Atoms and charge beyond type A

Jacinta Torres
Jagiellonian University in Kraków, Poland
(jt. with Maciej Dołęga, Leonardo Patimo and Thomas Gerber)

Séminaire Lotharigien de Combinatoire 90 3-6th September 2023

Bad Boll

Kostka-Foulkes polynomials

\mathfrak{g} - complex semi-simple Lie algebra

Kostka-Foulkes polynomials

$$
\mathfrak{g} \text { - complex semi-simple Lie algebra } \lambda, \mu \in X^{+} \rightsquigarrow
$$

Kostka-Foulkes polynomials

\mathfrak{g} - complex semi-simple Lie algebra $\lambda, \mu \in X^{+} \rightsquigarrow$

$$
d_{\lambda, \mu}:=\operatorname{dim}\left(V(\lambda)_{\mu}\right)
$$

Kostka-Foulkes polynomials

\mathfrak{g} - complex semi-simple Lie algebra $\lambda, \mu \in X^{+} \rightsquigarrow$

$$
d_{\lambda, \mu}:=\operatorname{dim}\left(V(\lambda)_{\mu}\right) \underset{\text { q-analogue }}{\longrightarrow} K_{\lambda, \mu}(q) \text { Kostka-Foulkes polynomial }
$$

Kostka-Foulkes polynomials

\mathfrak{g} - complex semi-simple Lie algebra $\lambda, \mu \in X^{+} \rightsquigarrow$
$d_{\lambda, \mu}:=\operatorname{dim}\left(V(\lambda)_{\mu}\right) \underset{\text { q-analogue }}{\longrightarrow} K_{\lambda, \mu}(q)$ Kostka-Foulkes polynomial

$$
K_{\lambda, \mu}(q):=\sum_{w \in W} \operatorname{sgn}(w) \mathbb{P}_{q}(w(\lambda+\rho)-\mu-\rho)
$$

Different incarnations

- Kostka-Foulkes polynomials

$$
s_{\lambda}=\sum_{\mu \in X^{+}} K_{\lambda, \mu}(q) P_{\mu}(x ; q)
$$

Different incarnations

- Kostka-Foulkes polynomials

$$
s_{\lambda}=\sum_{\mu \in X^{+}} K_{\lambda, \mu}(q) P_{\mu}(x ; q)
$$

- jump polynomials of the Brylinski filtration

Different incarnations

■ Kostka-Foulkes polynomials

$$
s_{\lambda}=\sum_{\mu \in X^{+}} K_{\lambda, \mu}(q) P_{\mu}(x ; q)
$$

- jump polynomials of the Brylinski filtration

$$
\sum_{p \geq 0} \operatorname{dim}\left(J_{e}^{p}\left(V_{\mu}^{\lambda}\right) / J_{e}^{p-1}\left(V_{\mu}^{\lambda}\right)\right) q^{p}
$$

- Kazhdan-Lusztig polynomials for the extended affine Hecke algebra.

Big open problem

Find a positive combinatorial formula for $K_{\lambda, \mu}(q)$.

Big open problem

Find a positive combinatorial formula for $K_{\lambda, \mu}(q)$. This amounts to finding:

■ A set $B(\lambda)_{\mu}$ of cardinality $B(\lambda)_{\mu}$

Big open problem

Find a positive combinatorial formula for $K_{\lambda, \mu}(q)$. This amounts to finding:

- A set $B(\lambda)_{\mu}$ of cardinality $B(\lambda)_{\mu}$

■ A map ch : $B(\lambda)_{\mu} \rightarrow \mathbb{Z}_{>0}$ such that

Big open problem

Find a positive combinatorial formula for $K_{\lambda, \mu}(q)$. This amounts to finding:

- A set $B(\lambda)_{\mu}$ of cardinality $B(\lambda)_{\mu}$

■ A map ch : $B(\lambda)_{\mu} \rightarrow \mathbb{Z}_{>0}$ such that

$$
K_{\lambda, \mu}(q)=\sum_{T \in B(\lambda)_{\mu}} q^{\operatorname{ch}(T)}
$$

Big open problem

Find a positive combinatorial formula for $K_{\lambda, \mu}(q)$.
This amounts to finding:

- A set $B(\lambda)_{\mu}$ of cardinality $B(\lambda)_{\mu}$

■ A map ch : $B(\lambda)_{\mu} \rightarrow \mathbb{Z}_{>0}$ such that

$$
K_{\lambda, \mu}(q)=\sum_{T \in B(\lambda)_{\mu}} q^{\operatorname{ch}(T)}
$$

We call such a map a charge statistic after
Lascoux-Schützenberger, who solved this problem in 1978 for type A_{n}, that is for $\mathfrak{g}=\mathfrak{s l}(n+1, \mathbb{C})$.

Fun fact: the classical exponents of type A_{n}

What is known?

■ Lascoux-Leclerc-Thibon's re-interpretation of type A_{n} charge in terms of crystal operators (1995)

- Conjecture in type C_{n} due to Lecouvey (2005)

■ \rightsquigarrow proven for $\lambda=k \omega_{1}$ (jt. with M. Dołęga and T. Gerber) (2020)

■ Lenart-Lecouvey's formula for the generalized exponents $K_{\lambda, 0}$ (2019)

■ Patimo's new proof of the charge formula in type A_{n} using the geometry of the affine grassmannian, Hecke algebras, and combinatorics of twisted Bruhat graphs... (2023)
■ New charge statistic in type C_{2}, using the above mentioned methodology (jt. with L. Patimo) (preprint 2023)

Thank you :)

