1$, or $\{i, j\}=\{0,2\}$;
(4) $b_{i} b_{j} b_{i} b_{j}=2 b_{i} b_{j}$ if $\{i, j\}=\{n, n+1\}$.

TL algebra of type \widetilde{B}

The Temperley-Lieb algebra of type $\widetilde{B}_{n+1}, \operatorname{TL}\left(\widetilde{B}_{n+1}\right)$, is the $\mathbb{Z}[\delta]$-algebra generated by $\left\{b_{0}, b_{1}, \ldots, b_{n+1}\right\}$ with defining relations:
(1) $b_{i}^{2}=\delta b_{i}$ for all $i \in\{0,1, \ldots, n+1\}$;
(2) $b_{i} b_{j}=b_{j} b_{i}$ if $|i-j|>1$ and $\{i, j\} \neq\{0,2\}$, or $\{i, j\}=\{0,1\}$;
(3) $b_{i} b_{j} b_{i}=b_{i}$ if $i, j \in\{1, \ldots, n\}$ and $|i-j|=1$, or $\{i, j\}=\{0,2\}$;
(4) $b_{i} b_{j} b_{i} b_{j}=2 b_{i} b_{j}$ if $\{i, j\}=\{n, n+1\}$.

The set $\left\{b_{w} \mid w \in \operatorname{FC}\left(\widetilde{B}_{n+1}\right)\right\}$ is a basis for $\operatorname{TL}\left(\widetilde{B}_{n+1}\right)$, called monomial basis, where $b_{w}:=b_{i_{1}} \cdots b_{i_{k}}$ for $s_{i_{1}} \cdots s_{i_{k}}$ any reduced expression of w.

The main result

Consider the $\mathbb{Z}[\delta]$-algebra homomorphism

$$
\begin{aligned}
\tilde{\theta}_{B}: \mathrm{TL}\left(\widetilde{B}_{n+1}\right) & \longrightarrow \mathbb{D}\left(\widetilde{B}_{n+1}\right) \\
b_{i} & \mapsto D_{i}
\end{aligned}
$$

for $i \in\{0,1, \ldots, n+1\}$.

The main result

Consider the $\mathbb{Z}[\delta]$-algebra homomorphism

$$
\begin{aligned}
\tilde{\theta}_{B}: \mathrm{TL}\left(\widetilde{B}_{n+1}\right) & \longrightarrow \mathbb{D}\left(\widetilde{B}_{n+1}\right) \\
b_{i} & \mapsto D_{i}
\end{aligned}
$$

for $i \in\{0,1, \ldots, n+1\}$.

Theorem

The map $\tilde{\theta}_{B}$ is an algebra isomorphism. Moreover, each admissible diagram corresponds to a unique monomial basis element.

An ingredient for the proof

The cut and paste operation for factorizing admissible diagrams into a product of simple diagrams.

An example.

What about \widetilde{D} ?

Figure: Coxeter graph of type \widetilde{D}_{n+2}.

$$
T L\left(\widetilde{D}_{n+2}\right) \stackrel{\tilde{\theta}_{D}}{\cong} \mathbb{D}\left(\widetilde{D}_{n+2}\right)
$$

Thank you!

