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where ey, hy,, and p, denote the n'™ elementary, complete homogeneous,
and power sum symmetric functions respectively.

The homogeneous part A(™ has several linear bases indexed by p F n:
the multiplicative ones, the monomials m, and the Schur functions s,,.

If K= Q(q,t), we also have the Macdonald polynomials flu(q, t).
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the Frobenius characteristic of some module.

Let A, = Clz1,...,2n,Y1,...,Yn), and let S, act on A,, diagonally the
two sets of variables. The representation

_A,
DHy =7/ (A5

is known as diagonal coinvariants. The action is bi-homogeneous so the
representation is bigraded.

Let us define V: A — A as V];TM = e|H|[BM]IA:f#. We have
FrObqi (DHn> = Ven,

and that Macdonald polynomials are the Frobenius characteristics of the
Garsia-Haiman submodules of DH,,.
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The shuffle theorem
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The Delta conjecture (rise version)
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The Delta conjecture (rise version)
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@4@ LD(n)** is the set of labelled Dyck paths

of size n with k decorated rises.

@ A rise is a vertical step preceded by a
vertical step.

©E

dinv(7) is the same as before.

area() is the number of whole squares
between the path and the diagonal in
rows that do not contain a decoration.
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The Delta conjecture (valley version)
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The Delta conjecture (valley version)

A/en,k,len _ Z qdinv(ﬂ')tarea(ﬂ)xﬂ'
meLD(n)®k
° @ LD(n)** is the set of labelled Dyck paths
@ of size n with k decorated valleys.
@ A valley is a vertical step preceded by a

@ horizontal step that can be removed.
° @ dinv() is the number of diagonal inver-
sions such that the lower label is not dec-
ﬁ orated, minus the number of decorations.
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5/12



Super Diagonal Coinvariants

Let X; = (J:Si), e ,xg)) and ©; = (ng), e ,053')) be sets of n variables.

Let ALY = C[X1,...,Xp] ® A{O1,...,0¢} be the tensor product of a
symmetric algebra and an exterior algebra, endowed with an action of
Sy given by diagonal permutation of the b+ f sets of variables.

The representation

(b,f)
b.f) _ An
DA, NOCOES

is known as super diagonal coinvariants. As before, the action is multi-
homogeneous so the representation is multigraded.

When b = 2 and f = 0, we get back the usual diagonal coinvariants. For
other small values of b and f, we get results in the same fashion as the
shuffle theorem (e.g. (2,1) gives the Delta conjecture).
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Main recurrence

We want to show that

eekeelven—k—l’tzﬂ = Z quinv(w)mw
weSW (n,k,l)

by proving that the recurrence relation

h+SF(n,k,1) :iizj:{”— _l_(J—T—a)—l}

r=0 a=0 i= q
Xq( )[ —k—1- (y—.r—a—i-z)] [‘n—k—l}
a—1 J—r—a+t+zi,
><q(TQi)[n_k_l_r(i;T_aJﬂ)} SF(n—j,k—rl—a)
q

with initial conditions SF(0, k,l) = 0y,00;,0 and SF(n,k,l) = 0 if n <0,
is satisfied by both.
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Segmented permutations

The recurrence for ©¢, O¢, Ve,_k_ili=o0 is a result by D’Adderio and
Romero (2020). We proved the combinatorial one, and show here the
case j = 1, corresponding to segmented permutations.

Let SP(n, k,1) be the set of segmented permutations with &k ascents and
[ descents, and let

SP(I(na k, l) = Z qsminv(o).
o €SP (n,k,l)

We have

SPy(n, k,1) = [n — k —l]g (SPg(n — 1, k,1) + SPy(n — 1,k — 1,1)
+ SPy(n —1,k,1 —1) + SPy(n— 1,k — 1,1 - 1)).

with initial conditions SP4(0, k,1) = 6060
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An example

We want to show that SP,(9,3,2) is equal to

[4]4(SP4(8,3,2) 4 SP4(8,2,2) + SP,(8,3,1) + SP4(8,2,1)).
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An example

We want to show that SP,(9,3,2) is equal to

[4]4(SP4(8,3,2) 4 SP4(8,2,2) + SP,(8,3,1) + SP4(8,2,1)).

Let o € SP(9,3,2). The four summands corresponds to the possibilities
for the maximal entry 9; the g-binomial counts the sminversions in which
it is the middle entry of the 2 — 31 pattern.
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An example

We want to show that SP,(9,3,2) is equal to

[4]4(SP,(8,3,2) 4 SP4(8,2,2) + SP,(8,3,1) + SPy(8,2,1)).

Let o € SP(9,3,2). The four summands corresponds to the possibilities
for the maximal entry 9; the g-binomial counts the sminversions in which
it is the middle entry of the 2 — 31 pattern.

If it is a singleton block, we remove it, together with its block separator.

715/4/2386

N T

7154|2386/9  715/4]92386  715(9|4|2386  9|715/4]2386
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An example

We want to show that SP,(9,3,2) is equal to

[4]4(SP4(8,3,2) 4 SP,(8,2,2) + SP,(8,3,1) + SP4(8,2,1)).

Let o € SP(9,3,2). The four summands corresponds to the possibilities
for the maximal entry 9; the g-binomial counts the sminversions in which
it is the middle entry of the 2 — 31 pattern.

If it is an ascent but not a descent, we remove it.

715|4/23|86

— N T

715[423|869  715/4|239]86  71549|23|86  7159|4]23|86
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An example

We want to show that SP,(9,3,2) is equal to

[4]4(SP4(8,3,2) 4 SP4(8,2,2) + SP,(8,3,1) + SPy(8,2,1)).

Let o € SP(9,3,2). The four summands corresponds to the possibilities
for the maximal entry 9; the g-binomial counts the sminversions in which
it is the middle entry of the 2 — 31 pattern.

If it is a descent but not an ascent, we remove it.

715|4/238|6

N T

715/4|238196  715|49238|6  715(94|238]6  9715|4|238|6

11/12



An example

We want to show that SP,(9,3,2) is equal to

[4]4(SP4(8,3,2) 4 SP4(8,2,2) + SP,(8,3,1) + SP,(8,2,1)).

Let o € SP(9,3,2). The four summands corresponds to the possibilities
for the maximal entry 9; the g-binomial counts the sminversions in which
it is the middle entry of the 2 — 31 pattern.

If it is both an ascent and a descent, we replace it with a block separator.

7|15(4]2386

A e

7|15/4|23986  7|15|4923]86  7|1594|23|86  7915]4]23|86

11/12



A unified Delta conjecture

There is a bijection
¢: SW(n, k1) < {m € LD(n)**! | area(n) = 0}

such that sdinv(w) = dinv(¢(w)) when k=0 or [ = 0.

©®

12424143 +—

®®

CIOIC
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Bonus shdes!
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Bases of A

The bases of A are indexed by \ F n.

ex = HeAi,
hy = Hh/\w
b = Hp)\i’

my = g a:;\llx

i1,.%0(N)

€L = E le'xlk

11 <o <ip
hi= Y @iy cex
11 < <i
k
Pr = E T
i>1
Ar(n)

Le(N)

(elementary)
(homogeneous)
(power symmetric)

(monomial)
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Bases of A

The bases of A are indexed by A F n.

ey = (T1z2 + 1123 + T273 + ... ) (1 + W2+ T3+ )

hig,1) = (x1? + o102 + 29® 23+ ) (@1 F o a3 +..)

Pe1) = (212 + 29® + 3% + . )(xl—i-xg—i—:cg—i—...)
(

me) = (21’02 + 3129° + 21%23 + 22’03+ .. )

Bonus



The Schur functions

A semi-standard Young tableau of shape A\ F n is a filling of the Ferrers
diagram of A with positive integer numbers that is weakly increasing
along rows and strictly increasing along columns.

‘wwu
‘\]OJH
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The Schur functions

A semi-standard Young tableau of shape A F n is a filling of the Ferrers
diagram of A\ with positive integer numbers that is weakly increasing
along rows and strictly increasing along columns.

Given a partition A F n, we define

S\ — E JJT

TESSYT(N)

where SSYT()) is the set of semi-standard Young tableaux of shape A,
and 27 denote the products of the variables indexed by the entries of
the tableau.

Bonus



The Schur functions

A semi-standard Young tableau of shape A F n is a filling of the Ferrers
diagram of A with positive integer numbers that is weakly increasing
along rows and strictly increasing along columns.

Given a partition A F n, we define
_ 2 2 2
S(2,1) = 17 X2 + T1x2” + 20120203 + 27wz + . ..

where SSYT()) is the set of semi-standard Young tableaux of shape A,
and z7 denote the products of the variables indexed by the entries of
the tableau.

Bonus



Plethystic notation

Let A(q,t;x1,22,...) € Q(g,t)((z1,x2,...)), and let

F=> hlgtpreA
X

with fa(q,t) € Q(q,t). The plethystic evaluation of f in A is
6N
f[A] = Z f/\(qvt> H A(q)\i7t>\i;x1/\ia-r2)\ia s ) € Q(Qa t)(('rlwr% s ))
A i=1

Equivalently, if A has an expression as sum of monomials (in ¢, ¢, x; with
coefficient 1), then f[A] is the expression obtained from f[X] by replacing
the z;’s with such monomials, where X = x1 +zo+....

In this sense, we can interpret a sum of monomials as an alphabet, and
a sum of expressions as concatenation of alphabets.

Bonus



Macdonald polynomials

The (modified) Macdonald polynomials H,[X;q,t] are defined by the
triangularity and normalization axioms

H#[X(l - Q);Qa t] = Z a/\M(Q7t)S>\[X]
AZp

ﬁ[,LL[X(l - t); Q7t] = Z b)xu(%t)‘s)\[X]
Az

<HM[X;Q7t]7S(n)[X]> =1

for suitable coefficients ay,(q,t), bau(q,t) € Q(q,t). Here < denotes
the dominance order on partitions, and the square brackets denote the
plethystic evaluation of symmetric functions.

Bonus



The A-ring structure

A A-ring is a ring A with a collection of ring homomorphisms p,: A — A
satisfying

polz] =1, pilz] ==, Pm[Pn[]] = Pmn[2]
for myn € Nand = € A.
In the case of symmetric functions, the homomorphisms are defined by
pulf(gtiz1, 20, .)] = f(q", " 27, 25, ... ),

which is also called the plethystic evaluation of p, in f. This in fact
extends to a more general operation which comes in extremely handy
when dealing with symmetric functions.

Bonus



The Hopf algebra structure

A Hopf algebra is a structure that is simultaneously an algebra and a co-
algebra such that the structures are compatible, which is also equipped
with an anti-automorphism, called antipode, satisfying certain relations.

In the case of symmetric functions, the coproduct is defined by
A(fIX]) = fFIX + Y] € A[X]® A[Y]
and the antipode map by w(sy) = sy.

Note that, since A is commutative w is actually a homomorphism; in
fact, w(e,) = h, and these generate A as an algebra. Moreover, since
the Schur functions are orthonormal, it is also an isometry.

Bonus



Delta and Theta operators

The Delta operators are two families of linear operators Ay, A’f: A=A
(for f € A) that extend V. These operators are defined as

Afﬁlt = f[B;Jﬁ;u /fﬁu = f[BM — l]ﬁu.

In particular the Macdonald polynomials are eigenvectors for all these
operators, and V| m) = Ae, [pm)-
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Delta and Theta operators

The Delta operators are two families of linear operators Ay, A’f: A=A
(for f € A) that extend V. These operators are defined as

AyH, = f[B,]H,, "H, = f[B, — 1H,.

In particular the Macdonald polynomials are eigenvectors for all these
operators, and V| m) = Ae, [pm)-

Theta operators are a family of linear operators ©¢: A — A (for f € A),

defined as
X

Of(g) =11f [(Zl—q)(l—t)] 'y,

where IT = 3, _(—=1)FA’ , and the square brackets denote plethysm.

er’?
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The eigenvalues of V and A,

Let pu = n. We define B, (q,t) ==\ q@ @) where o’ and ¢ denote
the coarm and the coleg of a cell.

For p = (5,4,2), we have the diagram

1|q|¢|
t | qt|g*t|g3t
t2 |qt?

and taking the sum of the entries we get

Bu(g,t) =1+q+t+ @ +qt +12 4+ + Pt +qt> +¢* + ¢t

The plethystic evaluation of ej, in B, is the expression ey[B,,] given by
the sum over all the choices of k different monomials, among the ones

appearing in B, of the product of the chosen monomials.
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The bigraded Frobenius characteristic

Let M be a (z,y)-graded vector space, with a bi-homogeneous action of
the symmetric group. Recall that irreducible representations of .S, are
indexed by partitions of n, and denote by A(V') the partition indexing
an irreducible S,-module V.

We define

Froby (M) = ) g8 (V)gder, (Vg
VM
V irreducible

which is an element of the symmetric functions algebra A over Q(g,t).

Bonus



Diagonal inversions

Ve, = Z qdinv(w)tarea(w)xw

weLD(n)
|@ dinv(7) is the total number of diagonal
@ inversions.

@

©E

Qe
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Diagonal inversions

Ve, = Z qdinv(ﬂ)tarea(w)xw

weLD(n)
|@ dinv(7) is the total number of diagonal
@ inversions.
@ A primary diagonal inversion is a pair

of labels in the same diagonal, such that
the bottom-most one is smaller.

©E

Qe
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Diagonal inversions

Qe

Ve, = Z qdinv(ﬂ)tarea(w)xw
weLD(n)

[@
©)

@

©E

dinv(7) is the total number of diagonal
inversions.

A primary diagonal inversion is a pair
of labels in the same diagonal, such that
the bottom-most one is smaller.

A secondary diagonal inversion is a
pair of labels in two consecutive diag-
onals, such that the bottom-most one is
greater and higher.
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