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The Rook Monoid

Let n be a positive integer and [n] = {1, . . . , n}.

The rook monoid, denoted Rn, is the set of all partial permutations of
[n] endowed with the usual composition of partial functions.

Example
Let σ, τ ∈ R5 be given by

σ =

(
1 2 3 4 5
2 − 1 3 5

)
∈ R5, τ =

(
1 2 3 4 5
2 1 3 − −

)
∈ S3 ⊆ R5.

στ =

(
1 2 3 4 5
− 2 1 − −

)
∈ R5.



Representations of the Rook Monoid

Let F be a field of characteristic zero and let Sr be the symmetric
group on [r], for r = 0, 1, . . . , n (with S0 ∼= S1).

It is clear that |Rn| =
n∑

r=0

(
n
r

)2

r ! and Sr ⊆ Rn, for r = 0, 1, . . . , n.

The irreducible representations of Rn were described in the 1950’s by
W. D. Munn who showed how they can be built from the irreducible
representations of Sr, with r = 0, 1, . . . , n.

▶ FRn is (split) semisimple;

▶ the isomorphism classes of simple FRn-modules are indexed by
the set

{µ : µ ⊢ r, r = 0, 1, · · · n},

where µ ⊢ r means that µ is a partition of r.



Main tools

Our description of a full set of representatives of the isomorphism
classes of simple FRn is associated with the following results:

▶ Schur–Weyl dualities;

▶ general theory of the functor f : mod(A) → mod(eAe)



Schur–Weyl dualities

Definition
Let A and B be F-algebras and let M be an (A,B)-bimodule. If
ρ : A → EndF(M) and ψ : B → EndF(M) are the corresponding
representations of A and B on M, we say that M satisfies Schur–Weyl
duality if the image of each action in EndF(M) is the centraliser for
the other. Equivalently,

ρ(A) = EndB(M) and ψ(B) = EndA(M).

Let V(∼= Fd) be a vector space with basis {e1, · · · , ed} and let
GL(V) ∼= GLd(F) and O(V) ∼= Od(F) be identified. Classical
examples of Schur-Weyl dualities are

GLd(F) ⟲ ⊗nV ⟳ Sn (Schur, 1927)

Od(F) ⟲ ⊗nV ⟳ Bn(d) (Brauer, 1937)

Wd ⟲ ⊗nV ⟳ Pn(d) (Jones,Martin 1994)



Schur-Weyl duality for the rook monoid

Let V(∼= Fd) be a vector space with basis {e1, · · · , ed} and let

U = V ⊕ W

with W = Fe∞ such that {e1, · · · , ed, e∞} is an F-basis of U.

In 2002, L. Solomon defined an action of Rn via "place permutations"
on the n-th tensor power ⊗nU. He then showed that ⊗nU satisfies
Schur-Weyl duality as an (FGLd(F),FRn)-bimodule.

Theorem (Solomon, 2002)
Let GLd(F) act on ⊗nU by fixing W = Fe∞ and let
ϕ : FRn → EndF(⊗nU) be defined by the right action of Rn over ⊗nU
given by "place permutations". If d ≥ n, there is an isomorphism of
F-algebras

FRn ∼= EndFGLd(F)(⊗
nU).



Schur-Weyl duality for the rook monoid via Schur algebras

Let d ≥ n, let V(∼= Fd) be a vector space with basis {e1, · · · , ed} and
let

U = V ⊕ W

with W = Fe∞ such that {e1, · · · , ed, e∞} is an F-basis of U.

For every X ⊆ [n], set

ΓX(d) = {α : α : X → [d] is a map}.

Example
Let d = 7 and n = 5. If X = {1, 4, 5} ⊆ [5], then

α = (α(1), α(4), α(5)) = (7, 2, 2) ∈ ΓX(7).



Schur-Weyl duality for the rook monoid via Schur algebras

Let d ≥ n. For X ⊆ [n] and α ∈ ΓX(d), define e⊗α ∈ ⊗nU by

e⊗α = eβ(1) ⊗ · · · ⊗ eβ(n)

where β : [n] 7→ [d] ∈ Γ[n](d) and β(i) = α(i) if i ∈ X and eβ(i) = e∞
if i /∈ X.

Example
As before, let d = 7, n = 5, let X = {1, 4, 5} ⊆ [5] and let
α = (α(1), α(4), α(5)) = (7, 2, 2) ∈ ΓX(7). Then

e⊗α = e7 ⊗ e∞ ⊗ e∞ ⊗ e2 ⊗ e2 ∈ ⊗5U

The set {e⊗α : α ∈ ΓX(d),X ⊆ [n]} is an F-basis of ⊗nU.



Schur-Weyl duality for the rook monoid via Schur algebras

Let d ≥ n and let ci,j : GLd(F) → F be defined by ci,j(g) = gi,j, for
1 ≤ i, j ≤ d and g ∈ GLd(F). If X = {x1, · · · , xr} ⊆ [n] and
α, β ∈ ΓX(d), then

cα,β(g) = cα(x1),β(x1)(g) · · · cα(xr),β(xr)(g),

for all g ∈ GLd(F).

A = A[n](d) =< cα,β : α, β ∈ ΓX(d),X ⊆ [n] > is the F-space
generated be all the monomials cα,β : GLd(F) → F.

The extended Schur algebra S = SF(d, [n]) is the dual F-space of A

S = A∗ = HomF(A;F).

S is a finite-dimensional F-algebra. In fact, dimF(S) =
(

d2 + n
n

)
.



Schur-Weyl duality for the rook monoid via Schur algebras

▶ The category of finte-dimensional FGLd(F)-modules whose
coefficient functions lie in A is equivalent to that of S-modules.

▶ The F-space ⊗nU has the structure of a left S-module. For any
ξ ∈ S, X ⊆ [n] and β ∈ ΓX(m), we have

ξ.e⊗β =
∑

α∈ΓX(m)

ξ(cα,β)e⊗α

Theorem (André, L. M.)
Let d ≥ n. The representation ρ : S 7→ EndF(⊗nU) afforded by the
left action of S on ⊗nU induces an isomorphism of F-algebras

S ∼= EndFRn(⊗nU).



General theory of the functor f : mod(A) → mod(eAe)

Let A be an F-algebra and let e ̸= 0 be an idempotent in A. Then:
▶ eAe is an algebra over F;
▶ if M is an A-module, then e M is an eAe-module.

In 1980, J. A. Green shows the following result (which he attributes in
part to T. Martins and M. Auslander).

Theorem
Let A be an F-algebra and let mod(A) be the category of A-modules of
finite dimension. If {Vλ : λ ∈ Λ} is a full set of simple A-modules in
mod(A), then:
▶ if M ∈ mod(A) is simple, then eM is either zero or simple in

mod(eAe);
▶ if Λ′ = {λ ∈ Λ : eVλ ̸= 0}, then {eVλ : λ ∈ Λ′} is a complete

set of simple eAe-modules in mod(eAe)



The algebra S(ζ) and the FRn-module ζ ⊗n U

Let d ≥ n and let X ⊆ [n] be a set of size r. Then:
▶ ιX : [r] → X ⊆ [n] ⊆ [d] is the only order-preserving element of

Rn with domain [r] and range X;
▶ ξX = ξιX ,ιX is an idempotent of S and so is

ξ =
∑

X⊆[n]

ξιX ,ιX ∈ S.

Let S(ζ) be the F-algebra S(ζ) = ζSζ.

Theorem (André, L. M.)
If d ≥ n, there is an isomorphism of F-algebras S(ζ) ∼= FRn. Under
this identification, the left FRn-module ζ ⊗n U has as F-basis the set

{e⊗α : α ∈ ΓX(d), α : X → [n] is injective}

and thus dim(ζ ⊗n U) = dim(FRn).



Carter-Lusztig Modules

Let 1 ≤ r ≤ n ≤ d and let µ = (µ1, . . . , µd) ⊢ r. A µ-tableau is a
map T : [µ] → [d], where [µ] is the Young diagram of µ.

If d = n = 10 and µ = (4, 1) ⊢ 5 = r, then T is a µ-tableau.

T :
1
5 4 7 5

If T : [µ] → [r] ⊆ [d] is bijective, then T is said to be basic. Let
Tµ : [µ] → [r] ⊆ [d] be an arbitrary but fixed basic µ-tableau. For
instance,

Tµ :
5
1 2 3 4

The µ- tableau Tµ is standard.



Carter-Lusztig Modules

Let 1 ≤ r ≤ n ≤ d and let µ = (µ1, . . . , µd) ⊢ r. Every µ-tableau
T : [µ] → [d] is of the form T = α ◦ Tµ for a unique α ∈ Γ[r](d),
where Tµ is the basic µ-tableau.

If d = n = 10 and µ = (4, 2) ⊢ 6 = r, then T = α ◦ Tµ, where

T :
2
1 5

7
5 7 and α = (1, 5, 5, 7, 2, 7).

If lµ ∈ Γ[r](d) be the unique weakly increasing map such that

|{k ∈ [r] : lµ(k) = i}| = µi,

for all 1 ≤ i ≤ d, we write Tµ = lµ ◦ Tµ. For instance, if d = n = 10
and µ = (4, 2) ⊢ 6 = r, then Tµ is given by

Tµ :
2
1 1

2
1 1



Carter-Lusztig modules

Let 1 ≤ r ≤ n ≤ d and let µ = (µ1, . . . , µd) ⊢ r, where s = l(µ).
Then e⊗µ = e⊗lµ is the tensor

e⊗µ = e1 ⊗ . . .⊗ e1︸ ︷︷ ︸
µ1 times

⊗ e2 ⊗ . . .⊗ e2︸ ︷︷ ︸
µ2 times

⊗ . . .⊗es ⊗ . . . es︸ ︷︷ ︸
µs times

⊗ e∞ ⊗ . . .⊗ e∞.︸ ︷︷ ︸
n−r times

For each µ ⊢ r with 1 ≤ r ≤ n ≤ d, the cyclic S-submodule of ⊗nU
spanned by

e⊗µ cµ =
∑

σ∈C(Tµ)

sgn(σ)e⊗lµσ,

where cµ =
∑

σ∈C(Tµ)
sgn(σ)σ and C(Tµ) is the column stabiliser of

Tµ, is referred to as the Carter-Lusztig module Uµ (associated with
µ). If µ = (0), we agree that Uµ = Fe⊗∅ = e∞ ⊗ . . .⊗ e∞.

Theorem (André, L. M.)
If d ≥ n, the set {Uµ :⊢ r, r = 0, 1, . . . , n} is a complete set of
representatives of the isomorphism classes of simple modules for S.



Dual Specht Modules for the Rook Monoid

Theorem (André, L. M.)
If d ≥ n, the set {ζUµ : µ ⊢ r, 0 ≤ r ≤ n} is a complete set of
representatives of the isomorphism classes of simple left
S(ζ)-modules and thus also a complete set of representatives of the
isomorphism classes of simple left FRn-modules.

Let 0 ≤ r ≤ n ≤ d and µ ⊢ r. The simple FRn-module ζUµ, denoted
by Lµ, can be thought of as an analogue of the dual Specht module
associated with µ for Sr.



Dual Specht Modules for the Rook Monoid

Theorem (André, L. M.)
Let 1 ≤ r ≤ n and let µ ⊢ r. The set

{ξα,lµe⊗µ cµ : α ∈ Γ[r](n), α : [r] → [n] is injective andα◦Tµ is standard}

is an F-basis of the simple left FRn-module ζUµ ⊆ ζ ⊗n U.

As a consequence, if µ ⊢ r, we have that

dim(Lµ) = dim(ζUµ) =

(
n
r

)
f µ,

where f µ is the number of basic µ-tableaux with values in [r] which
are standard.



Dual Specht Modules for the Rook Monoid

Theorem (André, L. M.)
Let 1 ≤ r ≤ n, µ ⊢ r and let C(Tµ) be the column stabiliser of Tµ and
R(Tµ) the column stabiliser of Tµ. The simple FRn-module Lµ is
isomorphic to the left ideal L̂µ of FRn, where

L̂µ = FRnr̂µĉµ,

with

r̂µ = ηrrµ, ĉµ = ηrcµ, ηr =
∑
X⊆n,
|X|=r

∑
Y⊆X

(−1)|X|−|Y|ϵY ∈ FRn

and rµ =
∑

σ∈R(Tµ)
σ and cµ =

∑
σ∈C(Tµ)

sgn(σ)σ.



From Tableaux to Partial Tableaux

In 2002, C. Grood exhibited a full set of simple CRn-modules which
are analogues of Specht modules for the symmetric group Sn. Her
work relies on the notion of µn

r -tableaux.

Let 1 ≤ r ≤ n and let µ ⊢ r. A µn
r -tableau is the Young diagram of µ

filled with r distinct entries from the set [n] = {1, 2, . . . , n}.

Example
For example, if n = 12 and µ = (6) ⊢ 6 = r, then

2 1 3 7 5 9

is a µ6
12-tableau. Clearly, if α = (2, 1, 3, 7, 5, 9) ∈ Γ[6](12), this is

precisely α ◦ Tµ.



From Tableaux to Partial Tableaux

Theorem (André, L. M.)
Let 1 ≤ r ≤ n and µ ⊢ r. Let Rµ be the corresponding analogue of the
Specht module for Sn in Grood’s sense. Then

FRnĉµr̂µ ∼= Rµ.

Hence, Rµ is dual to the left ideal L̂µ = FRnr̂µĉµ of FRn.


