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Symmetric functions

Symmetric functions can be de�ned as

Λ := lim←−
n

K[x1, . . . , xn]
Sn ,

which is the algebra of power series of bounded degree in countably many

variables that are invariant under permutation. We have

Λ = K[e1, e2, . . . ] = K[h1, h2, . . . ]
ch.0
= K[p1, p2, . . . ],

where en, hn, and pn denote the nth elementary, complete homogeneous,

and power sum symmetric functions respectively.

The homogeneous part Λ(n) has several linear bases indexed by µ ⊢ n:
the multiplicative ones, the monomials mµ and the Schur functions sµ.

If K = Q(q, t), we also have the Macdonald polynomials H̃µ(q, t).

1 / 12



Symmetric functions

Symmetric functions can be de�ned as

Λ := lim←−
n

K[x1, . . . , xn]
Sn ,

which is the algebra of power series of bounded degree in countably many

variables that are invariant under permutation. We have

Λ = K[e1, e2, . . . ] = K[h1, h2, . . . ]
ch.0
= K[p1, p2, . . . ],

where en, hn, and pn denote the nth elementary, complete homogeneous,

and power sum symmetric functions respectively.

The homogeneous part Λ(n) has several linear bases indexed by µ ⊢ n:
the multiplicative ones, the monomials mµ and the Schur functions sµ.

If K = Q(q, t), we also have the Macdonald polynomials H̃µ(q, t).

1 / 12



Symmetric functions

Symmetric functions can be de�ned as

Λ := lim←−
n

K[x1, . . . , xn]
Sn ,

which is the algebra of power series of bounded degree in countably many

variables that are invariant under permutation. We have

Λ = K[e1, e2, . . . ] = K[h1, h2, . . . ]
ch.0
= K[p1, p2, . . . ],

where en, hn, and pn denote the nth elementary, complete homogeneous,

and power sum symmetric functions respectively.

The homogeneous part Λ(n) has several linear bases indexed by µ ⊢ n:
the multiplicative ones, the monomials mµ and the Schur functions sµ.

If K = Q(q, t), we also have the Macdonald polynomials H̃µ(q, t).

1 / 12



Symmetric functions

Symmetric functions can be de�ned as

Λ := lim←−
n

K[x1, . . . , xn]
Sn ,

which is the algebra of power series of bounded degree in countably many

variables that are invariant under permutation. We have

Λ = K[e1, e2, . . . ] = K[h1, h2, . . . ]
ch.0
= K[p1, p2, . . . ],

where en, hn, and pn denote the nth elementary, complete homogeneous,

and power sum symmetric functions respectively.

The homogeneous part Λ(n) has several linear bases indexed by µ ⊢ n:
the multiplicative ones, the monomials mµ and the Schur functions sµ.

If K = Q(q, t), we also have the Macdonald polynomials H̃µ(q, t).

1 / 12



Macdonald polynomials and diagonal coinvariants

Macdonald polynomials are Schur-positive, which suggests that they are

the Frobenius characteristic of some module.

Let An = C[x1, . . . , xn, y1, . . . , yn], and let Sn act on An diagonally the

two sets of variables. The representation

DHn = An
/
((An)

Sn
+ )

is known as diagonal coinvariants. The action is bi-homogeneous so the

representation is bigraded.

Let us de�ne ∇ : Λ→ Λ as ∇H̃µ := e|µ|[Bµ]H̃µ. We have

Frobq,t (DHn) = ∇en,

and that Macdonald polynomials are the Frobenius characteristics of the

Garsia-Haiman submodules of DHn.

2 / 12



Macdonald polynomials and diagonal coinvariants

Macdonald polynomials are Schur-positive, which suggests that they are

the Frobenius characteristic of some module.

Let An = C[x1, . . . , xn, y1, . . . , yn], and let Sn act on An diagonally the

two sets of variables. The representation

DHn = An
/
((An)

Sn
+ )

is known as diagonal coinvariants. The action is bi-homogeneous so the

representation is bigraded.

Let us de�ne ∇ : Λ→ Λ as ∇H̃µ := e|µ|[Bµ]H̃µ. We have

Frobq,t (DHn) = ∇en,

and that Macdonald polynomials are the Frobenius characteristics of the

Garsia-Haiman submodules of DHn.

2 / 12



Macdonald polynomials and diagonal coinvariants

Macdonald polynomials are Schur-positive, which suggests that they are

the Frobenius characteristic of some module.

Let An = C[x1, . . . , xn, y1, . . . , yn], and let Sn act on An diagonally the

two sets of variables. The representation

DHn = An
/
((An)

Sn
+ )

is known as diagonal coinvariants. The action is bi-homogeneous so the

representation is bigraded.

Let us de�ne ∇ : Λ→ Λ as ∇H̃µ := e|µ|[Bµ]H̃µ. We have

Frobq,t (DHn) = ∇en,

and that Macdonald polynomials are the Frobenius characteristics of the

Garsia-Haiman submodules of DHn.

2 / 12



The shu�e theorem

∇en =
∑

π∈LD(n)

qdinv(π)tarea(π)xπ

1
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4 LD(n) is the set of labelled Dyck paths

of size n.

area(π) is the number of whole squares

between the path and the diagonal.

dinv(π) is the total number of diagonal
inversions.

xπ is the product of the variables in-

dexed by the labels (x1
2x2

2x4
3x7).
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The Delta conjecture (rise version)

∆′
en−k−1

en =
∑

π∈LD(n)∗k

qdinv(π)tarea(π)xπ
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LD(n)∗k is the set of labelled Dyck paths
of size n with k decorated rises.

A rise is a vertical step preceded by a

vertical step.

dinv(π) is the same as before.

area(π) is the number of whole squares
between the path and the diagonal in

rows that do not contain a decoration.
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The Delta conjecture (valley version)

∆′
en−k−1

en =
∑

π∈LD(n)•k

qdinv(π)tarea(π)xπ
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LD(n)•k is the set of labelled Dyck paths
of size n with k decorated valleys.

A valley is a vertical step preceded by a

horizontal step that can be removed.

dinv(π) is the number of diagonal inver-
sions such that the lower label is not dec-

orated, minus the number of decorations.

area(π) is the same as before.
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Super Diagonal Coinvariants

Let Xi = (x
(i)
1 , . . . , x

(i)
n ) and Θj = (θ

(j)
1 , . . . , θ

(j)
n ) be sets of n variables.

Let A(b,f)
n = C[X1, . . . , Xb] ⊗ Λ{Θ1, . . . ,Θf} be the tensor product of a

symmetric algebra and an exterior algebra, endowed with an action of

Sn given by diagonal permutation of the b+ f sets of variables.

The representation

DH(b,f)
n = A

(b,f)
n

/
((A(b,f)

n )Sn
+ )

is known as super diagonal coinvariants. As before, the action is multi-

homogeneous so the representation is multigraded.

When b = 2 and f = 0, we get back the usual diagonal coinvariants. For
other small values of b and f , we get results in the same fashion as the

shu�e theorem (e.g. (2, 1) gives the Delta conjecture).
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State of the art

(b, f) Symmetric function Combinatorics

(1, 0) H̃(n) Words

(0, 1) sn−k,1k Hook tableaux

(2, 0) ∇en Dyck paths

(1, 1) Θek∇en−k|t=0 Ordered set partitions

(0, 2) ΘelΘek∇en−k−l|q=t=0 231-avoiding SSW

(2, 1) Θek∇en−k = ∆′
en−k−1

en Decorated Dyck paths

(1, 2) ΘekΘel∇en−k−l|t=0 Segmented Smirnov words

(2, 2) ΘekΘel∇en−k−l 2-decorated Dyck paths
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Smirnov words

ΘekΘel∇en−k−l|t=0 =
∑

w∈SW(n,k,l)

qsminv(w)xw

A Smirnov word is a word in the alphabet Z+ such that consecutive

letters are distinct. A segmented Smirnov word is a Smirnov word in the

alphabet Z+ ∪ { | }.

w = 4 | 423 | 1214 | 432414 | 3 | 1231412 | 4 | 232

SW(n, k, l) is the set of segmented Smirnov words with n integer entries,

k ascents, l descents, and n− k − l − 1 block separators.

sminv(w) is the total number of sminversions, that is, 2− 31 or 2− 321
patterns, where block separators are greater than any integer.

xw(= x61x
7
2x

5
3x

8
4) is the monomial associated to w.

8 / 12
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Main recurrence

We want to show that

ΘekΘel∇en−k−l|t=0 =
∑

w∈SW(n,k,l)

qsminv(w)xw

by proving that the recurrence relation

h⊥j SF(n, k, l) =

j∑
r=0

j∑
a=0

j∑
i=0

[
n− k − l − (j − r − a)− 1

i

]
q

× q(
a−i
2 )

[
n− k − l − (j − r − a+ i)

a− i

]
q

[
n− k − l

j − r − a+ i

]
q

× q(
r−i
2 )

[
n− k − l − (j − r − a+ i)

r − i

]
q

SF(n− j, k − r, l − a)

with initial conditions SF(0, k, l) = δk,0δl,0 and SF(n, k, l) = 0 if n < 0,
is satis�ed by both.
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Segmented permutations

The recurrence for ΘekΘel∇en−k−l|t=0 is a result by D'Adderio and

Romero (2020). We proved the combinatorial one, and show here the

case j = 1, corresponding to segmented permutations.

Let SP(n, k, l) be the set of segmented permutations with k ascents and

l descents, and let

SPq(n, k, l) =
∑

σ∈SP(n,k,l)

qsminv(σ).

We have

SPq(n, k, l) = [n− k − l]q (SPq(n− 1, k, l) + SPq(n− 1, k − 1, l)

+ SPq(n− 1, k, l − 1) + SPq(n− 1, k − 1, l − 1)) .

with initial conditions SPq(0, k, l) = δk,0δl,0.
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An example

We want to show that SPq(9, 3, 2) is equal to

[4]q(SPq(8, 3, 2) + SPq(8, 2, 2) + SPq(8, 3, 1) + SPq(8, 2, 1)).

Let σ ∈ SP(9, 3, 2). The four summands corresponds to the possibilities

for the maximal entry 9; the q-binomial counts the sminversions in which

it is the middle entry of the 2− 31 pattern.

If it is a singleton block, we remove it, together with its block separator.

715|4|2386

715|4|2386|9

q0

715|4|9|2386

q1

715|9|4|2386

q2

9|715|4|2386

q3
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An example

We want to show that SPq(9, 3, 2) is equal to

[4]q(SPq(8, 3, 2) + SPq(8, 2, 2) + SPq(8, 3, 1) + SPq(8, 2, 1)).

Let σ ∈ SP(9, 3, 2). The four summands corresponds to the possibilities

for the maximal entry 9; the q-binomial counts the sminversions in which

it is the middle entry of the 2− 31 pattern.

If it is an ascent but not a descent, we remove it.

715|4|23|86

715|4|23|869

q0

715|4|239|86

q1

715|49|23|86

q2

7159|4|23|86

q3
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An example

We want to show that SPq(9, 3, 2) is equal to

[4]q(SPq(8, 3, 2) + SPq(8, 2, 2) + SPq(8, 3, 1) + SPq(8, 2, 1)).

Let σ ∈ SP(9, 3, 2). The four summands corresponds to the possibilities

for the maximal entry 9; the q-binomial counts the sminversions in which

it is the middle entry of the 2− 31 pattern.

If it is a descent but not an ascent, we remove it.

715|4|238|6

715|4|238|96

q0

715|4|9238|6

q1

715|94|238|6

q2

9715|4|238|6

q3
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An example

We want to show that SPq(9, 3, 2) is equal to

[4]q(SPq(8, 3, 2) + SPq(8, 2, 2) + SPq(8, 3, 1) + SPq(8, 2, 1)).

Let σ ∈ SP(9, 3, 2). The four summands corresponds to the possibilities

for the maximal entry 9; the q-binomial counts the sminversions in which

it is the middle entry of the 2− 31 pattern.

If it is both an ascent and a descent, we replace it with a block separator.

7|15|4|23|86

7|15|4|23986

q0

7|15|4923|86

q1

7|1594|23|86

q2

7915|4|23|86

q3

11 / 12



A uni�ed Delta conjecture

There is a bijection

ϕ : SW(n, k, l)↔ {π ∈ LD(n)∗k,•l | area(π) = 0}

such that sdinv(w) = dinv(ϕ(w)) when k = 0 or l = 0.

12424|143 ←→

1

2

4

2

4

1

3

4

∗

∗

∗

∗

•

•
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Bonus slides!
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Bases of Λ

The bases of Λ(n) are indexed by λ ⊢ n.

eλ =
∏

eλi
, ek =

∑
i1<···<ik

xi1 · · ·xik (elementary)

hλ =
∏

hλi
, hk =

∑
i1≤···≤ik

xi1 · · ·xik (homogeneous)

pλ =
∏

pλi
, pk =

∑
i≥1

xi
k (power symmetric)

mλ =
∑

i1,...,iℓ(λ)

xλ1
i1
· · ·xλℓ(λ)

iℓ(λ)
(monomial)
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Bases of Λ

The bases of Λ(n) are indexed by λ ⊢ n.

e(2,1) = (x1x2 + x1x3 + x2x3 + . . . )(x1 + x2 + x3 + . . . )

h(2,1) = (x1
2 + x1x2 + x2

2 + x1x3 + . . . )(x1 + x2 + x3 + . . . )

p(2,1) = (x1
2 + x2

2 + x3
2 + . . . )(x1 + x2 + x3 + . . . )

m(2,1) = (x1
2x2 + x1x2

2 + x1
2x3 + x2

2x3 + . . . )

Bonus



The Schur functions

A semi-standard Young tableau of shape λ ⊢ n is a �lling of the Ferrers

diagram of λ with positive integer numbers that is weakly increasing

along rows and strictly increasing along columns.

1 1 3 7 7

2 3 4 8

3 7

Given a partition λ ⊢ n, we de�ne

where SSYT(λ) is the set of semi-standard Young tableaux of shape λ,
and xT denote the products of the variables indexed by the entries of

the tableau.
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A semi-standard Young tableau of shape λ ⊢ n is a �lling of the Ferrers

diagram of λ with positive integer numbers that is weakly increasing

along rows and strictly increasing along columns.

1 1 3 7 7

2 3 4 8

3 7

Given a partition λ ⊢ n, we de�ne

sλ =
∑

T∈SSYT(λ)

xT

where SSYT(λ) is the set of semi-standard Young tableaux of shape λ,
and xT denote the products of the variables indexed by the entries of

the tableau.
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The Schur functions

A semi-standard Young tableau of shape λ ⊢ n is a �lling of the Ferrers

diagram of λ with positive integer numbers that is weakly increasing

along rows and strictly increasing along columns.

1 1

2

1 2

2

1 2

3

1 3

2

2 2

3
. . .

Given a partition λ ⊢ n, we de�ne

s(2,1) = x1
2x2 + x1x2

2 + 2x1x2x3 + x2
2x3 + . . .

where SSYT(λ) is the set of semi-standard Young tableaux of shape λ,
and xT denote the products of the variables indexed by the entries of

the tableau.
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Plethystic notation

Let A(q, t;x1, x2, . . . ) ∈ Q(q, t)((x1, x2, . . . )), and let

f =
∑
λ

fλ(q, t)pλ ∈ Λ

with fλ(q, t) ∈ Q(q, t). The plethystic evaluation of f in A is

f [A] :=
∑
λ

fλ(q, t)

ℓ(λ)∏
i=1

A(qλi , tλi ;x1
λi , x2

λi , . . . ) ∈ Q(q, t)((x1, x2, . . . )).

Equivalently, if A has an expression as sum of monomials (in q, t, xi with
coe�cient 1), then f [A] is the expression obtained from f [X] by replacing
the xi's with such monomials, where X = x1 + x2 + . . . .

In this sense, we can interpret a sum of monomials as an alphabet, and

a sum of expressions as concatenation of alphabets.
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Macdonald polynomials

The (modi�ed) Macdonald polynomials H̃µ[X; q, t] are de�ned by the

triangularity and normalization axioms

H̃µ[X(1− q); q, t] =
∑
λ≥µ

aλµ(q, t)sλ[X]

H̃µ[X(1− t); q, t] =
∑
λ≥µ′

bλµ(q, t)sλ[X]

⟨H̃µ[X; q, t], s(n)[X]⟩ = 1

for suitable coe�cients aλµ(q, t), bλµ(q, t) ∈ Q(q, t). Here ≤ denotes

the dominance order on partitions, and the square brackets denote the

plethystic evaluation of symmetric functions.
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The λ-ring structure

A λ-ring is a ring Λ with a collection of ring homomorphisms pn : Λ→ Λ
satisfying

p0[x] = 1, p1[x] = x, pm[pn[x]] = pmn[x]

for m,n ∈ N and x ∈ Λ.

In the case of symmetric functions, the homomorphisms are de�ned by

pn[f(q, t;x1, x2, . . . )] = f(qn, tn;xn1 , x
n
2 , . . . ),

which is also called the plethystic evaluation of pn in f . This in fact

extends to a more general operation which comes in extremely handy

when dealing with symmetric functions.
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The Hopf algebra structure

A Hopf algebra is a structure that is simultaneously an algebra and a co-

algebra such that the structures are compatible, which is also equipped

with an anti-automorphism, called antipode, satisfying certain relations.

In the case of symmetric functions, the coproduct is de�ned by

∆(f [X]) = f [X + Y ] ∈ Λ[X]⊗ Λ[Y ]

and the antipode map by ω(sλ) = sλ′ .

Note that, since Λ is commutative ω is actually a homomorphism; in

fact, ω(en) = hn and these generate Λ as an algebra. Moreover, since

the Schur functions are orthonormal, it is also an isometry.

Bonus



Delta and Theta operators

The Delta operators are two families of linear operators ∆f ,∆
′
f : Λ→ Λ

(for f ∈ Λ) that extend ∇. These operators are de�ned as

∆f H̃µ = f [Bµ]H̃µ, ∆′
f H̃µ = f [Bµ − 1]H̃µ.

In particular the Macdonald polynomials are eigenvectors for all these

operators, and ∇|Λ(n) ≡ ∆en |Λ(n) .

Theta operators are a family of linear operators Θf : Λ→ Λ (for f ∈ Λ),
de�ned as

Θf (g) = Πf

[
X

(1− q)(1− t)

]
Π−1g,

where Π =
∑

k∈N(−1)k∆′
ek
, and the square brackets denote plethysm.
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The eigenvalues of ∇ and ∆ek

Let µ ⊢ n. We de�ne Bµ(q, t) :=
∑

c∈λ q
a′(c)tℓ

′(c), where a′ and ℓ′ denote
the coarm and the coleg of a cell.

For µ = (5, 4, 2), we have the diagram

1 q q2 q3 q4

t qt q2t q3t

t2 qt2

and taking the sum of the entries we get

Bµ(q, t) = 1 + q + t+ q2 + qt+ t2 + q3 + q2t+ qt2 + q4 + q3t.

The plethystic evaluation of ek in Bµ is the expression ek[Bµ] given by

the sum over all the choices of k di�erent monomials, among the ones

appearing in Bµ, of the product of the chosen monomials.
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The bigraded Frobenius characteristic

LetM be a (x, y)-graded vector space, with a bi-homogeneous action of

the symmetric group. Recall that irreducible representations of Sn are

indexed by partitions of n, and denote by λ(V ) the partition indexing

an irreducible Sn-module V .

We de�ne

Frobq,t(M) :=
∑
V⊆M

V irreducible

qdegx(V )tdegy(V )sλ(V )

which is an element of the symmetric functions algebra Λ over Q(q, t).
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Diagonal inversions

∇en =
∑

π∈LD(n)

qdinv(π)tarea(π)xπ

1

4

7

2

4

1

2

4 dinv(π) is the total number of diagonal
inversions.

A primary diagonal inversion is a pair

of labels in the same diagonal, such that

the bottom-most one is smaller.

A secondary diagonal inversion is a

pair of labels in two consecutive diag-

onals, such that the bottom-most one is

greater and higher.
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