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Coxeter Groups and Reflection Groups

@ Coxeter group: <r1, ..

@ finite Coxeter groups classified in terms of Coxeter—Dynkin diagrams (Coxeter, 1935)

@ A reflection group is a group generated by a set of reflections s, in a Euclidean space V

Sa(x) =x —

(x,a)

a3

a

forae VvV

@ finite Coxeter groups coincide with finite reflection groups

Stz ()™M = 1> where mj; =1 and mj; > 2 for i # j

‘ Group ‘ symmetries of ‘ |W| ‘ ] ‘ coxeter number h ‘ exponents
Ann>1 n-simplex (n+1)! [ D n+1 1,2,...,n
By/Cpyn > 2 Lo, 27n! n? 2n 1,3,....2n—1
Dn,n> 4 - 2n=1Ipl n—n 2(n—1) 1,3,...,2n—3,n—1
Es - 273%5 36 12 1,4,5,7,8,11
E; - 2103457 63 18 1,5,7,9,11,13,17
Eg - 21435527 120 30 1,7,11,13,17,19,23,29
Fy 24-cell (icositetrahoron) 1152 24 12 1,5,7,11
Hs (i &7 120 15 10 1,5,9
on 2%
Ha ) reguiar 600sided sohd | 14400 | 60 30 1,11,19,29
h(m),m>3 regular m-gon 2m m m 1,m—-1

A, 0—0——0----0—0—0
B,,o—o—o----o—oio



Weyl groups

@ root system ® associated to W is a set of vectors a € R" s.t.
O W={sa:acd}
o a,—a € [

O 5, =9
@ positive roots ®T of ®: a subset of ® satisfying

O for each a € ® exactly one of a, —a € ®T

O for any two distinct o, 8 € ¢ if a + 5 € & then o+ § € dF

@ simple roots A of ®t: each a € % is an R>¢-linear combination of A

@ & is crystallographic if : 222‘3 € Zforall a,B €

equiv. each o € % is an N-linear combination of A
@ crystallographic reflection groups are known as Weyl groups
@ if ® is crystallographic then we define the partial order < on &+

a=<b ifandonly if b—a e NA

apeay 2a;+3a;

apr2a

@ az+3ay



Weyl groups

@ root system ® associated to W is a set of vectors a € R" s.t.

O W={sa:acd} x N 2 oy f 200
ag + az

O 067—06649 )a1+u2

O s5,P=9¢ -

@ positive roots ®T of ®: a subset of ® satisfying
O for each a € ® exactly one of a, —a € ®T

O for any two distinct o, 8 € ¢ if a + 5 € & then o+ § € dF

@ simple roots A of ®t: each a € % is an R>¢-linear combination of A azvay 2a43a,

@ & is crystallographic if : 2<a’§> € Zforall a,B €

(o)
ap+2aq
equiv. each o € % is an N-linear combination of A
@ crystallographic reflection groups are known as Weyl groups @ aeday

@ if ® is crystallographic then we define the partial order < on &+

a=<b ifandonly if b—a e NA



Root Systems and root posets: type Ap_1

@ e1,...,e, standard basis of R”

@ positive roots ®7:

e—efor1<i<j<n

@ simple roots A:

e,-—e,-+1for1§i<n

@ Shorthand:

ais | a5 | o35 | ous | ass
ais | oza | aza

a13 | oz3 | as3

ap | ax

a1l

aij-:e;—ej+1for1§i§j<n

@11

@22

Q33

Q44

Q55



Root Systems and root posets: type B,

@ positive roots d+

€ for 1 S i S n 14,24

etefor1<i<j<n lv14,34(0024,34

@ simple roots A:
p lcv14, 44|24 44034, 44

€ — €41 forl1<i<n
14 | oo | azg

€n

Qi3 | a3 | @33
@ Shorthand

. . @12 | 22
a,-j:e,-—ejﬂfor1§1§1<n

Qjpn = € forlgign a1

a1l a2 as3 Qa4

Qjnjn = Qin + Qjp = € + € for1<i<j<n



Root Systems and root posets: type B,

@ positive roots ®F

€ for 1 S i S n 1424

etefor1<i<j<n l0v14,34(0024 34

@ simple roots A:
p lce14, 44|24 44034 44

€ — €41 forl1<i<n
14 | oo | azg

€n

Qi3 | a3 | @33
@ Shorthand

. . @12 | 22
a,-j:e,-—ejﬂfor1§1§1<n

Qjpn = € forlgign a1

a1l a2 as3 Qa4

Qjnjn = Qin + Qjp = € + € for1<i<j<n



Root Systems and root posets: type D,

@ positive roots d+
egtefor1<i<j<n

@ simple roots A:
e —eqforl<i<n+l1
€en—1+ €n

@ Shorthand
aj =€ — €41 for1<i<j<n
Qnn = €p—1 + €

Qjj ke = Qi + Qg

Q15,23
(15,33 Q25,33
Qis Qs
Q13,55 (23,55
Q4 Q4
13 Q23
Q12 Q22

a11

a33

[e 77



Coxeter arrangement and Shi arrangement

@ a hyperplane arrangement is a collection of
hyperplanes

x1 — xp=0
@ the connected components defined by the
complements of the hyperplanes are called regions

@ Coxeter arrangement: {(a,x) =0 for all a € &+

@ the regions of the Coxeter arrangement are cones
known as Weyl cones

@ number of regions of the Coxeter arrangement is |W|

@ Shi arrangement: (o, x) = 0,1 for all & € T

Coxeter arrangement Shi arrangement



Coxeter arrangement and Shi arrangement

@ number of regions of the Coxeter arrangement

wi=T]e+1)
i=1

x1 — xp=0 i
@ number of regions of the Shi arrangement

[tei+hr+1)
i=1

@ dominant cone: the intersection (o, x) > 0
for all o € dF

@ number of dominant regions of the Shi
arrangement

n

He;+h+1
. e+1
i=1

\/
ZN

Coxeter arrangement Shi arrangement



Coxeter arrangement and Shi arrangement

@ number of regions of the Coxeter arrangement

+ n
\VAVAR wi =Tt +1)
i=1

x1 — x=0 x3 — xp=0
@ number of regions of the Shi arrangement

[tei+hr+1)
i=1

@ dominant cone: the intersection (o, x) > 0
for all a € ®F
@ number of dominant regions of the Shi
arrangement
N N CALEE
. e+1
i=1

Coxeter arrangement Shi arrangement




Dominant regions and antichains

Theorem [Shi'97] There is a bijection between Shi regions in the dominant cone and antichains (ideals) in the root poset.J

@ an antichain of a poset (P, =) is a subset of mutually incomparable elements
@ an ideal of a poset (P, =) are all elements weakly above an antichain

A antichain < ideal [y ={b€ P: b= afor some a € A}
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Dominant regions and antichains

Theorem There is a bijection between Shi regions in the dominant cone and antichains (ideals) in the root poset.J

@ an antichain of a poset (P, =) is a subset of mutually incomparable elements
@ anideal of a poset (P, <) are all elements weakly above an antichain

A antichain < ideal [y ={b€ P: b= afor some a € A}

aus|aos|ass|ass|ass . S . .
O In type A, the ideals of the root poset are in bijection with lattice paths from /
14| 24|34 10044 to F in a staircase diagram of size n
(e3K] [e%X] [e%K}
22
11




Dominant regions and antichains

Theorem [Shi'97] There is a bijection between Shi regions in the dominant cone and antichains (ideals) in the root poset.J

@ The bijection:

if | is an ideal in ®* the corresponding region R, is defined as

={x:{a,x)>1ifa€land0< (ox) <1 otherwise}

o o [ v R = e = e

(o5} IX1—X9)




Dominant regions and antichains

Theorem [Shi'97] There is a bijection between Shi regions in the dominant cone and antichains (ideals) in the root poset.J

@ The bijection:

if | is an ideal in ®* the corresponding region R, is defined as

={x:{a,x)>1ifa€land0< (ox) <1 otherwise}

x; —x=0

o o [ v R = e = e

0<x;—x <1 0<x1—x2<1 0<x1—x2 <1 x1—xp>1 x1—xp>1
0<xx—x3<1 0<x—x3<1 xp—x3>1 0<x—x3<1 xp—x3>1
0<x;—x3<1 x1—x3>1 x1—x3>1 x1—x3>1 x1—x3>1

(o5} IX1—X9)




Regions in other Weyl cones

//
@ the dominant cone C = {x: 0 < (a,x) for all a € ®+}
@ the other Weyl cones are wC with w € W
@ the regions in wC correspond to some ideals of the root

poset

% can we describe them in terms of the root poset?
x1 — x=0

% can we count them?
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Regions in other Weyl cones

F&F%F
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Regions in other Weyl cones

[ 2

the dominant cone C = {x : 0 < {(a,x) for all a € ®*}
the other Weyl cones are wC with w €¢ W

the regions in wC correspond to some ideals of the root
poset

can we describe them in terms of the root poset?

can we count them?

@ wC={x:0<{a,x)ifacdt\Inv(w?!)

E:‘ x1 — x=0
/\ o Inv(w)={aed:w(a)ecd}

Theorem [Armstrong, Reiner & Rhoades, "14] For every w € W, the Shi regions in the Weyl cone wC are in bijection

and {a,x) < 0 if a € Inv(w™1)}

with ideals in the subposet of the root poset ®* restricted to ®* \ Inv(w™1).

)




example in W = Ag

@ If w=s55515351 then wC = {x €R®: x > x4 > x1 > x5 > X6 > X3}
@ inversion set: Inv(w™!) = {a11, @13, @33, a34, 35}

@ The number of Shi regions in wC is equal to the number of ideals in ®T \ {11, 13, a33, A34, 35}

ai15 Q25 azs %1} Q55

Q14 | 24 | 34 | Q44

a13 Q23 | (33

a12 Q22

a1l




example in W = Ag

@ If w=s55515351 then wC = {x €R®: x > x4 > x1 > x5 > X6 > X3}
@ inversion set: Inv(w™!) = {a11, @13, @33, a34, 35}
@ The number of Shi regions in wC is equal to the number of ideals in ®T \ {11, 13, a33, A34, 35}

@ The number of Shi regions in wC is equal to the number of paths from [ to F in the directed acyclic graph ' which
do not contain any of the subpaths 71, 7w, 73, 74, 75

F

Q15 | Q25 | (35 | Q45 | Oss

5
Q14 | 24 | (34 | Q44

T3
Q13 | a3 | @33

T4 L)

a1z | a2
(o551




root posets in Weyl cones and directed graphs

@ The general situation: We have an acyclic directed graph G from [ to F, N = {m1,...,7x} is a subset of
non-overlapping subpaths of G

@ We want to count all paths from | to F which do not contain any subpath from the set I

F
14 24, Q15,23 . .
F ’ this is not the correct digraph model
(e %11 [0 %1 35 (o713 (0731 (14,34)0024 34, Q15,33 T (25 33
Q14 L 024 | 34 X Q4 (X14,4410024 44{0034 44, (o313 (o213 Qss
13,55 23,55) \(¥33,5 Q55
Q13 § Q23 A (33 Q14 L Q24 f Q34 L Qg
Qg Q24 (V34 Qlgg
Q12 L Q22 13 L Q23 A (33 [e3K] Qi3 Q33
11 12 a2 a2 Q2
i
a1l [e351




Counting with determinants

Theorem Let / and F be the source and the sink of an acyclic directed graph I'. Let
M = {m1,...,mn} be a collection of non-overlapping paths in . Then

|l = F : 7 contains no subpath from the set M|

|/1—)/1‘ |F2—>/1| |F3—>/1| ‘Fn—)ll‘ |/—)/1‘
‘F]_—>/2| |/2—>/2| |F3—>12| ‘Fn—>lz‘ |I—>I2‘
‘F1—>/3| |F2—>/3| |/3—>/3| ‘F,,—)/;;‘ |/—)/3‘
[Fi—=ta| |Fo= ol |Fs=ta|l o o= ho| 1= I
|Fi>F| |Fo—F| |Fs=F| - |Fa—=F |I=F

where [; and F; are the initial and terminal point of =, and

|A — B] is the number of paths from A to B in [




Counting with determinants

Theorem Let / and F be the source and the sink of an acyclic directed graph I'. Let
M = {m1,...,mn} be a collection of non-overlapping paths in . Then

|l = F : 7 contains no subpath from the set M|

1 0 0 0 =
[F1 — b 1 0 0 [l = b
|Fi— k| |Fa— k| 1 0 [/ — b
|Fi = Il |Fa— I |F3—la| - 1 =A
|FL—>F| |Fa—>F| |Fs—F| - |Fa—=F| |I—F

where [; and F; are the initial and terminal point of =, and

|A — B] is the number of paths from A to B in [




Counting with determinants

Idea of the proof

@ det(A) = Z sgn(o) H o) | = Z Sg"(U)Hai,cl(i) Hai,cz(i)"'

oES i€[n+1] Uzcé?“q i€ i€c
n41

@ If a non trivial cycle ¢ € Sp41 does not contain n+ 1 then [] aj () =0
i€c

@ If c = (k) is a trivial cycle with 1 < k < n then ay =1

@ Ifacycle c=(n+1itir---ip)is a cycle € 5,11 that contains n+ 1 then

Ha,—c(,-) = |l = F : 7 contains the subpaths 7;,7;,, ...

i€c

@ inclusion exclusion

> Ty



Counting with determinants

Uy

|h — K|
|F1—>12|
|F1—)F|

|Fo — h|
|12 — IQ|
|F2 — Fl

[l = h|
[ = h|| =
[ — F|

15



Counting with determinants

£, |h = h| |F2—=h| |I—= K|
o |F1—>Iz| |/2—)/2‘ |I—)/2‘ =
2 |Fi = F| |F, = F| |I— F

%)

|I — Fl (1 — |F1 — I2||F2 — Il|)

Uy

I

(1) |1 = F| W)= b= h=h = F—hL 3 F —h=0



Counting with determinants

F ‘/1—)/1| |F2—>/1| |I—)/1‘
|F1—>Iz| |/2—)/2‘ |/—)I2‘ =
™ |FL = F| |Fa— F| |l F
13
[l — F|<1— |F1 = bl||F2 — /1|)
£y
Pl / —I/—>/zI(IFz—>F|—|F1—>F||Fz—>ll|)
I
/ //
(1) |1 = F| W)= b= h=h = F—hL 3 F —h=0

@)l = bl|Fo— Fl=|l = kL "% F,— F| = |l - F: contains m|



Counting with determinants

F-2 ‘/1—)/1| |F2—>/1| |I—>/1‘
[Fi—=h| |h—=hl |I=hl|=
™ |FL = F| |Fa— F| |l F
5!
Il—>FI<1—|F1—>Iz||F2—>Il|)
£y
1 —|/—>/zI(IFz—>FI—|F1—>F||F2—>I1I)
h
I
(1) |1 = F| W)= b= h=h = F—hL 3 F —h=0

@)l = bl|Fo— Fl=|l = kL "% F,— F| = |l - F: contains m|

@Y= k||F,=h||FR—=Fl=l —mh = F— L " F — F|=|l - F: contains 7, and |



Counting with determinants

F~2 ‘/1—)/1| |F2—>/1| |I—)/1‘
|F1~>Iz| |/2~)/2‘ |I~)/2‘ =
2 |FL = F| |Fa— F| |l F
13
|I—)F|<1—|F1—>IQ||F2—>11|)
B
1 —|l—>lg\<|F2—>F|—|F1—>F||F2—>Il|)
h
+|l%ll\(|F1ﬁlz||F2ﬁF|f|F1HF|)
/
(1) |1 = F| W)V IA=hL|F=h=h = F—hL 3 F —h=0

@)l = bl|Fo = Fl=|l = kL "% F, — F| = |l - F: contains m)|
@Y= kl|FR=h|FR—>Fl=l —mh = F— 5L " F — F|=|l - F: contains 7, and |
@)=kl b= F=l—>h"%F—bkL-"%F— F|=|l— F: contains m and 7|

@Y= hFR—F=|l —§L™F— F) = |l — F : contains |



Counting with determinants

L h—=hl |Fo—h| |I—h|
F lh 1 2 1 .
2 Fis bl h—hl |I— bl = #bofpsth.sfromltoFWlth no
o FL > F| |Fa F| |l F subpaths in {m,m2}
5!
|I—)F|<1—|F1—>IQ||F2—>11|)
Ay
) —|l—>l2\<|F2—>F|—|F1—>F||F2—>I1|)
h
+|/—)/1‘(|F1~>/2||F2~>F|7|F1~>F|)
)
(1) |1 = F| W)V IA=hL|F=h=h = F—hL 3 F —h=0

) [l = bL||Fo = Fl=|1 = h =5 F, = F|= |l — F: contains 7|
@Y= kl|FR=h|FR—>Fl=l —mh = F— 5L " F — F|=|l - F: contains 7, and |
B) I = h||F = b||F, — Fl=1|l = h N F—h - F— F|=|l — F: contains m and |

@Y= hFR—F=|l —§L™F— F) = |l — F : contains |



Counting in type A and (almost always) type B

Lemma [André 1887] Let T be the infinite digraph of Z? with vertical edges pointing north and horizontal edges
pointing east. Then

Xotya—xi—=y1\ _ (Xety2—x1—xn a < <
(#4270 - (MR i < and i <

[(x1,¥1) = (x2,y2) : ™ weakly above x = y| =
0 otherwise

(X:- ,V:)

(xa }/1)




example (cnt)

a15 Q25 azs %13 Qas5

Q14 4 Q24 L O34 L 44

13 23 a3z3

T4 T
a2 | a2
11
I m
wC ={xeR":

X2>X4>X1>X5>X6>X3}

|h — K|
|F1 — b
|F1 — B
|F1 — la]
|F1 — I5]

|F1 — F|

|Fo — h|
[ — b
|Fo — k5|
[Fo — l4]
|Fo — I5]

|Fo> — F|

O O O = O

|F3 — h|
|F3 — b
|3 = ]
[l — 14
|3 — I

|F3 — F|

o O ~» O o

|Fa — h|
|Fa — b|
|Fa — k|
[Fa — 4]
|Fa — Is]

|Fy — F|

|Fs — h|
|Fs — b
|Fs — 3]
|Fs — ls]
|Fs — I5]

|Fs — F|

= O O O O

[ = h|
[l — b
[ = k|
[ — Iy
[ = Is]

|l — F|

ha AR N N
NN N N S

NooorNVOOBMRERNO

=38

NN N S S
POoOPpPONDNWUOUNMEOO

NN SN N



digraph for type D

Q15,23

015,37 25,3

135 235

Theorem [Dermenjian T.'23]

13,571 023,5

35 TassT ass

' ' '
Taig oo a3
' ' '

boocoboooban

Q15,23
Q15,33 | (¥25,33
Qg5 Qos Q35
13,55 23,55| \(¥33,55 Qs
Q14 Q24 Qi34 [e7¥}
Qa3 [e%] Q33
Q12 [0%]
Qa1




digraph for type D

Q15,23

Q15,37 Q25,3

ai5 1 azs T aszs

135 235

Theorem

135 Ta23,5

35 lassT ass

' ' '
taig oot oass
' ' '

boocoboooban

Q15,23
15,33 | (¥25,33
(051 Qs Q35
13,55 23,550 \(¥33,55 Qs
Q14 Q24 (34 Qigq
Qa3 [e%] Q33
Q12 [0%]
Qa1




digraph for type D

135 235

135 Ta23,5

Theorem [Dermenjian T.'23]

35 TassT ass

' ' '
togg 1o ) az
' ' '

boocoboooban

Q15,23
15,33 | (¥25,33

Qg5 Qs Q35

13,55 23,55 \(¥33,55 Qs

Q14 Q24 Qi34 [e7¥}

a3 Q3 Q33

Q12 [0%]

Qa1




Count antichains w.r.t. number of elements

@ Count ideals in the subposet ®* \ Inv(w~1) w.r.t. minimal elements W= Jy= 3 tleomers(m)
. ) . th in [
@ Count regions in wC w.r.t. number of separating walls }rrf:q i 'tf, J

x3 — x=0




Count antichains w.r.t. number of elements

@ Count ideals in the subposet ®* \ Inv(w~1) w.r.t. minimal elements

@ Count regions in wC w.r.t. number of separating walls

Ej x3 — x=0

1
t- ’7(F1 — /2)
t- ’y(Fl — /3)

t- ’V(Fl — In)
t-y(FL — F)

7 pathin [
from | to J

7(/ — _j) = Z tcorners(Tr)J

Theorem[Dermenjian T. 23]

(I = F|m has no subpath in 1) =

t~’y(F2 — /1)
1
t~’y(F2 — /3)

t- ’V(FQ — /,,)
t-v(F2 — F)

t- ’y(Fn — Il)
t- 'Y(Fn — /2)
t- ’y(Fn — I3)

t-y(Fn— F)

'y(/—> /1)
~y(I — k)
'y(/—) /3)

y(I = 1)
(1 = F)




Open problems

Find the appropriate acyclic directed graphs for the exceptional reflection groups

A
)




Open problems

@ Count regions of the m-Shi arrangement in each wC

@ m-extended Shi arrangement

(a,x) =k foralla € @t and —m< k<m

n

@ # dominant regions: H
i=1

e,-+mh+1
e,-+1

@ # regions: H(e,- + mh+1)
i=1

21



Thank you for your attention!
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