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Shuffle compatibility



Stanley’s shuffling theorem

We let
Sn be the group of permutations of [n] := {1, 2, . . . , n}

and for π ∈ Sn

Des(π) := {i ∈ [n − 1] : π(i) > π(i + 1)}
be the descent set of π.
For two disjoint permutations π and σ of length n and m, respectively, we let

π� σ := {τ ∈ Sn+m : π, σ appear as subsequences of τ}
be the set of all shuffles of π and σ.

Theorem
For two disjoint permutations π and σ of length n and m, respectively, the multiset

{Des(τ) : τ ∈ π� σ}

depends only on Des(π), Des(σ), n and m.
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Quasisymmetric functions and P-partitions
We let

x = (x1, x2, . . . ) be an infinite sequence of commuting indeterminates,
QSym be the Q-algebra of quasisymmetric functions

and
Fn,S(x) :=

∑
i1≤i2≤···≤in
j∈S ⇒ ij <ij+1

xi1xi2 · · · xin

be the fundamental quasisymmetric function corresponding to S ⊆ [n − 1].

Theorem
If π and σ are two disjoint permutations of length n and m, respectively, then

Fn,Des(π)(x)Fm,Des(σ)(x) =
∑

τ∈π�σ

Fn+m,Des(τ)(x).
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Quasisymmetric functions and P-partitions
Let P be a poset on [n]. A P-partition is a function f : P → Z>0 such that

i <P j implies f (i) ≤ f (j)
i <P j and i >Z j implies f (i) < f (j).

Consider weight enumerator

F (P; x) :=
∑

f :P→Z>0
f = P-partition

xf (1)xf (2) · · · xf (n) ∈ QSym .

Theorem
We have

F (P; x) =
∑

π∈L(P)

F (π; x) =
∑

π∈L(P)

Fn,Des(π)(x),

where L(P) ⊆ Sn is the set of all linear extensions of P.
If P and Q are two posets on disjoint sets, then

F (P; x)F (Q; x) = F (P + Q; x).
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Shuffle algebras
A permutation statistic stat is called shuffle compatible if for any two disjoint
permutations π and σ, the multiset

{stat(τ) : τ ∈ π� σ}

depends only on stat(π), stat(σ) and the lengths of π and σ.
Such statistics define an equivalence relation ∼stat on the set of all permutations
by letting

π ∼stat σ ⇐⇒ π and σ have the same length, and stat(π) = stat(σ).

The space Astat of equivalence classes of permutations with multiplication given by

[π]stat[σ]stat =
∑

τ∈π�σ

[τ ]stat

is called the shuffle algebra of stat.

VD Moustakas (UniPi) Colored shuffle compatibility and ask zeta functions SLC91, March 2024 5 / 15



Shuffle algebras

Theorem (Gessel–Zhuang, ’18)
The descent set statistic Des is shuffle compatible and the corresponding shuffle
algebra ADes is isomorphic to QSym via the linear map

[π]Des 7→ Fn,Des(π).
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Hadamard product and shuffle algebras
The Hadamard product of two formal power series in t is defined by∑

n≥0
antn

 ∗

∑
n≥0

bntn

 :=
∑
n≥0

anbntn.
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Hadamard product and shuffle algebras
The Hadamard product of two formal power series in t is defined by∑

n≥0
antn

 ∗

∑
n≥0

bntn

 :=
∑
n≥0

anbntn.

We let
Q[[t∗]] be the space of formal power series in t with the Hadamard product

and for π ∈ Sn
des(π) := | Des(π)|
comaj(π) :=

∑
i∈Des(π)(n − i)

be the descent number and the comajor index of π.

Theorem (Gessel–Zhuang, ’18)
The shuffle algebra A(des,comaj) is isomorphic to certain subalgebra of Q[q, z ][[t∗]]
via the linear map

[π](des,comaj) 7→

{
qcomaj(π)tdes(π)+1

(1−t)(1−qt)···(1−qnt) zn, if π ∈ Sn
1

1−t , if π = ∅.
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Ingredients for Shuffle-Compatibility
descent set
quasisymmetric functions
P-partitions
principal specialization



Colored shuffle compatibility



Colored descent set
We fix r ∈ Z>0, and think of

Zr = {0 >′ 1 >′ · · · >′ r − 1} as a set of colors.
A r -colored permutation of length n is a pair (π, ϵ), where π ∈ Sn and ϵ ∈ Zn

r .
We let

Sn,r be the group of r -colored permutations of length n,
where the product is given by

(π, ϵ)(σ, δ) = (πσ, σ(ϵ) + δ).
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Colored descent set
We fix r ∈ Z>0, and think of

Zr = {0 >′ 1 >′ · · · >′ r − 1} as a set of colors.
A r -colored permutation of length n is a pair (π, ϵ), where π ∈ Sn and ϵ ∈ Zn

r .
We let

Sn,r be the group of r -colored permutations of length n,
where the product is given by

(π, ϵ)(σ, δ) = (πσ, σ(ϵ) + δ).

Example

31 2210 40 51 61 ∈ S6,3
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Colored descent set

Definition (Mantaci–Reutenauer, ’95)
The colored descent set sDes(π, ϵ) of (π, ϵ) ∈ Sn,r consists of pairs (i , ϵi) for
i ∈ [n − 1] such that

ϵi ̸= ϵi+1, or
ϵi = ϵi+1 and i ∈ Des(π)

together with (n, ϵn).
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Colored descent set

Definition (Mantaci–Reutenauer, ’95)
The colored descent set sDes(π, ϵ) of (π, ϵ) ∈ Sn,r consists of pairs (i , ϵi) for
i ∈ [n − 1] such that

ϵi ̸= ϵi+1, or
ϵi = ϵi+1 and i ∈ Des(π)

together with (n, ϵn).

Example

sDes(31 2210 40 51 61) = {(1, 1), (2, 2), (4, 0), (6, 1)}
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Colored quasisymmetric functions
For each color j ∈ Zr , we let

x(j) = (x (j)
1 , x (j)

2 , . . . ) be an infinite sequence of commuting indeterminates
Xr =

(
x(0), x(1), x(2), . . . , x(r−1)) .
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Colored quasisymmetric functions

Definition (Poirier, ’98, Baumann–Hohlweg ’08, Bergeron–Hohlweg,
’06)
The fundamental colored quasisymmetric function corresponding to a colored
permutation u = (π, ϵ) ∈ Sn,r is defined by

Fu := FsDes(u)(Xr ) :=
∑

i1≤i2≤···≤in
ϵsj ≤ϵsj+1 ⇒ isj <isj +1

x (ϵ1)
i1 x (ϵ2)

i2 · · · x (ϵn)
in ,

where sDes(u) = {(s1, ϵs1) <lex · · · <lex (sk , ϵsk )}.
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Definition (Poirier, ’98, Baumann–Hohlweg ’08, Bergeron–Hohlweg,
’06)
The fundamental colored quasisymmetric function corresponding to a colored
permutation u = (π, ϵ) ∈ Sn,r is defined by

Fu := FsDes(u)(Xr ) :=
∑

i1≤i2≤···≤in
ϵsj ≤ϵsj+1 ⇒ isj <isj +1

x (ϵ1)
i1 x (ϵ2)

i2 · · · x (ϵn)
in ,

where sDes(u) = {(s1, ϵs1) <lex · · · <lex (sk , ϵsk )}.

Example
For u = 31 2210 40 51 61, we computed sDes(u) = {(1, 1), (2, 2), (4, 0), (6, 1)} and
thus

Fu =
∑

i1<i2≤i3≤i4<i5≤i6

x (1)
1 x (2)

2 x (0)
3 x (0)

4 x (1)
5 x (1)

6 .
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Colored quasisymmetric functions

Definition (Poirier, ’98, Baumann–Hohlweg ’08, Bergeron–Hohlweg,
’06)
The fundamental colored quasisymmetric function corresponding to a colored
permutation u = (π, ϵ) ∈ Sn,r is defined by

Fu := FsDes(u)(Xr ) :=
∑

i1≤i2≤···≤in
ϵsj ≤ϵsj+1 ⇒ isj <isj +1

x (ϵ1)
i1 x (ϵ2)

i2 · · · x (ϵn)
in ,

where sDes(u) = {(s1, ϵs1) <lex · · · <lex (sk , ϵsk )}.

Let
QSym(r) be the Q-algebra of colored quasisymmetric functions, spanned by
the fundamental colored quasisymmetric functions.

VD Moustakas (UniPi) Colored shuffle compatibility and ask zeta functions SLC91, March 2024 8 / 15



Colored quasisymmetric functions

Definition (Poirier, ’98, Baumann–Hohlweg ’08, Bergeron–Hohlweg,
’06)
The fundamental colored quasisymmetric function corresponding to a colored
permutation u = (π, ϵ) ∈ Sn,r is defined by

Fu := FsDes(u)(Xr ) :=
∑

i1≤i2≤···≤in
ϵsj ≤ϵsj+1 ⇒ isj <isj +1

x (ϵ1)
i1 x (ϵ2)

i2 · · · x (ϵn)
in ,

where sDes(u) = {(s1, ϵs1) <lex · · · <lex (sk , ϵsk )}.

Let
QSym(r) be the Q-algebra of colored quasisymmetric functions, spanned by
the fundamental colored quasisymmetric functions.

Question
How can we multiply two fundamental colored quasisymmetric functions?
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Colored P-partitions
Let P be a poset on [n] × Zr . A colored P-partition is a function f : P → Z>0
such that

u <P v implies f (u) ≤ f (v)
u <p v and u >rlex v implies f (u) < f (v).

Consider the weight enumerator

F (P; Xr ) :=
∑

f :P→Z>0
f = colored P-partition

x (ϵ1)
f (1,ϵ1)x

(ϵ2)
f (2,ϵ2) · · · x (ϵn)

f (n,ϵn) ∈ QSym(r) .

VD Moustakas (UniPi) Colored shuffle compatibility and ask zeta functions SLC91, March 2024 9 / 15



Colored P-partitions
Let P be a poset on [n] × Zr . A colored P-partition is a function f : P → Z>0
such that

u <P v implies f (u) ≤ f (v)
u <p v and u >rlex v implies f (u) < f (v).

Consider the weight enumerator

F (P; Xr ) :=
∑

f :P→Z>0
f = colored P-partition

x (ϵ1)
f (1,ϵ1)x

(ϵ2)
f (2,ϵ2) · · · x (ϵn)

f (n,ϵn) ∈ QSym(r) .

Example
If P = (π, ϵ) is an n-element (colored) chain represented by some (π, ϵ) ∈ Sn,r ,
then

F (P; Xr ) = F(π,ϵ),

since (πi , ϵi) >rlex (πi+1, ϵi+1) translates to ϵi >′ ϵi+1 or ϵi = ϵi+1 and i ∈ Des(π).
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Colored P-partitions
Let P be a poset on [n] × Zr . A colored P-partition is a function f : P → Z>0
such that

u <P v implies f (u) ≤ f (v)
u <p v and u >rlex v implies f (u) < f (v).

Consider the weight enumerator

F (P; Xr ) :=
∑

f :P→Z>0
f = colored P-partition

x (ϵ1)
f (1,ϵ1)x

(ϵ2)
f (2,ϵ2) · · · x (ϵn)

f (n,ϵn) ∈ QSym(r) .

Theorem (Hsiao–Petersen, ’10)
We have

F (P; Xr ) =
∑

u∈L(P)

F (u; X(r)) =
∑

u∈L(P)

Fu

where L(P) ⊆ Sn,r is the set of all linear extensions of P.
If P and Q are two (colored) posets on disjoint sets, then

F (P; Xr )F (Q; Xr ) = F (P + Q; Xr ).
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Colored P-partitions
Let P be a poset on [n] × Zr . A colored P-partition is a function f : P → Z>0
such that

u <P v implies f (u) ≤ f (v)
u <p v and u >rlex v implies f (u) < f (v).

Consider the weight enumerator

F (P; Xr ) :=
∑

f :P→Z>0
f = colored P-partition

x (ϵ1)
f (1,ϵ1)x

(ϵ2)
f (2,ϵ2) · · · x (ϵn)

f (n,ϵn) ∈ QSym(r) .

Corollary (Hsiao–Petersen, ’10)
For two colored permutations u and v of length n and m, repsectively,

FuFv =
∑

w∈u�v
Fw .

In particular, the distribution of sDes on u� v depends only on sDes(u), sDes(v),
n and m.
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Colored shuffle compatibility
A (colored) permutation statistic stat is called shuffle compatible if for any two
disjoint r -colored permutations u and v , the multiset

{stat(w) : w ∈ u� v}

depends only on stat(u), stat(v) and the lengths of u and v .
Such statistic defines an equivalence relation ∼stat on the set of all r -colored per-
mutations by letting

u ∼stat v ⇐⇒ u and v have the same length, and stat(π) = stat(σ).

The space A(r)
stat of equivalence classes of r -colored permutations with multiplication

given by
[u]stat[v ]stat =

∑
w∈u�v

[w ]stat

is called the shuffle algebra of stat.
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Colored shuffle compatibility

Theorem (M., ’21)
The colored descent set statistic sDes is shuffle compatible and the corresponding
shuffle algebra A(r)

sDes is isomorphic to QSym(r) via the linear map

[u]sDes 7→ FsDes(u).
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Hadamard product and (colored) shuffle algebras
For (π, ϵ) ∈ Sn,r , let

des(π, ϵ) := |{i ∈ [n − 1] : ϵi < ϵi+1, or ϵi = ϵi+1 and i ∈ Des(π)} ∪ {0 : ϵ1 > 0}|

be the descent number of (π, ϵ) and let
comaj(π, ϵ) :=

∑
i∈Des(π,ϵ)(n − i)

colj(π, ϵ) := |{i ∈ [n] : ϵi = j}|
be the comajor index and the number of j-colored entries of (π, ϵ), respectively.
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Hadamard product and (colored) shuffle algebras
For (π, ϵ) ∈ Sn,r , let

des(π, ϵ) := |{i ∈ [n − 1] : ϵi < ϵi+1, or ϵi = ϵi+1 and i ∈ Des(π)} ∪ {0 : ϵ1 > 0}|

be the descent number of (π, ϵ) and let
comaj(π, ϵ) :=

∑
i∈Des(π,ϵ)(n − i)

colj(π, ϵ) := |{i ∈ [n] : ϵi = j}|
be the comajor index and the number of j-colored entries of (π, ϵ), respectively.

Example
For u = 31 2210 40 51 61 ∈ S6,3, we have

des(u) = 3
comaj(u) = (6 − 0) + (6 − 1) + (6 − 4) = 13

col(u) = (2, 3, 1).

VD Moustakas (UniPi) Colored shuffle compatibility and ask zeta functions SLC91, March 2024 11 / 15



Hadamard product and (colored) shuffle algebras

Theorem (Carnevale, M., Rossmann, ’23+)
The tuple (des, comaj, col) is shuffle compatible and the shuffle algebra
A(r)

(des,comaj,col) is isomorphic to certain subalgebra of Q[q, z , p0, p1, . . . , pr−1][[t∗]]
via the linear map

[u](des,comaj,col) 7→

 pcol0(u)
0 ···pcolr−1(u)

r−1 qcomaj(u)tdes(u)+1

(1−t)(1−qt)···(1−qnt) zn, if u ∈ Sn,r
1

1−t , if u = ∅.
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Hadamard product and (colored) shuffle algebras

Theorem (Carnevale, M., Rossmann, ’23+)
The tuple (des, comaj, col) is shuffle compatible and the shuffle algebra
A(r)

(des,comaj,col) is isomorphic to certain subalgebra of Q[q, z , p0, p1, . . . , pr−1][[t∗]]
via the linear map

[u](des,comaj,col) 7→

 pcol0(u)
0 ···pcolr−1(u)

r−1 qcomaj(u)tdes(u)+1

(1−t)(1−qt)···(1−qnt) zn, if u ∈ Sn,r
1

1−t , if u = ∅.

The proof is based on specializations of colored quasisymmetric functions (M., ’21):

x (0)
1 = p0, x (0)

2 = p0q, x (0)
3 = p0q2, . . . , x (0)

m = p0qm−1, x (0)
m+1 = · · · = 0

x (j)
1 = 0, x (j)

2 = pjq, x (j)
3 = pjq2, . . . , x (j)

m = pjqm−1, x (j)
m+1 = · · · = 0

for all 1 ≤ j ≤ r − 1.
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Application: Hadamard products of ask zeta
functions



Zeta functions of algebraic structures
Let G be an algebraic structure (group, ring, module, variety, . . . ) and
consider the associated zeta function ζG(s).

It is often the case that ζG(s) admits an Euler factorization

ζG(s) =
∏

p prime
ζG,p(s)

into local factors.
Results from p-adic integration imply that these local factors are rational
functions in p−s , i.e. of the form

ζG,p(s) = Wp(p−s),

for some Wp(t) ∈ Q(t).
In many cases of interest, local factors exhibit the following uniformity
phenomenon: There exists a single bivariate rational function W (q, t) such
that

ζG,p(s) = W (p, p−s)

for all primes p (modulo a finite number of exceptions).
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Zeta functions of algebraic structures

Problem
Understand, combinatorially if possible, W (q, t).
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Ask zeta functions

Definition
Let

D be a (compact) discrete valuation ring (think of integers mod p)
m be the (unique) maximal ideal of D
q be the size of the residue field D/m.

The ask zeta function corresponding to M ⊂ Matd×e(D) is the formal power
series

Zask
M (t) :=

∑
k≥0

ak(M)tk

where
ak(M) := 1

|Mk |
∑

A∈Mk

|ker(A)|

denotes the average size of the kernels within the reduction Mk of M modulo mk .
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Ask zeta functions

Examples
For M = Matd×e(D),

Zask
Matd×e(D)(t) = 1 − q−et

(1 − t)(1 − qd−et) .

If M = sod(D) = {A ∈ gld(D) : A + At = 0}, then

Zask
sod (D)(t) = 1 − q1−d t

(1 − t)(1 − qt) .
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Ask zeta functions
For a simple graph G = ([n], E ), let

MG be the set of (n × n)-matrices A = (aij) such that aij = 0, when {i , j} /∈ E
Zask

G (t) := Zask
MG

(t) be the corresponding ask zeta function.
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Ask zeta functions
For a simple graph G = ([n], E ), let

MG be the set of (n × n)-matrices A = (aij) such that aij = 0, when {i , j} /∈ E
Zask

G (t) := Zask
MG

(t) be the corresponding ask zeta function.

Example
Let G = Kn+2 ∨ Kn is the join of the complete graph on n + 2 vertices and the
edgeless graph on n vertices. For example, for n = 2
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Ask zeta functions
For a simple graph G = ([n], E ), let

MG be the set of (n × n)-matrices A = (aij) such that aij = 0, when {i , j} /∈ E
Zask

G (t) := Zask
MG

(t) be the corresponding ask zeta function.

Example
Let G = Kn+2 ∨ Kn is the join of the complete graph on n + 2 vertices and the
edgeless graph on n vertices. Then

Zask
G (t) = (1 − q−n−1t)(1 − q−n−2t)

(1 − t)(1 − qt)(1 − q2t) .
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Ask zeta functions
For a simple graph G = ([n], E ), let

MG be the set of (n × n)-matrices A = (aij) such that aij = 0, when {i , j} /∈ E
Zask

G (t) := Zask
MG

(t) be the corresponding ask zeta function.

Example
Let G = Kn+2 ∨ Kn is the join of the complete graph on n + 2 vertices and the
edgeless graph on n vertices. Then

Zask
G (t) = (1 − q−n−1t)(1 − q−n−2t)

(1 − t)(1 − qt)(1 − q2t) .

Claim
We can understand these ask zeta functions (and many more!) in a combinatorial
way, through colored permutation statistics and shuffle-compatibility!
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A reformulation in terms of colored configurations
Let S be the set of all colored permutations with

symbols taken from Σ := Z>0, and
colors taken from Γ := N.
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A reformulation in terms of colored configurations
Let S be the set of all colored permutations with

symbols taken from Σ := Z>0, and
colors taken from Γ := N.

A colored configuration is an element of ZS of the form

f =
∑
u∈S

fuu,

where all but finitely many fu are zero. The support of f is defined by

supp(f ) := {u ∈ S : fu ̸= 0}.
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A reformulation in terms of colored configurations
Let S be the set of all colored permutations with

symbols taken from Σ := Z>0, and
colors taken from Γ := N.

A colored configuration is an element of ZS of the form

f =
∑
u∈S

fuu,

where all but finitely many fu are zero. The support of f is defined by

supp(f ) := {u ∈ S : fu ̸= 0}.

A labelled colored configuration is a pair (f , α), where f ∈ ZS and
α : Γ → {±qk : k ∈ Z} is a map such that (possibly)

α(c) ̸= 1 if c appears as the nonzero color of some colored permutation in f .
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A reformulation in terms of colored configurations
Let S be the set of all colored permutations with

symbols taken from Σ := Z>0, and
colors taken from Γ := N.

A colored configuration is an element of ZS of the form

f =
∑
u∈S

fuu,

where all but finitely many fu are zero. The support of f is defined by

supp(f ) := {u ∈ S : fu ̸= 0}.

A labelled colored configuration is a pair (f , α), where f ∈ ZS and
α : Γ → {±qk : k ∈ Z} is a map such that (possibly)

α(c) ̸= 1 if c appears as the nonzero color of some colored permutation in f .
An example of a labelled colored configuration is the pair (f = 10 + 11, α) with

α(1) = ±qk , α(0) = α(2) = · · · = 1.
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A reformulation in terms of colored configurations

Definition
For an integer ϵ ∈ Z and a labelled colored configuration (f , α), we define

W ϵ
f ,α(q, t) :=

∑
u∈supp(f )

fu
α(u)qϵ comaj(u)tdes(u)

(1 − t)(1 − qϵt) · · · (1 − qϵ|u|t)
∈ Q(q)[[t]],

where α(u) denotes the product of the values of α at every color of u and |u|
denotes the length of u.
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A reformulation in terms of colored configurations

Definition
For an integer ϵ ∈ Z and a labelled colored configuration (f , α), we define

W ϵ
f ,α(q, t) :=

∑
u∈supp(f )

fu
α(u)qϵ comaj(u)tdes(u)

(1 − t)(1 − qϵt) · · · (1 − qϵ|u|t)
∈ Q(q)[[t]],

where α(u) denotes the product of the values of α at every color of u and |u|
denotes the length of u.

Example
For the labelled colored configuration (f = 10 + 11, α) with α(1) ̸= 1, we have

W ϵ
f ,α(q, t) = 1 + α(1)qϵt

(1 − t)(1 − qϵt) .
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A reformulation in terms of colored configurations

Definition
For an integer ϵ ∈ Z and a labelled colored configuration (f , α), we define

W ϵ
f ,α(q, t) :=

∑
u∈supp(f )

fu
α(u)qϵ comaj(u)tdes(u)

(1 − t)(1 − qϵt) · · · (1 − qϵ|u|t)
∈ Q(q)[[t]],

where α(u) denotes the product of the values of α at every color of u and |u|
denotes the length of u.

Osbervation
We have Zask

M (t) = W ϵ
f ,α(q, t) for the following:

M = Matd×e(D), and f = 10 + 11, α(1) = −q−d and ϵ = d − e.
M = sod(D), and f = 10 + 11, α(1) = −q−d , and ϵ = 1.
M = MG , where G = Kn+2 ∨ Kn and

f = 1020 + 1022 + 1120 + 1122, α(1) = α(2) = −q−n−3, ϵ = 1.
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Hadamard products of ask zeta functions
Ask zeta functions satisfy the following property:

Zask
M1⊕M2

(t) = Zask
M1

(t) ∗ Zask
M1

(t).
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Hadamard products of ask zeta functions
Ask zeta functions satisfy the following property:

Zask
M1⊕M2

(t) = Zask
M1

(t) ∗ Zask
M1

(t).

Theorem (Carnevale, M., Rossmann, ’23+)
If (f , α) and (g , β) are two strongly disjoint labelled colored configurations, then

W ϵ
f ,α(q, t) ∗ W ϵ

g,β(q, t) = W ϵ
f�g,αβ(q, t),

for all ϵ ∈ Z. In particular, for a fixed ϵ ∈ Z, the set

{W ϵ
f ,α(q, t) : (f , α) is a labelled colored configuration}

is closed under taking Hadamard products.
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Hadamard products of ask zeta functions

Example
If ϵ = d1 − e1 = d2 − e2, then

Zask
Matd1×e1 (D)⊕Matd2×e2 (D)(t) = Zask

Matd1×e1 (D)(t) ∗ Zask
Matd2×e2 (D)(t)

= W ϵ
10+11,17→−q−d1 (q, t) ∗ W ϵ

10+11,17→−q−d2 (q, t)
= W ϵ

10+11,17→−q−d1 (q, t) ∗ W ϵ
20+22,27→−q−d2 (q, t)

= W ϵ

(10+11)�(20+22),1 7→ −q−d1

2 7→ −q−d2

(q, t).

We compute

(10 + 11)� (20 + 22) = 1020 + 2010 + 1022 + 2210 + 1120 + 2011 + 1122 + 2211,

and therefore the ask zeta function above is equal to

1 + (1 − q−d1 − q−d2)qϵt + (−q−d1 − q−d2 + q−d1−d2)q2ϵt + q−d1−d2q3ϵt2

(1 − t)(1 − qϵt)(1 − q2ϵt) .
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Thank you for your attention!

¡Gracias por su atención!
Ευχαριστώ για την προσοχή σας!


