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I Let is(π) be the length of the longest increasing sequence in
the permutation π.

I Let
uk(n) = |{π ∈ Sn : is(π) ≤ k}|,

and

Uk(x) =
∑
n≥0

uk(n)
x2n

n!2
.

I Theorem (Gessel, 1990).

Uk(x) = det(Ji−j(x))ki,j=1,

where

Ji(x) =
∑
n≥0

x2n+i

n!(n+ i)!
.
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Negative dependence

I Negative dependence traditionally models repelling particles or
“repelling” random variables in statistical physics or
probability theory.

I Let E be a finite set of sites, that can be either occupied by a
particle or vacant.

I Let Xi, i ∈ E, be a random variable

Xi =

{
0 if i is vacant,

1 if i is occupied.

I If the particles are repelling, then one would expect different
sites i, j to be negatively correlated:

P[Xi = Xj = 1] ≤ P[Xi = 1] · P[Xj = 1]



Quest for a theory of negative dependence

“There is a natural and useful theory of positively dependent
events. There is, as yet, no corresponding theory of negatively
dependent events. There is, however, a need for such a theory.”

Robin Pemantle, (UPenn), J. of Math. Physics, 2000.



Quest for a theory of negative dependence

“There is a natural and useful theory of positively dependent
events. There is, as yet, no corresponding theory of negatively
dependent events. There is, however, a need for such a theory.”
Robin Pemantle (UPenn) J. of Math. Physics, 2000.

I Since then two successful approaches to negative dependence
has been developed.

I One using the geometry of zeros of polynomials, and the other
using ideas from Hodge theory.

I The theory of Lorentzian polynomials merges the two.



Negative dependence

Other important negative dependence inequalities are

I Log-concavity:
r2
k ≥ rk−1rk+1,

where

rk = P
[∑

Xi = k
]

= P[exactly k sites are occupied].

I Newton’s inequalities (1707). If all the zeros of a polynomial
r0 + r1x+ r2x

2 + · · ·+ rnx
n are real, then

r2
k(
n
k

)2 ≥ rk−1(
n
k−1

) · rk+1(
n
k+1

) , 0 < k < n.

I Real zeros are repelling.



Fundamental problems on independence

I Many problems on independence exhibit strong negative
dependence properties.

I E = {a, b, c, . . .} is a finite set of vectors in a vector space.

 

I fk = the number of linearly independent subsets of E of size k

I (f0, f1, f2, f3) = (1, 5, 9, 5).

I What can be said about the sequence f0, f1, f2, . . .?



Mason’s conjecture

I Mason’s strong conjecture (1972).
The sequence f0, f1, . . . , fn, n = |E|, satisfies Newton’s
inequalities, i.e.,

f2
k(
n
k

)2 ≥ fk−1(
n
k−1

) · fk+1(
n
k+1

) , 0 < k < n.

I The general form of the conjecture concerns independent sets
in matroids.



Graph colorings

I Let G = (V,E) be a graph. A proper k-coloring of G is a
function κ : V → {1, 2, . . . , k} such that

{i, j} is an edge =⇒ κ(i) 6= κ(j).
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Graph colorings

I Let G = (V,E) be a graph. A proper k-coloring of G is a
function κ : V → {1, 2, . . . , k} such that

{i, j} is an edge =⇒ κ(i) 6= κ(j).

I What can be said about the chromatic polynomial:

χG(k) = the number of proper k-colorings.

I Introduced by George D. Birkhoff in 1912 to study the four
color conjecture.



Read-Heron-Rota-Welsh conjecture

I We may write

χG(x) = w0x
n − w1x

n−1 + · · ·+ (−1)nwn, n = |V |,

where w0, w1, . . . , wn are nonnegative integers called the
Whitney numbers of the first kind.

I Conjecture (Read-Heron-Rota-Welsh, 1968–76).
{wk}nk=0 is a log-concave sequence, i.e.,

w2
k ≥ wk−1wk+1, 0 < k < n.

I Proved by June Huh using Hodge theory.

I In its full generality, the conjecture applies to the
characteristic polynomial of a geometric lattice.

I Proved Adiprasito, Huh and Katz by developing a Hodge
theory for matroids.



Matroid theory

I Matroid theory is a discrete axiomatization of independence in
algebra and graph theory.

I Introduced by Nakasawa and Whitney in the 1930’s.



Matroid theory

I Let M be a collection of subsets of a finite set E.

I M is the set of bases of a matroid if for all B1, B2 ∈ M:

i ∈ B1 \B2 =⇒ ∃j ∈ B2 \B1 such that (B1 \ {i})∪{j} ∈ M.

I Example. E is a finite set of vectors that span a linear space
V . M is the set of bases of V drawn from E. M is called a
linear matroid.

I Example. G = (V,E) is a connected graph. M is the
collection of spanning trees of G.

 



 

 

M = {abc, abd, abe, acd, ace}



Matroid Potts model

I Let M be a matroid on E. The rank of a subset A of E is

r(A) = max{|A ∩B| : B ∈ M}.

I A subset I of E is independent if r(I) = |I|.
I For positive numbers q and xe, e ∈ E, define a probability

measure on 2E = {S : S ⊆ E} by

µq(S) =
1

Zq
q−r(S)

∏
e∈S

xe,

where Zq is the normalizing factor, or the partition function.

I q > 1: Favors low rank. Positively dependent.

I q < 1: Favors high rank. Negatively dependent?



Matroid Potts model

I Recall

µq(S) =
1

Zq
q−r(S)

∏
e∈S

xe,

I Set xe = q for all e:

µq(S) =
1

Zq
q|S|−r(S),

I Let q → 0:

µq(S)→ 1

Z

{
1 if S independent,

0 otherwise.

I Hence if we can prove negative dependence for µq for all
0 < q ≤ 1, then we can prove negative dependence for
independent sets.



Random cluster-model

I When M is a graphic matroid corresponding to a graph
G = (V,E), then µq is called the Random-cluster model (RC).

I q = 2: Ising model (Ferromagnet),
I q ∈ Z>0: q-state Potts model.



Negative dependence conjectures for Potts models

I For q ≥ 1, the matroid Potts model is positively dependent.

I For 0 < q ≤ 1, RC is conjectured to be negatively dependent.

I Conjecture (Pemantle, Kahn, Grimmett,...). RC is negatively
correlated for 0 < q ≤ 1.

I Theorem (Kirchhoff). If G is connected, and xe, e ∈ E are
positive numbers then the measure on 2E :

µG(S) =
1

Z

{∏
e∈S xe if S is a spanning tree,

0 otherwise.

is negatively correlated.

I Unknown for the random forest measure.



Negative dependence for Potts models

I Let rk = P[k sites are occupied] and n = |E|.
I Conjecture (Pemantle, 2000). For 0 < q ≤ 1, RC satisfies

Newton’s inequalities:

r2
k(
n
k

)2 ≥ rk−1(
n
k−1

) · rk+1(
n
k+1

) .
I It is natural to extend this conjecture to all matroids.

I Extended Pemantle’s conjecture was proved by B. and Huh in
2020. =⇒ Mason’s conjecture.

I Theorem (B., Huh, 2020). For 0 < q ≤ 1 and distinct sites i
and j,

P[Xi = Xj = 1] ≤ 2 · P[Xi = 1] · P[Xj = 1].

I The proofs use Lorentzian polynomials.



Gian-Carlo Rota’s idea

I Gian-Carlo Rota (1932-1999) believed that matroid negative
dependence conjectures should be approached by geometric
inequalities from Brunn-Minkowski theory.



Motivation: Geometric inequalities

I Brunn-Minkowski inequality (1887). For convex bodies
K1,K2 ⊂ Rd,

Vol(K1 +K2)1/d ≥ Vol(K1)1/d + Vol(K2)1/d,

where K1 +K2 = {x1 + x2 : x1 ∈ K1 and x2 ∈ K2}.
I Minkowski. For convex bodies K1, . . . ,Km, and
x1, . . . , xm > 0,

Vol(x1K1 + · · ·+ xmKm) =
∑
i1,...,id

V (Ki1 , . . . ,Kid)xi1 · · ·xid ,

where V (K1, . . . ,Kd) ≥ 0 are the mixed volumes.

I Alexandrov-Fenchel inequalities (1937).

V (K1,K2, . . . ,Kn)2 ≥ V (K1,K1,K3 . . . ,Kn)·V (K2,K2,K3, . . . ,Kn)



Lorentzian polynomials

I Let f ∈ R[x1, . . . , xn] be a homogeneous degree d polynomial
and v1, . . . ,vm ∈ Rn. Then

f(x1v1 + · · ·+ xmvm) =
1

d!

∑
i1,...,id

(Dvi1
· · ·Dvid

f)xi1 · · ·xid

where Dw = w1
∂
∂x1

+ · · ·+ wn
∂
∂xn

.

I f is called Lorentzian if f has nonnegative coefficients, and
for all v1, . . . ,vd ∈ Rn>0,

(AF) (Dv1Dv2 · · ·Dvd
f)2 ≥ (Dv1Dv1 · · ·Dvd

f)(Dv2Dv2 · · ·Dvd
f)

I If ak = Dk
v1
Dd−k

v2
f , then a2

k ≥ ak−1ak+1.



Lorentzian polynomials

I Let f ∈ R[x1, . . . , xn] be a homogeneous degree d polynomial
and v1, . . . ,vm ∈ Rn. Then

f(x1v1 + · · ·+ xmvm) =
1

d!

∑
i1,...,id

(Dvi1
· · ·Dvid

f)xi1 · · ·xid

where Dw = w1
∂
∂x1

+ · · ·+ wn
∂
∂xn

.

I f is called Lorentzian if f has nonnegative coefficients, and
for all v1, . . . ,vd ∈ Rn>0,

(AF) The Hessian (
∂2g

∂xi∂xj

)n
i,j=1

of the quadratic polynomial g = Dv1 · · ·Dvd−2
f has at most

one positive eigenvalue.



Exercise

I Let f ∈ R≥0[x1, . . . , xn] be a quadratic polynomial, and write

f =
1

2
xTAx =

1

2

∑
i,j

aijxixj .

I The following are equivalent:

(a) f is Lorentzian,

(b) A has at most one positive eigenvalue,

(c) For all u,v ∈ Rn>0,

(uTAv)2 ≥ (uTAu) · (vTAv).



Examples of Lorentzian polynomials

I Determinantal polynomials: det(x1A1 + x2A2 + · · ·+ xnAn),
where A1, . . . , An are symmetric positive semidefinite d× d
matrices.

I Stable polynomials: f ∈ R≥0[x1, . . . , xn], homogeneous of
degree d, such that

Im(xj) > 0 for all j =⇒ f(x1, . . . , xn) 6= 0.

I Volume polynomials of convex bodies or projective varieties.

I Various matroid polynomials.

I Normalized Schur polynomials (Huh, Matherne, Mészáros, St.
Dizier).



Properties of Lorentzian polynomials

I Theorem (B., Huh, 2020). If f and g are Lorentzian, then so
is fg.

I If f is Lorentzian and v ∈ Rn≥0, then Dvf is Lorentzian.

I If f ∈ R[x1, . . . , xn] is Lorentzian and A is an m× n matrix
with nonnegative entries, then f(Ax) is Lorentzian.

I A bi-variate polynomial
∑d

k=0 akx
kyd−k with positive

coefficients is Lorentzian iff the Newton inequalities are
satisfied:

a2
k(
d
k

)2 ≥ ak−1(
d

k−1

) · ak+1(
d

k+1

) .
I Suppose u,v ∈ Rn≥0, and f is Lorentzian. Write

f(su + tv) =

d∑
k=0

ak

(
d

k

)
sktd−k.

Then {ak}dk=0 is log-concave.



Lorentzian polynomials and Matroid theory

I A finite subset J of Zn is M -convex if

α, β ∈ J and αi > βi =⇒
there is a j such that βj > αj and α− ei + ej ∈ J.

 



Lorentzian polynomials and Matroid theory

I A finite subset J of Zn is M -convex if

α, β ∈ J and αi > βi =⇒
there is a j such that βj > αj and α− ei + ej ∈ J.

I Also called polymatroids or integer points of generalized
permutahedra.

I If J ⊆ {0, 1}n, then J is M -convex iff J is the set of bases of
a matroid.

I The support of a polynomial

f =
∑
α∈Nn

aα x
α1
1 xα2

2 · · ·x
αn
n , aα ∈ R,

is
supp(f) = {α ∈ Nn : aα 6= 0}.



Characterization of Lorentzian polynomials

Theorem (B., Huh, 2020). Let f be a degree d homogenous
polynomial with nonnegative coefficients. Then f is Lorentzian iff

(M) supp(f) is M -convex, and

(L) for all i1, i2, . . . , id−2, the Hessian of the quadratic
∂

∂xi1
· · · ∂

∂xid−2

f

has at most one positive eigenvalue.

I Non-example. x2
1 + x2

2 is not Lorentzian.

 



Characterization of Lorentzian polynomials

Theorem (B., Huh, 2020). Let f be a degree d homogenous
polynomial with nonnegative coefficients. Then f is Lorentzian iff

(M) supp(f) is M -convex, and

(L) for all i1, i2, . . . , id−2, the Hessian of the quadratic
∂

∂xi1
· · · ∂

∂xid−2

f

has at most one positive eigenvalue.

I Non-example. x2
1 + x2

2 is not Lorentzian.

I Example. x2
1 + 3x1x2 + x2

2 is Lorentzian.

 



Characterization of Lorentzian polynomials

Theorem (B., Huh, 2020). Let f be a degree d homogenous
polynomial with nonnegative coefficients. Then f is Lorentzian iff

(M) supp(f) is M -convex, and

(L) for all i1, i2, . . . , id−2, the Hessian of the quadratic
∂

∂xi1
· · · ∂

∂xid−2

f

has at most one positive eigenvalue.

Theorem (B., Huh, 2020). If J ⊂ Nn is M -convex, then∑
α∈J

1

α1! · · ·αn!
xα1

1 · · ·x
αn
n is Lorentzian.

I Hence Lorentzian polynomials characterize M -convex sets and
matroids.



Bivariate polynomials

I When is a bivariate polynomial Lorentzian? Write

f =
1

d!

d∑
k=0

ak

(
d

k

)
xkyd−k =

d∑
k=0

ak
xk

k!

yd−k

(d− k)!

I (M) says that {ak}dk=0 has no internal zeros.

I (L) says that the Hessian H of

∂k−1

∂xk−1

∂d−k−1

∂yd−k−1
f = ak−1

y2

2
+ akxy + ak+1

x2

2
x2

has at most one positive eigenvalue.

H =

(
ak+1 ak
ak ak−1

)
, λ1λ2 = det(H) = ak−1ak+1−a2

k ≤ 0.

I Hence Lorentzian iff {ak} no internal zeros and log-concave.



Multivariate Tutte polynomial

I The partition function for the Potts model of M is

ZM(x; q) =
∑
A⊆E

q−r(A)
∏
e∈A

xe.

I Let
HM(x; q) =

∑
A⊆E

q−r(A)x
|E\A|
0

∏
e∈A

xe.

I Notice
∂

∂xe
HM(x; q) = q−r({e})HM/e(x; q),

where M/e is the contraction of M by e:

M/e = {B \ {e} : B is a basis of M and e ∈ B}.



Matroid Potts model is Lorentzian

Theorem (B., Huh, 2020). If 0 < q ≤ 1, then HM(x; q) is
Lorentzian as a polynomial in x.

Proof.

I We should verify conditions (M) and (L) of the
characterization.

I supp(HM(x; q)) is M -convex.

I Recall
∂

∂xe
HM(x; q) = q−r({e})HM/e(x; q).

I By induction on r(M) (and by taking truncations if necessary)
it suffices to prove for r(M) = 2.

I The case when r(M) = 2 is an exercise in linear algebra.



Consequences

I Let E = {1, . . . , n}. The previous theorem says

HM(x0, x1, . . . , xn) =
∑
S⊆E

q−r(S)x
n−|S|
0

∏
e∈S

xe is Lorentzian.

I Then so is f(s, t) = HM(s, x1t, x2t, . . . , xnt), where xj > 0
for all j.

f(s, t) =

n∑
k=0

rks
n−ktk.

I From this follows the extended Pemantle conjecture, and
Mason’s conjecture.



Motivation: Elements of Hodge theory

I Let

A = R[x1, . . . , xn]
/
I =

d⊕
k=0

Ak

be a graded R-algebra.

I Suppose Ad is one-dimensional, and let

deg : Ad → R

be a linear isomorphism.

I Suppose K ⊂ A1 is an open convex cone.



Kähler package

Desirable properties of A.

Poincaré duality (PD)
The bilinear map,

Ak ×Ad−k −→ R, (x, y) 7−→ deg(xy),

is nondegenerate.

Hard Lefschetz property (HL)
For each 0 ≤ k ≤ d/2, and any `1, `2, . . . , `d−2k ∈ K, the linear
map

Ak −→ Ad−k, x 7−→ `1`2 · · · `d−2kx,

is bijective.



Kähler package

Hodge-Riemann relations (HR)
For each 0 ≤ k ≤ d/2, and any `0, `1, . . . , `d−2k ∈ K, the bilinear
map

Ak ×Ak −→ R, (x, y) 7−→ (−1)k deg(`1`2 · · · `d−2kxy)

is positive definite on {x ∈ Ak : `0`1 · · · `d−2kx = 0}.

Let `1, . . . , `d ∈ K.

(P) For k = 0, (HR) says deg(`1`2 · · · `d) > 0.

(AF) For k = 1, (HR) says

deg(`1`2`3 · · · `d)2 ≥ deg(`1`1`3 · · · `d) deg(`2`2`3 · · · `d).

(LC) In particular, the sequence ak = deg(`k1`
d−k
2 ) is log-concave

a2
k ≥ ak−1ak+1, 0 < k < d.



Examples

I Classical examples of Kähler package comes from compact
Kähler manifolds and projective varieties,

I Polytopes (Stanley, McMullen),

I Chow rings of matroids (Adiprasito, Huh, Katz), and similar
Chow rings.



Beyond Hodge theory

I Is there a common “geometry of polynomials” setting for
these examples?

I The degree map defines a homogeneous degree d polynomial
in R[t1, . . . , tn]:

volA(t) =
1

d!
deg

( n∑
i=1

tixi

)d . (volume polynomial)

I Let ` = a1x1 + · · ·+ anxn ∈ A1, v = (a1, . . . , an) ∈ Rn.
Then

Dv volA(t) =

n∑
i=1

ai
∂

∂ti
volA(t) =

1

(d− 1)!
deg

` ·( n∑
i=1

tixi

)d−1


I Iterate: Dv1Dv2 · · ·Dvd
volA(t) = deg(`1`2 · · · `d).



Lorentzian polynomials on cones

I Let f ∈ R[t1, . . . , tn] be a homogeneous degree d polynomial.

I Let K be an open convex cone in Rn.

I f is called K-Lorentzian if for all v1, . . . ,vd ∈ K,

(P) Dv1 · · ·Dvd
f > 0, and

(AF) (Dv1Dv2 · · ·Dvd
f)2 ≥ (Dv1Dv1 · · ·Dvd

f)(Dv2Dv2 · · ·Dvd
f)

I Hence we get K-Lorentzian polynomials from the examples
from Hodge theory above.

I Example. Lorentzian polynomials are the same as
Rn>0-Lorentzian polynomials.

I Example. The determinant A 7→ det(A) is Lorentzian on the
cone of positive definite matrices.

I There are K-Lorentzian polynomials that do not come from
any of the examples from Hodge-theory above.



Quadratic Lorentzian polynomials on cones

I Let A = (aij)
n
i,j=1 be a (non-zero) symmetric n× n matrix.

I The polynomial

f(t) =
∑
i,j

aijtitj

is Lorentzian with respect to some cone iff A has exactly one
positive eigenvalue λ. 



Chow rings of fans

I Let ∆ be a pure abstract simplicial complex on V .
I Let Σ = {CS}S∈∆ be a collection of |S|-dimensional

polyhedral cones such that
I Each face of CS is a cone in Σ, and
I CS ∩ CT = CS∩T .

 



Chow rings of fans

I Let ∆ be a pure abstract simplicial complex on V .
I Let Σ = {CS}S∈∆ be a collection of |S|-dimensional

polyhedral cones such that
I Each face of CS is a cone in Σ, and
I CS ∩ CT = CS∩T .

I Σ is called a simplicial fan.

I Let ρi, i ∈ V , be specified vectors of the rays C{i}.

I Let L = L(Σ) = {(λ(ρi))i∈V : λ ∈
(
RV
)∗}.



Chow rings of fans

I Define two ideals in R[xi : i ∈ V ]:

I I(∆) is generated by the monomials
∏
i∈T

xi, T 6∈ ∆.

I J(L) is generated by the linear forms
∑
i∈V

`ixi, (`i)i∈V ∈ L.

I The graded ring

A(Σ) =

d⊕
k=0

Ak(Σ) := R[xi : i ∈ V ]
/

(I(∆) + J(L))

is the Chow ring of Σ.
I Important examples of Chow rings that satisfy the Kähler

package are
I The normal fan of a simple polytope (Stanley, McMullen).
I The Chow ring of a matroid (Adiprasito, Huh and Katz), and

related Chow rings.





Goals

I Try to find “polynomial proofs” of Hodge-Riemann relations
of degree zero and one for Chow rings of fans.

I Would give new and elementary proofs of the
Heron-Rota-Welsh conjecture and similar results.

I Characterize the Chow rings of fans that satisfy
Hodge-Riemann relations of degree zero and one.

I Extend beyond fans and Hodge theory.



Volume polynomials of Chow rings of fans

I Let deg : Ad(Σ)→ R be a linear function, and consider the
volume polynomial

volΣ(t) =
1

d!
deg

(∑
i∈V

tixi

)d .

I Properties: Let ∂S :=
∏
i∈S ∂i, where ∂i := ∂/∂ti.

S 6∈ ∆(Σ) =⇒ ∂S volΣ =
1

(d− |S|)!
deg

∏
i∈S

xi

(∑
i∈V

tixi

)d−|S| ≡ 0

` ∈ L(Σ) =⇒ 1

(d− 1)!
D` volΣ = deg

∑
i∈V

`ixi

(∑
i∈V

tixi

)d−1
 ≡ 0



Hereditary polynomials

I Let ∆ be a pure (d− 1)-dimensional simplicial complex on a
finite set V .

I Let L be a linear subspace of RV .

I The pair (∆, L) is called hereditary if for each S ∈ ∆

{(`i)i∈S : (`i)i∈V ∈ L} = RS .

 



Hereditary polynomials

I Let ∆ be a pure (d− 1)-dimensional simplicial complex on a
finite set V .

I Let L be a linear subspace of RV .

I The pair (∆, L) is called hereditary if for each facet S ∈ ∆

{(`i)i∈S : (`i)i∈V ∈ L} = RS .

I If Σ is a simplicial fan, then (∆(Σ), L(Σ)) is hereditary.

I Let P(∆, L) be the set of all degree d homogeneous
polynomials f ∈ R[ti : i ∈ V ] such that

S 6∈ ∆ =⇒ ∂Sf ≡ 0, and

v ∈ L =⇒ Dvf ≡ 0.

I If (∆, L) is hereditary, then f ∈ P(∆, L) is called hereditary.



Hereditary polynomials

I If S ∈ ∆, then the link of S in ∆ is the simplicial complex

lk∆(S) := {T ⊆ V \ S : S ∪ T ∈ ∆}

on
VS = {i ∈ V \ S : S ∪ {i} ∈ ∆}.

 



Hereditary polynomials

I If S ∈ ∆, then the link of S in ∆ is the simplicial complex

lk∆(S) := {T ⊆ V \ S : S ∪ T ∈ ∆}

on
VS = {i ∈ V \ S : S ∪ {i} ∈ ∆}.

I Lemma. If (∆, L) is hereditary and S ∈ ∆, then (lk∆(S), LS)
is hereditary, where

LS = {(`i)i∈VS : (`i)i∈V ∈ L and `j = 0 for all i ∈ S}.

I Lemma. If f ∈ P(∆, L) and S ∈ ∆, then

fS(t) := ∂Sf
∣∣
ti=0,i∈S ∈ P(lk∆(S), LS).



Hereditary polynomials

I For i ∈ V , let ` ∈ L be such that `i = 1, and define a
projection πi : RV → RV{i} by

πi(v) = (wj)j∈V{i} , where w = v − vi`.

We associate an open convex cone K(∆, L) in RV to any
hereditary (∆, L):

I If d = 1, then K(∆, L) = RV>0 + L.

I If d > 1, then

K(∆, L) = (RV>0 + L) ∩
⋂
i∈V

π−1
i

(
K(lk∆({i}), L{i})

)
.

I f ∈ P(∆, L) is positive if ∂F f > 0 for all facets F ∈ ∆.
Write P+(∆, L).



Hereditary Lorentzian polynomials

I ∆ is H-connected if for each S ∈ ∆, |S| ≤ d− 2, the graph{
{i, j} : S ∩ {i, j} = ∅ and S ∪ {i, j} ∈ ∆

}
is connected.

I Definition. f ∈ P+(∆, L) is hereditary Lorentzian if fS is
K(lk∆(S), LS)-Lorentzian for each S ∈ ∆.

I Theorem (B., Leake). Let f ∈ P+(∆, L), where (∆, L) is
hereditary and K(∆, L) 6= ∅.
Then f is hereditary Lorentzian if and only if

(C) ∆ is H-connected, and
(L) For each S ∈ ∆ with |S| = d− 2, the Hessian of fS has at

most one positive eigenvalue.



Example

I Let ∆ = {S ⊆ {1, . . . , n} and |S| < n} and
L = {t1 + t2 + · · ·+ tn = 0}, and

f =
1

(n− 1)!
(t1 + t2 + · · ·+ tn)n−1 ∈ P+(∆, L).

I ∆ is trivially H-connected.

I K(∆, L) = {t1 + t2 + · · ·+ tn > 0}.
I If S = {3, 4, . . . , n− 1}, then fS = (t1 + t2)2/2.

I Hence f is hereditary Lorentzian.



Hereditary polynomials

I Question. For which simplicial complexes ∆ is there a
hereditary Lorentzian polynomial f for which

{S : ∂Sf 6≡ 0} = ∆?



Balancing condition

Theorem (B., Leake).

I Suppose (∆, L) is hereditary, and

w(S), S is a facet of ∆

are nonzero real numbers. Then there is at most one
f ∈ P(∆, L) for which

∂Sf = w(S) for all facets S.

I Moreover this polynomial exists iff for each S ∈ ∆,
|S| = d− 1, the linear form∑

i 6∈S
w(S ∪ {i})ti

is identically zero on LS .



Lorentzian polynomials for geometric lattices

I A flat of a matroid M on E is a subset F of E for which

e ∈ E \ F =⇒ r(F ∪ {e}) > r(F ).

I The set of all flats is a geometric lattice L = L(M).
 

 

M = {abc, abd, abe, acd, ace}



Lorentzian polynomials for geometric lattices

I Let L be the lattice of flats of a matroid M on E, with set of
loops K, and let L = L \ {K,E}.

I The faces of the order complex, ∆(L), are
{F1 < F2 < · · · < Fk}, where Fi ∈ L for all i.

I Let M be the subspace RL of all (yF )F∈L for which there are
real numbers wi, i ∈ E \K, such that∑

i∈E\K

wi = 0 and yF =
∑

i∈F\K

wi for all F ∈ L.

I Lemma. (∆(L),M) is hereditary.

I By using the theorem on the previous slide, there is a unique
polynomial polL ∈ P(∆(L),M) for which

∂S polL = 1, for all facets S of ∆(L).



Lorentzian polynomials for geometric lattices

I If r(L) = 2, then

polL =
∑

K<F<E

tF .

I If r(L) = 3, then

2 polL =

(∑
K≺F

tF

)2

−
∑
G≺E

(
tG −

∑
K≺F≺G

tF

)2

.

I K(∆(L),M) is nonempty and contains all strictly submodular
vectors:

yS + yT > yS∪T + yS∩T , yK = yE = 0,

whenever S and T are incomparable.



Lorentzian polynomials for geometric lattices

I Theorem (B., Leake, after Adiprasito, Huh, Katz). polL is
hereditary Lorentzian.

Proof. According to the characterization we need to verify properties
(C) and (L).

I (C) follows from semimodularity of L.

I Notice that lk∆(L)({F}) = ∆((K,F ))×∆((F,E)).

I By the uniqueness in the characterization of hereditary
polynomials it follows that

pol
{F}
L =

∂

∂tF
polL

∣∣
tF =0

= pol[K,F ] · pol[F,E] .

I Hence if S ∈ ∆(L), |S| = r − 3, then either polSL is a product
of two linear polynomials, or of the form(∑

K≺F
tF

)2

−
∑
G≺E

(
tG −

∑
K≺F≺G

tF

)2

.



Heron-Rota-Welsh

I Recall the characteristic polynomial of a geometric lattice

χL(t) =
∑
F∈L

µ(0̂, F )tr−r(F ) = w0t
r − w1t

r−1 + · · · ,

where wi ≥ 0 are the Whitney numbers of the first kind.

I Conjecture (Read-Heron-Rota-Welsh, 1968–76).
{wk}nk=0 is a log-concave sequence, i.e.,

w2
k ≥ wk−1wk+1, 0 < k < n.

I Proved by Adiprasito, Huh and Katz (2018) by developing a
Hodge theory for matroids.

I In fact they proved log-concavity of the coefficients of the
reduced characteristic polynomial

χL(t) = (−1)rχL(−t)/(t+ 1) = w0t
r−1 + w1t

r−2 + · · · .



Heron-Rota-Welsh conjecture

I Recall that if f is K-Lorentzian of degree d and α, β ∈ K,
then the sequence

Dk
αD

d−k
β f, 0 ≤ k ≤ d,

is log-concave.

I Let α, β ∈ K(∆(L),M) be

α =

(
|F \K|
|E \K|

)
F∈L

and β =

(
|E \ F |
|E \K|

)
F∈L

.

I Then wk = Dk
αD

r−1−k
β volL, for 0 ≤ k ≤ r − 1.

I Heron-Rota-Welsh conjecture now follows from the
Alexandrov-Fenchel inequalities for polL.



Lorentzian Chow rings

I Let A(Σ) be a Chow ring of a simplicial fan.

I If S ∈ ∆(Σ), then star(S,Σ) is the simplicial fan with

∆(star(S,Σ)) = lk∆(S), and the cones of star(S,Σ) are

CS∪T /RCS , T ∈ lk∆(S).

I If deg : Ad(Σ)→ R is a linear map and S ∈ ∆(Σ), then
degS : Ad−|S|(star(S,Σ))→ R

degS(y) = deg

(
y
∏
i∈S

xi

)
is linear.

I It follows that the volume polynomials of Σ and star(S,Σ) are
related by

volstar(S,Σ) = ∂S volΣ

∣∣∣
ti=0,i∈S

= volSΣ .



Lorentzian Chow rings

I A functional deg : Ad(Σ)→ R is positive if

deg

∏
j∈S

xj

 > 0

for all facets S of ∆(Σ).

I Let K(Σ) = K(∆(Σ), L(Σ)).

I The pair (Σ,deg), where deg is positive, is called hereditary
Lorentzian if volΣ is hereditary Lorentzian (w.r.t. K(Σ)).

I This is equivalent to that for all S ∈ ∆(Σ), the Chow ring

A(star(S,Σ))

satisfies the Hodge-Riemann relations of degree 0 and 1.



Lorentzian Chow rings

Theorem (B., Leake). Let A(Σ) be a Chow ring of a simplicial fan,
and deg : Ad(Σ)→ R positive.
If K(Σ) 6= ∅, then A(Σ) and all its stars satisfy the
Hodge-Riemann relations of degree 0 and 1 if and only if

(C) ∆(Σ) is H-connected, and

(L) For each S ∈ ∆(Σ) with |S| = d− 2, the Chow ring of the
star of S in Σ satisfies the Hodge-Riemann relations of degree
zero and one.



Applications

I The Chow ring of the normal fan of a simple polytope
(Stanley-McMullen).

I This implies the Alexandrov-Fenchel inequalities for convex
bodies.

I The Chow ring of a matroid (Adiprasito-Huh-Katz).

I This implies the Heron-Rota-Welsh conjecture on the
characteristic polynomial of a matroid.



Working with Lorentzian polynomials

I What operations preserve the Lorentzian property?

I Which linear operators preserve the Lorentzian property?

I Let κ ∈ Nn, and let Rκ[x] be the linear space of all
polynomials in R[x1, . . . , xn] that have degree at most κi in
the variable xi for all i.

I The symbol of a linear operator T : Rκ[x]→ R[x′] is the
polynomial

GT (x′,y) = T ((x + y)κ)) =
∑
α≤κ

(
κ

α

)
T (xα)yκ−α.

I Example.
G ∂

∂xi

= κi(x + y)κ−ei .



Working with Lorentzian polynomials

I Theorem (B., Huh). If the symbol GT is Lorentzian, then T
preserves the Lorentzian property.

I Example. If f and g are Lorentzian, then so is fg.

Proof. First fix g(x), and consider T (f) = fg. We want to prove
that the symbol (x + y)κg is Lorentzian.

I To do this, consider the linear operator S(g) = (x + y)κg.

I The symbol of S is (x + y)κ(x + z)κ

I This polynomial is stable, and hence Lorentzian.

I The special case for bivariate polynomials is: If {ak}nk=0 and
{bk}mk=0 satisfy Newton’s inequalities, then so does the
convolution {ck}m+n

k=0

ck =

k∑
j=0

ajbk−j .



A non-linear operator

I Theorem (B., Huh). Suppose∑
α∈J

a(α)
xα

α!
,

where a(α) > 0 for all α ∈ J , is Lorentzian. Then so is∑
α∈J

a(α)s
xα

α!
,

for all 0 ≤ s ≤ 1.

I Hence this defines a contraction of any Lorentzian polynomial
to the exponential generating polynomial of its support.



Stellar subdivisions

I Let S ∈ ∆, where |S| ≥ 2. The stellar subdivision, ∆S , of ∆
on S is the simplicial complex on V ∪ {0}, where 0 /∈ V ,
obtained by
I removing all faces containing S, and
I adding all faces R ∪ {0}, where S 6⊆ R and R ∪ S ∈ ∆.

 



Stellar subdivisions

I Let S ∈ ∆, where |S| ≥ 2. The stellar subdivision, ∆S , of ∆
on S is the simplicial complex on V ∪ {0}, where 0 /∈ V ,
obtained by
I removing all faces containing S, and
I adding all faces R ∪ {0}, where S 6⊆ R and R ∪ S ∈ ∆.

I The stellar subdivision of a fan Σ is defined analogously. Add
a ray ρ =

∑
i∈S ciρi in the interior of CS .

I For positive real numbers c = (ci)i∈S , let

Lc =

{
(`0, `) ∈ R× RV : ` ∈ L and `0 =

∑
i∈S

ci`i

}
.



Stellar subdivisions

I If (∆, L) is hereditary, then so is (∆S , L
c).

I Let z = t0 −
∑

i∈S citi and define a linear operator by

subc
S(f) = f − (−1)s

∞∑
n=s

zn

n!
· hn−s(∂̄) ∂̄Sf, where s = |S|,

where hk(∂̄) is the complete homogeneous symmetric
polynomial of degree k in the variables ∂̄i = ∂i/ci, i ∈ S.



Stellar subdivisions

I Theorem (B., Leake). Let (∆, L) be hereditary. Then
subc

S : Pd(∆, L) −→ Pd(∆S , L
c) is bijective.

I Theorem (B., Leake). Let f ∈ Pd(∆, L) and g = subc
S(f). If

K(∆, L) and K(∆S , L
c) are nonempty, then f is hereditary

Lorentzian iff g is.

I The support of a fan is the union of its cones.

I Fact. Two fans have the same support iff one can be derived
from the other by a sequence of stellar and inverse stellar
subdivisions.

I Corollary (B., Leake). Suppose Σ and Σ′ are fans with the
same support, and that K(Σ) and K(Σ′) are nonempty. If
Ad(Σ) is one-dimensional, then volΣ is hereditary Lorentzian
iff volΣ′ is.

I An analogous theorem was proved for the Kähler package by
Ardila, Denham and Huh.



Topology of spaces of Lorentzian polynomials

I Topological spaces defined in terms of zeros of univariate or
multivariate polynomials have been studied by e.g. Arnold,
Nui, Shapiro-Welker.

I Many combinatorially defined spaces are (conjectured to be)
homeomorphic to closed Euclidean balls, and sometimes admit
a division into cells so as to form a regular CW -complex.

I For example the totally positive Grassmannian (Galashin,
Karp, Lam).



Topology of spaces of Lorentzian polynomials

I Let Ldn be the space of all Lorentzian polynomial
f ∈ R[x1, . . . , xn] of degree d for which f(1) = 1, where
1 = (1, 1, . . . , 1).

I The topology is taken from the linear (Euclidean) space of all
homogeneous degree polynomials in R[x1, . . . , xn] of degree d.

I Let Ldn be the intersection of Ldn with the space of multiaffine
polynomials (degree at most one in each variable).

I Theorem (B., Huh). Ldn and Ldn are compact contractable
sets, which are equal to the closures of their interiors.

 



Topology of spaces of Lorentzian polynomials

I Let Ldn be the space of all Lorentzian polynomial
f ∈ R[x1, . . . , xn] of degree d for which f(1) = 1, where
1 = (1, 1, . . . , 1).

I The topology is taken from the linear (Euclidean) space of all
homogeneous degree polynomials in R[x1, . . . , xn] of degree d.

I Let Ldn be the intersection of Ldn with the space of multiaffine
polynomials (degree at most one in each variable).

I Theorem (B., Huh). Ldn and Ldn are compact contractable
sets, which are equal to the closures of their interiors.

I Conjecture (B., Huh). Ldn and Ldn are homeomorphic to
closed Euclidean balls.



Topology of spaces of Lorentzian polynomials

I Example.

L1
n =

{
n∑
i=1

aixi : ai ≥ 0 and
n∑
i=1

ai = 1

}
.

A simplex

 



Topology of spaces of Lorentzian polynomials

I Example.

L2
2 =

{
ax2 + bxy + cy2 : a, b, c ≥ 0, a+ b+ c = 1 and b2 ≥ 4ac

}
.

Two parameters a, c.

 



Contractive flows

I Let V be a Euclidean space and T : R× V → V a continuous
map.

I Write Ts(x) for T (s,x).
I T is a contractive flow if for all x ∈ V ,

(a) Ts+t(x) = Ts(Tt(x)) for all s, t ∈ R, and
(b) T0(x) = x, and
(c) ‖Ts(x)‖ < ‖x‖, for all x 6= 0 and s > 0.

I Lemma (Galashin, Karp, Lam). If U is an open and bounded
set in V and T is a contractive flow such that

Ts(U) ⊂ U, for all s > 0,

then U is homeomorphic to a closed Euclidean ball.



Contractive flows
 

I Map C to B,

I Map A ∪B to A.



Symmetric exclusion process

I Can we find a constructive flow for multiaffine Lorentzian
polynomials?

I The symmetric exclusion process (SEP) is one of the most
studied models in Interacting particle systems.

I It models particles moving on a finite or countable set in a
continuous way.



Symmetric exclusion process

I Let E = [n] be a set of sites that can either be vacant or
occupied by one particle.

I At each time t a particle at site i jumps to site j (if vacant)
at rate qij ≥ 0, where qij = qji for all i, j.

 



Symmetric exclusion process

I Let E = [n] be a set of sites that can either be vacant or
occupied by one particle.

I At each time t a particle at site i jumps to site j (if vacant)
at rate qij ≥ 0, where qij = qji for all i, j.

I A discrete probability measure µ on 2E may be represented by
its multivariate partition function

fµ(x) =
∑
S⊆E

µ(S)
∏
i∈E

xi, where fµ(1) = 1.

I The symmetric group on E = [n] acts on polynomials f by
σ(f) = f(xσ(1), . . . , xσ(1)).



Symmetric exclusion process

I Particles jump between sites i and j at rate q corresponds to

fµ −→ (1− q)fµ + qτ(fµ), τ = (ij).

I For each transposition τ associate a rate qτ ≥ 0 so that∑
τ

qτ = 1.

I In terms of polynomials, SEP (with rates {qτ}) is the flow on
multiaffine polynomials:

Ts(f) = es(L−I)f, where L =
∑
τ

qττ and I = identity.



Symmetric exclusion process

I Theorem (Borcea, B., Liggett, 2009, B. Huh, 2020). If s > 0,
then Ts preserves stability and the Lorentzian property.

I Assume from now that qτ = 1/
(
n
2

)
for all τ .

I Ts is a flow on Md
n, the linear space of multiaffine polynomials

in R[x1, . . . , xn] of degree d.

I Notice that L =
∑

τ qττ : Md
n →Md

n is symmetric when
viewed as matrix.



Symmetric exclusion process

Lemma. Suppose A is a symmetric n× n matrix with nonnegative
entries.

• Suppose AN has positive entries for N sufficiently large.

• Let w and λ be the Perron eigenvector and eigenvalue of A.

Then
es(A−λI)

is a contractive flow on w⊥, the orthogonal complement of w.

I Let f0 = ed(x)/
(
n
d

)
, the normalized elementary symmetric

polynomial of degree d. Then L(f0) = f0.

I Since the set of transpositions generate Sn, LN has positive
entries for N sufficiently large.

I Corollary. Ts is a contractive flow on the orthogonal
complement f⊥0 of f0 in Md

n.



Symmetric exclusion process

I We may view Ldn as a topological space in f⊥0 .

I Theorem(B., 2021). Ldn and Ldn are homeomorphic to closed
Euclidean balls.

I A similar proof applies to prove that the projective space of
homogeneous degree d stable polynomials in n variables is
homeomorphic to a Euclidean ball.

I Let J be an M -convex set, and Ldn(J) the space of
polynomials in Ldn with support contained in J .

I Conjecture. Ldn(J) is homemorphic to a closed Euclidean ball.

I Problem. Can we decompose Ldn into cells so as to make it
into a regular CW -complex?


