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What are symmetric functions?

Symmetric functions are not functions.

They are formal power series in the infinitely many variables
x1, x2, . . . that are invariant under permutation of the subscripts.

In other words, if i1, . . . , im are distinct positive integers and
α1, . . . , αm are arbitrary nonnegative integers then the
coefficient of xα1

i1
· · · xαm

im in a symmetric function is the same as
the coefficient of xα1

1 · · · xαm
m .

Examples:
▶ x2

1 + x2
2 + . . .

▶
∑

i≤j xixj

But not
∑

i≤j xix2
j
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What are symmetric functions good for?

▶ Some combinatorial problems have symmetric function
generating functions. For example,

∏
i<j(1 + xixj) counts

graphs by the degrees of the vertices.

▶ Symmetric functions are useful in counting plane partitions.
▶ Symmetric functions are closely related to representations

of symmetric and general linear groups
▶ Symmetric functions are useful in counting unlabeled

graphs (Pólya theory).
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The ring of symmetric functions

Let Λ denote the ring of symmetric functions, and let Λn be the
vector space of symmetric functions homogeneous of degree n.

Then the dimension of Λn is p(n), the number of partitions of n.

A partition of n is a weakly decreasing sequence of positive
integers λ = (λ1, λ2, . . . , λk ) with sum n.

For example, the partitions of 4 are (4), (3,1), (2,2), (2,1,1),
and (1,1,1,1).

There are several important bases for Λn, all indexed by
partitions.
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Monomial symmetric functions

If a symmetric function has a term x2
1 x2x3 with coefficient 1,

then it must contain all terms of the form x2
i xjxk , with i , j , and k

distinct, with coefficient 1. If we add up all of these terms, we
get the monomial symmetric function

m(2,1,1) =
∑

x2
i xjxk

where the sum is over all distinct terms of the form x2
i xjxk with

i , j , and k distinct.

So

m(2,1,1) = x2
1 x2x3 + x2

3 x1x4 + x2
1 x3x5 + · · · .
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More generally, for any partition λ = (λ1, . . . , λk ), mλ is the sum
of all distinct monomials of the form

xλ1
i1

· · · xλk
ik
.

It’s easy to see that {mλ}λ⊢n is a basis for Λn.



Multiplicative bases

There are three important multiplicative bases for Λn.

Suppose that for each n, un is a symmetric function
homogeneous of degree n. Then for any partition
λ = (λ1, . . . , λk ), we may define uλ to be uλ1 · · · uλk .

If u1,u2, . . . are algebraically independent, then {uλ}λ⊢n will be
a basis for Λn.
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We define the nth elementary symmetric function en by

en =
∑

i1<···<in

xi1 · · · xin ,

so en = m(1n).

The nth complete symmetric function is

hn =
∑

i1≤···≤in

xi1 · · · xin ,

so hn is the sum of all distinct monomials of degree n.

The nth power sum symmetric function is

pn =
∞∑

i=1

xn
i ,

so pn = m(n).
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Theorem. Each of {hλ}λ⊢n, {eλ}λ⊢n, and {pλ}λ⊢n is a basis for
Λn.



Some generating functions
We have

∞∑
n=0

entn =
∞∏

i=1

(1 + xi t)

and
∞∑

n=0

hntn =
∞∏

i=1

(1 + xi t + x2
i t2 + · · · )

=
∞∏

i=1

1
1 − xi t

.

(Note that the variable t is redundant, since if we set t = 1 we
can get it back by replacing each xi with xi t .)

It follows that
∞∑

n=0

hntn =

( ∞∑
n=0

(−1)nentn
)−1

.
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Also

log
∞∏

i=1

1
1 − xi t

=
∞∑

i=1

log
1

1 − xi t

=
∞∑

i=1

∞∑
n=1

xn
i

tn

n

=
∞∑

n=1

pn

n
tn.

Therefore
∞∑

n=0

hntn = exp

( ∞∑
n=1

pn

n
tn
)
.

If we expand the right side and equate coefficients of tn



Also

log
∞∏

i=1

1
1 − xi t

=
∞∑

i=1

log
1

1 − xi t

=
∞∑

i=1

∞∑
n=1

xn
i

tn

n

=
∞∑

n=1

pn

n
tn.

Therefore
∞∑

n=0

hntn = exp

( ∞∑
n=1

pn

n
tn
)
.

If we expand the right side and equate coefficients of tn



then we get
hn =

∑
λ⊢n

pλ

zλ
.

Here if λ = (1m12m2 · · · ) then zλ = 1m1m1!2m2m2! · · · .

It is not hard to show that if λ is a partition of n then n!/zλ is the
number of permutations in the symmetric group Sn of cycle
type λ and that zλ is the number of permutations in Sn that
commute with a given permutation of cycle type λ.

For example, for n = 3 we have z(3) = 3, z(2,1) = 2, and
z(1,1,1) = 6, so

h3 =
p(1,1,1)

6
+

p(2,1)

2
+

p(3)

3

=
p3

1
6

+
p2p1

2
+

p3

3
.
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The Cauchy kernel

The infinite product
∞∏

i,j=1

1
1 − xiyj

is sometimes called the Cauchy kernel. It is symmetric in both
x1, x2, . . . and y1, y2, . . . .

In working with symmetric functions in two sets of variables,
we’ll use the notation f [x ] to mean f (x1, x2, . . . ) and f [y ] to
mean f (y1, y2, . . . ).

First we note that the coefficient Nλ,µ of xλ1
1 xλ2

2 · · · yµ1
1 yµ2

2 · · · in
this product is the same as the coefficient of
xµ1

1 xµ2
2 · · · yλ1

1 yλ2
2 · · · .
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Now let’s expand the product:
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1
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MacMahon’s law of symmetry

Since Nλ,µ = Nµ,λ, we have MacMahon’s law of symmetry: The

coefficient of xλ1
1 xλ2

2 · · · in hµ is equal to the coefficient of
xµ1

1 xµ2
2 · · · in hλ.



The scalar product

Now we define a scalar product on Λ by

⟨hλ, f ⟩ = coefficient of xλ1
1 xλ2

2 · · · in f

extended by linearity. By MacMahon’s law of symmetry,
⟨hλ,hµ⟩ = ⟨hµ,hλ⟩, so by linearity ⟨f ,g⟩ = ⟨g, f ⟩ for all f ,g ∈ Λ.

Also
⟨hλ,mµ⟩ = δλ,µ.

A short calculation shows that

⟨pλ,pµ⟩ = zλδλ,µ.
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The characteristic map

Let ρ be a representation of the symmetric group Sn; i.e., an
“action” of Sn on a finite-dimensional vector space V (over C).

More formally, ρ is a homomorphism from Sn to the group of
automorphisms of V , GL(V ) (which we can think of as a group
of matrices).

From ρ we can construct a function χρ : Sn → C, called the
character of ρ, defined by

χρ(g) = trace ρ(g).

Then the character of ρ determines ρ up to equivalence.
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We define the characteristic of ρ to be the symmetric function

ch ρ =
1
n!

∑
g∈Sn

χρ(g)pcyc(g),

where cyc(g) is the cycle type of g.

Since χρ(g) depends only on the cycle type of g, if we define
χρ(λ), for λ a partition of n, by χρ(λ) = χρ(g) for g with
cyc(g) = λ, then we can write this as

ch ρ =
1
n!

∑
λ⊢n

n!
zλ

χρ(λ)pλ

=
∑
λ⊢n

χρ(λ)
pλ

zλ
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Then ch ρ contains the same information as χρ.

Two very simple examples:
(1) The trivial representation. Here V is a one-dimensional
vector space and for every g ∈ Sn, ρ(g) is the identity
transformation. Then χρ(g) = 1 for all g ∈ Sn so

ch ρ =
∑
λ⊢n

pλ

zλ
= hn

(2) The regular representation. Here V is the vector space
spanned by Sn and Sn acts by left multiplication. Then
χρ(g) = n! if g is the identity element of Sn and χρ(g) = 0
otherwise. So

ch ρ = pn
1 .
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Group actions

Let G be a finite group and let S be a finite set. An action of G
on S is map ϕ : G × S → S, (g, s) 7→ g · s satisfying
▶ gh · s = g · (h · s) for g,h ∈ G and s ∈ S
▶ e · s = s for all s ∈ S.

Given an action of G on S, we get a representation of G on the
vector space spanned by S:

ρ(g)
(∑

s∈S

cs s
)

=
∑
s∈S

cs g · s

Then the trace of ρ(g) is the number of elements of S for which
g · s = s, which we denote by fix(g).
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An important fact is Burnside’s Lemma (also called the
orbit-counting theorem): The number of orbits of G acting S is

1
|G|

∑
g∈G

fix(g).

Now we take G to be the symmetric group Sn.



The characteristic of the corresponding representation is

1
n!

∑
g∈Sn

fix(g)pcyc(g) =
∑
λ⊢n

fix(λ)
pλ

zλ

It is called the cycle index of the action of Sn, denoted Zϕ.

If we set all the pi to 1 (or equivalently, set x1 = 1, xi = 0 for
i > 0) then by Burnside’s lemma we get the number of orbits.
This is also equal to the scalar product ⟨Zϕ,hn⟩.
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There is a combinatorial interpretation to the coefficients of Zϕ:

The coefficient of xα1
1 · · · xαm

m in Zϕ is the number of orbits of the
Young subgroup Sα = Sα1 × · · · ×Sαm of Sn, where Sα1

permutes 1,2, . . . , α1; Sα2 permutates α1 + 1, . . . , α1 + α2, and
so on.

This coefficient is equal to the scalar product ⟨Zϕ,hα⟩.

This result is a form of Pólya’s theorem. If Sn is acting on a set
of “graphs” with vertex set {1,2, . . . ,n} then we can construct
the orbits of Sα by coloring vertices 1,2, . . . , α1 in color 1;
vertices α1 + 1, . . . α1 + α2 in color 2, and so on, and then
“erasing” the labels, leaving only the colors.
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Example: The coefficient of x2
1 x2x2

3 in the cycle index for S5

acting on directed 5-cycles, 1
5(p

5
1 + 4p5)

3

25

4

1

There are 6 of these.
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Schur functions

Another important basis for symmetric functions is the Schur
function basis {sλ}. The Schur functions are the characteristics
of the irreducible representations of Sn, and they are
orthonormal with respect to the the scalar product:

⟨sλ, sµ⟩ = δλ,µ.

They are, up to sign, the unique orthonormal basis that can be
expressed as integer linear combinations of the mλ.

If f is the characteristic of any representation of Sn, then f is a
nonnegative integer linear combination of Schur functions.
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There are several useful operations on symmetric functions, in
addition to addition and multiplication.

One of them is called the Kronecker (or internal or inner)
product. It has a very simple definition: For power sum
symmetric functions, it satisfies

pλ ∗ pµ = δλ,µzλpλ.

In other words,
pλ

zλ
∗ pµ

zµ
= δλ,µ

pλ

zλ
.

It is extended by linearity to all symmetric functions, so∑
λ

aλ
pλ

zλ
∗
∑
λ

bλ
pλ

zλ
=

∑
λ

aλbλ
pλ

zλ

The Kronecker product of symmetric functions corresponds to
the tensor product of representations of Sn.
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Another important, though more complicated, operation is
called plethysm (also called substitution or composition).

Let f and g be symmetric functions. The plethysm of f and g is
denoted f [g] or f ◦ g.

First suppose that g can be expressed as a sum of monic
terms, that is, monomials xα1

1 xα2
2 . . . with coefficient 1. For

example, mλ is a sum of monic terms.

If we have a sum of monomials with positive integer coefficients
then we can also write it as a sum of monic terms:

2p2 = x2
1 + x2

1 + x2
2 + x2

2 + · · ·
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In this case, if g = t1 + t2 + · · · , where the ti are monic terms,
then

f [g] = f (t1, t2, . . . ).

For example

f [e2] = f (x1x2, x1x3, x2x3, . . . )

f [2p2] = f (x2
1 , x

2
1 , x

2
2 , x

2
2 , . . . )

More specifically,

e2[p3] =
∑
i<j

x3
i x3

j

p3[e2] =
∑
i<j

x3
i x3

j
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We would like to generalize plethysm to the case in which g is
an arbitrary symmetric function.

To do this we make several observations:
▶ For fixed g, the map f 7→ f [g] is an endomorphism of Λ.
▶ For any g, pn[g] = g[pn]

▶ pm[pn] = pmn

▶ If c is a constant then c[pn] = c.
These formulas allow us to define f [g] for any symmetric
functions f and g.
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Examples of plethysm

First note that if c is a constant then

pm[cpn] = (cpn)[pm] = c[pm]pn[pm] = cpmn.

Then since h2 = (p2
1 + p2)/2, we have

h2[−p1] =
1
2
(p1[−p1]

2 + p2[−p1]) =
1
2
((−p1)

2 − p2) = e2.

More generally, we can show that hn[−p1] = (−1)nen.
Also

h2[1 + p1] =
1
2
(p1[1 + p1]

2 + p2[1 + p1])

=
1
2
((1 + p1)

2 + (1 + p2)) = 1 + p1 + h2



Another example: Since

∞∏
i=1

(1 + xi) =
∞∑

n=0

en,

we have

∏
i<j

(1 + xixj) =
∞∑

n=0

en[e2].



Coefficient extraction

There are two special cases where we can often get simpler
formulas for certain coefficients of symmetric functions,
especially when they’re expressed in terms of the power sums.

First, the coefficient of xn
1 in a symmetric function f is the

coefficient of xn in f (x ,0,0,0), and if f is expressed in terms of
the pi we get this by setting pi = x i for all i .
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Second, we can often get a simple formula or generating
function for the coefficient of x1x2 · · · xn in a symmetric function.

Let E(f ) be obtained from the symmetric function f (expressed
in the pi ) by setting p1 = z and pi = 0 for all i > 1. Then

E(f ) =
∞∑

n=0

an
zn

n!
,

where an is the coefficient of x1x2 · · · xn in f .

Moreover, E is a homorphism,

E(f + g) = E(f ) + E(g) and E(fg) = E(f )E(g),

and it respects composition,

E(f ◦ g) = E(f ) ◦ E(g),

as long as g has no constant term.
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