A diagrammatic representation of the Temperley-Lieb algebra of type \widetilde{B}

Elisa Sasso¹ elisa.sasso2@unibo.it joint work with R. Biagioli¹ and G. Fatabbi²

¹University of Bologna

²University of Perugia

SLC 90 Bad Boll, September 4, 2023

< □ > < @ > < 注 > < 注 > ... 注

- In 1971, N. **Temperley** e E. **Lieb** introduced the TL algebra to solve a statistical mechanics problem.
- **Penrose** (1971) and **Kauffman** (1987) showed that the TL algebra can be realized as a diagram algebra.
- In 1987, **Jones** presented the TL algebra in terms of abstract generators and relations.
- In 1995, **Graham** defined the so-called *generalized Temperley–Lieb* algebra $TL(\Gamma)$ as a quotient of the Iwahori-Hecke algebra of a Coxeter system of arbitrary type Γ .

SLC 90

We define a **Coxeter system** to be a pair (W, S) where

- S is a set of generators;
- $W = \langle S \mid (st)^{m_{st}} = 1 \rangle$ where $m_{st} \in \mathbb{N}$, $m_{st} = m_{ts}$ for all $s, t \in S$ and $m_{st} = 1$ iff s = t.

We define a **Coxeter system** to be a pair (W, S) where

- *S* is a set of generators;
- $W = \langle S \mid (st)^{m_{st}} = 1 \rangle$ where $m_{st} \in \mathbb{N}$, $m_{st} = m_{ts}$ for all $s, t \in S$ and $m_{st} = 1$ iff s = t.

Coxeter graph Γ

SLC 90

4 / 20

3.5 3

More explicitly

•
$$s^2 = 1$$
 for all $s \in S$;

• *st* = *ts* if *m_{st}* = 2 (*commutation relation*);

• $\underbrace{sts\cdots}_{m_{st}} = \underbrace{tst\cdots}_{m_{st}}$, if $3 \le m_{st} < \infty$ (braid relation).

For $w \in W$, the **length** of w, denoted by $\ell(w)$, is the minimum length I of an expression $s_1 \cdots s_l$ of w with $s_i \in S$. The expressions of length $\ell(w)$ are called **reduced**.

For $w \in W$, the **length** of w, denoted by $\ell(w)$, is the minimum length I of an expression $s_1 \cdots s_l$ of w with $s_i \in S$. The expressions of length $\ell(w)$ are called **reduced**.

Matsumoto's Theorem

Any reduced expression of w can be obtained from any other reduced expression of w using only braid and commutation relations.

An element w is **fully commutative** (FC) if any reduced expression of w can be obtained from any other reduced expression of w using only commutation relations.

An element w is **fully commutative** (FC) if any reduced expression of w can be obtained from any other reduced expression of w using only commutation relations.

For example, let $\mathbf{w} = s_1 s_4 s_3 s_2 s_1$ be a reduced expression of $w \in W(A_4)$.

An element w is **fully commutative** (FC) if any reduced expression of w can be obtained from any other reduced expression of w using only commutation relations.

For example, let $\mathbf{w} = s_1 s_4 s_3 s_2 s_1$ be a reduced expression of $w \in W(A_4)$. Then

 $s_4 s_3 s_1 s_2 s_1$ and $s_4 s_3 s_2 s_1 s_2$

are both reduced expression of w, so w is not fully commutative.

SLC 90

Diagrams

A **k-diagram** consists of a finite number of disjoint plane curves, called *edges*, embedded in a box having k nodes on the top (*north*) face and k nodes on the bottom (*south*) face.

Diagrams

A **k-diagram** consists of a finite number of disjoint plane curves, called *edges*, embedded in a box having k nodes on the top (*north*) face and k nodes on the bottom (*south*) face.

We can define an associative product by concatenation.

SLC 90

TL algebra

The (diagram) Temperley-Lieb algebra $\mathbb{D}(A_n)$ is the $\mathbb{Z}[\delta]$ -algebra having the diagrams as basis with the multiplication defined above subject to the following relation.

$$\bigcirc = \delta$$

SL

TL algebra

The (diagram) Temperley-Lieb algebra $\mathbb{D}(A_n)$ is the $\mathbb{Z}[\delta]$ -algebra having the diagrams as basis with the multiplication defined above subject to the following relation.

Elisa Sasso

SLC 90

What about the generalized TL algebras?

SLC 90

æ

Decorated diagrams

Consider $\Omega = \{\bullet, \circ, \vartriangle\}$. We can decorate a *k*-diagram with the elements of Ω^* .

(D0) All decorated edges can be deformed so as to take ●-decorations to the left wall of the diagram and o or △-decorations to the right wall simultaneously without crossing any other edges.

SLC 90

Decorated diagrams

Consider $\Omega = \{\bullet, \circ, \triangle\}$. We can decorate a *k*-diagram with the elements of Ω^* .

(D0) All decorated edges can be deformed so as to take ●-decorations to the left wall of the diagram and o or △-decorations to the right wall simultaneously without crossing any other edges.

Diagram algebra

Now we define

SLC 90

Diagram algebra

Now we define

• an associative diagram product by concatenation.

SLC 90

We consider a subfamily of the decorated diagrams, called **admissible diagrams**.

Figure: Admissible loops.

э

We consider a subfamily of the decorated diagrams, called **admissible diagrams**.

Figure: Admissible loops.

The admissible diagrams form a $\mathbb{Z}[\delta]$ -algebra, denoted by $\mathbb{D}(\widetilde{B}_{n+1})$, which is generated by the **simple diagrams** defined as follows.

TL algebra of type \widetilde{B}

The **Temperley–Lieb algebra** of type \tilde{B}_{n+1} , $TL(\tilde{B}_{n+1})$, is the $\mathbb{Z}[\delta]$ -algebra generated by $\{b_0, b_1, \ldots, b_{n+1}\}$ with defining relations: (1) $b_i^2 = \delta b_i$ for all $i \in \{0, 1, \ldots, n+1\}$; (2) $b_i b_j = b_j b_i$ if |i - j| > 1 and $\{i, j\} \neq \{0, 2\}$, or $\{i, j\} = \{0, 1\}$; (3) $b_i b_j b_i = b_i$ if $i, j \in \{1, \ldots, n\}$ and |i - j| = 1, or $\{i, j\} = \{0, 2\}$; (4) $b_i b_j b_i b_j = 2b_i b_j$ if $\{i, j\} = \{n, n+1\}$.

TL algebra of type \widetilde{B}

The **Temperley–Lieb algebra** of type \widetilde{B}_{n+1} , $\operatorname{TL}(\widetilde{B}_{n+1})$, is the $\mathbb{Z}[\delta]$ -algebra generated by $\{b_0, b_1, \ldots, b_{n+1}\}$ with defining relations: (1) $b_i^2 = \delta b_i$ for all $i \in \{0, 1, \ldots, n+1\}$; (2) $b_i b_j = b_j b_i$ if |i-j| > 1 and $\{i,j\} \neq \{0,2\}$, or $\{i,j\} = \{0,1\}$; (3) $b_i b_j b_i = b_i$ if $i, j \in \{1, \ldots, n\}$ and |i-j| = 1, or $\{i,j\} = \{0,2\}$; (4) $b_i b_j b_i b_j = 2b_i b_j$ if $\{i,j\} = \{n, n+1\}$. The set $\{b_w \mid w \in \operatorname{FC}(\widetilde{B}_{n+1})\}$ is a basis for $\operatorname{TL}(\widetilde{B}_{n+1})$, called monomial

basis, where $b_w := b_{i_1} \cdots b_{i_k}$ for $s_{i_1} \cdots s_{i_k}$ any reduced expression of w.

Consider the $\mathbb{Z}[\delta]\text{-algebra}$ homomorphism

$$\widetilde{ heta}_B : \operatorname{TL}(\widetilde{B}_{n+1}) \longrightarrow \mathbb{D}(\widetilde{B}_{n+1})$$

 $b_i \mapsto D_i$

for $i \in \{0, 1, \dots, n+1\}$.

æ

Consider the $\mathbb{Z}[\delta]$ -algebra homomorphism

$$\widetilde{\theta}_B : \operatorname{TL}(\widetilde{B}_{n+1}) \longrightarrow \mathbb{D}(\widetilde{B}_{n+1})$$

 $b_i \mapsto D_i$

for $i \in \{0, 1, \dots, n+1\}$.

Theorem

The map $\tilde{\theta}_B$ is an algebra **isomorphism**. Moreover, each admissible diagram corresponds to a unique monomial basis element.

SLC 90

The **cut and paste operation** for factorizing admissible diagrams into a product of simple diagrams.

 $D = D_4 D_1 D_2 D_0 D_3 D_2$

An example.

æ

What about \widetilde{D} ?

SLC 90 19 / 20

Thank you!

Elisa Sasso

Diagrammatic representation of TL(B)

< ≥ > < ≥ >
SLC 90

20 / 20

æ