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COMBINATORICS OF THE IRREDUCIBLE COMPONENTS OF HΓ
n IN TYPE D

AND E

RAPHAËL PAEGELOW

ABSTRACT. We give a combinatorial model (in terms of symmetric cores) of the index-
ing set of the irreducible components of HΓ

n (the Γ-fixed points of the Hilbert scheme
of n points in the plane) containing a monomial ideal, whenever Γ is a finite subgroup
of SL2(C) isomorphic to the binary dihedral group. Moreover, we show that, if Γ is a
subgroup of SL2(C) isomorphic to the binary tetrahedral group, to the binary octahe-
dral group or to the binary icosahedral group, then the Γ-fixed points of Hn which are
also fixed under the maximal diagonal torus of SL2(C) are in fact SL2(C)-fixed points.
Finally, we prove that in this case the irreducible components of HΓ

n containing a mono-
mial ideal are zero-dimensional.

1. INTRODUCTION

Let Γ be a finite subgroup of SL2(C) and, for n ∈ Z≥0, let Hn be the Hilbert scheme
of n points in C2. The natural action of Γ on C2 induces a Γ-action on C[x, y] and thus
on Hn. In this article, we are interested in the combinatorics of the parametrization
set of the irreducible components of HΓ

n. When Γ is equal to the cyclic subgroup of
the maximal diagonal torus of SL2(C), a combinatorial model using partitions has al-
ready been constructed by Iain Gordon [Gor08, Lemma 7.8] and by Cédric Bonnafé
and Ruslan Maksimau [BM21, Lemma 4.9]. We will therefore only consider the groups
of type D and E. Type D corresponds to the class of finite subgroups of SL2(C) that are
isomorphic to the binary dihedral subgroups. In the second section, we introduce im-
portant notation concerning affine root systems and partitions of integers. In the third
section, we then define the binary dihedral group and give its character table and its
McKay graph. We then present a folding of that Dynkin diagram which will be of use
in the subsequent section. In section four, we define and give the main properties of a
generalization of the residue to type D. In the fifth section, we prove the first theorem,
which can be stated as follows.

Theorem 1. Let ℓ be an integer greater than or equal to 2, and let Γ be a binary dihedral
subgroup of SL2(C) of order 4ℓ. Then the set of all irreducible components of HΓ

n contain-
ing a monomial ideal is in bijection with the set of all symmetric 2ℓ-cores λ such that |λ| ≡
n (mod 2ℓ) and |λ| ≤ n. Moreover, for all symmetric partitions µ1, µ2 of n, the monomial
ideals attached to µ1 and µ2 are in the same irreducible component of HΓ

n if and only if the
2ℓ-cores of µ1 and µ2 are equal.

In section six, we start by giving a presentation of the binary tetrahedral group, its
character table and its McKay graph. Moreover, we prove that, if Γ is isomorphic to
the binary tetrahedral group, then the points in Hn that are fixed under Γ and the
maximal diagonal torus of SL2(C) are exactly the SL2(C)-fixed points. Since the binary
octahedral group and the binary icosahedral group contain a subgroup isomorphic to
the binary tetrahedral group, the previous result generalizes to these two isomorphism
classes of finite subgroups of SL2(C). Finally, in section seven, we prove the following
theorem.



2 RAPHAËL PAEGELOW

Theorem 2. If Γ is a finite subgroup of SL2(C) of type E, then, for I ∈ HSL2(C)
n , the irreducible

component of HΓ
n containing I is zero-dimensional.

Acknowledgement. The author would like to thank Cédric Bonnafé for suggesting the
study of the combinatorics of the irreducible components of the Γ-fixed points in the
punctual Hilbert scheme of C2, when Γ is of type D and E, and the referee for valuable
comments, suggestions and improvements.

2. STARTING POINT

Fix a finite subgroup Γ of SL2(C). In this subsection we recall the general description
of the indexing set of the irreducible components of HΓ

n in terms of roots that has been
obtained in [Pae1]. Denote by IΓ the set of all irreducible characters of Γ and let χ0 ∈ IΓ
denote the trivial character of Γ. Let ∆+

Γ (⊂ ∆Γ) be the free monoid (respectively free
abelian group) associated with IΓ. Let T̃Γ be the type of the McKay graph seen as an
affine Dynkin diagram. One can then associate with Γ a realization (cf. [Kac, §1.1])(

hΓ, ΠΓ := {αχ | χ ∈ IΓ} , Π∨
Γ :=

{
α∨χ | χ ∈ IΓ

})
of the generalized Cartan matrix of type T̃Γ. Denote by Q(T̃Γ) and W(T̃Γ) the root lattice
and Weyl group, respectively, associated with the previously mentioned realization.
From now on, we will identify Q(T̃Γ) with ∆Γ. Let δΓ denote the null root.

For d ∈ ∆Γ, let (dχ) ∈ Z|IΓ| be such that d = ∑χ∈IΓ
dχχ. For d ∈ ∆+

Γ , let
|d|Γ := ∑χ∈IΓ

dχδΓ
χ ∈ Z≥0. Finally, a new statistic on ∆Γ has been defined in [Pae1,

Definition 4.8]. The group W(T̃Γ) naturally acts by reflections on h∗Γ. This action will
be denoted by ∗. Define a new action of W(T̃Γ) on ∆Γ denoted by . such that

ω ∗ (Λχ0 − d) = Λχ0 − ω.d, for all (ω, d) ∈ W(T̃Γ)× ∆Γ,

where Λχ0 is the fundamental weight associated with χ0, the trivial character of Γ.
One can then prove that, for d ∈ ∆Γ, there exists a unique integer r such that d

and rδΓ are in the W(T̃Γ)-orbit for the . action, see [Pae1, Lemma 4.7]. We denote this
integer r by wt(d).

Recall the result of [Pae1, Theorem 4.10], which will be our starting point. For a finite
subgroup Γ of SL2(C) we have indexed the irreducible components of HΓ

n by the set

An
Γ :=

{
d ∈ ∆+

Γ

∣∣ |d|Γ = n and wt(d) ≥ 0
}

.

Before diving into the type D study, let us introduce a bit more notation. A partition λ
of n is a tuple (λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0) of integers, such that |λ| := ∑r

i=1 λi is equal
to n. Denote by Pn the set of all partitions of n and by P the set of all partitions of
integers. For λ = (λ1, . . . , λr) ∈ P , denote by Y(λ) := {(i, j) ∈ Z2

≥0 | i < λ1, j < r} its
associated Young diagram. The conjugate partition of a partition λ of n, denoted by λ∗,
is the partition associated with the reflection of Y(λ) in the diagonal (which is again a
Young diagram of a partition of n). We will draw Young diagrams upright and the box
that is lowest and furthest to the left will have index (0, 0). Let i and j denote the row
and column indices, respectively. For example, consider λ = (2, 2, 1). Its associated
Young diagram is

.
In that case λ∗ = (3, 2). A partition λ will be called symmetric if it is equal to its conju-
gate. We denote the set of all symmetric partitions by P s, and we define P s

n := P s ∩Pn.
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A hook of a partition λ in position (i, j) ∈ Y(λ), denoted by H(i,j)(λ), is

{(a, b) ∈ Y(λ) | (a = i and b ≥ j) or (a > i and b = j)} .

Define the length of a hook H(i,j)(λ) to be its cardinality.

Definition 2.1. For a given integer r ≥ 1, a partition λ is said to be an r-core if Y(λ)
does not contain any hook of length r. The set of all r-cores is denoted by Cr, and we
define Cs

r := Cr ∩ P s.

3. FROM TYPE D TO TYPE C

Fix ℓ ≥ 2. Let µℓ denote the cyclic subgroup of SL2(C) generated by the diagonal
matrix diag(ζℓ, ζ−1

ℓ ), where ζℓ = e
2iπ
ℓ . We will work with the following model of the

binary dihedral group in SL2(C). Let BD2ℓ := ⟨ω2ℓ, s⟩, where

ω2ℓ :=
(

ζ2ℓ 0
0 ζ−1

2ℓ

)
, s :=

(
0 −1
1 0

)
.

The group BD2ℓ is of order 4ℓ. Note that BD4 is isomorphic to the quaternion group (cf.
[CM13, §1.7]). Let τ2ℓ be the character of µ2ℓ that maps ω2ℓ to ζ2ℓ. For i ∈ Z, let

χi := IndBD2ℓ
µ2ℓ

(
τi

2ℓ

)
.

Note that χi is irreducible if and only if i is not congruent to 0 or ℓ modulo 2ℓ. If ℓ is
even, the character table of BD2ℓ is

cardinality 1 1 2 ℓ ℓ

classes
(

1 0
0 1

) (
−1 0
0 −1

)
ω2ℓ

p(0 < p < ℓ) s sω2ℓ

χ0+ 1 1 1 1 1
χ0− 1 1 1 −1 −1
χℓ+ 1 1 (−1)p −1 1
χℓ− 1 1 (−1)p 1 −1
χk

(0 < k < ℓ)
2 (−1)k2 2cos

(
kpπ
ℓ

)
0 0

and if ℓ is odd, the character table of BD2ℓ is

cardinality 1 1 2 ℓ ℓ

classes
(

1 0
0 1

) (
−1 0
0 −1

)
ω2ℓ

p(0 < p < ℓ) s sω2ℓ

χ0+ 1 1 1 1 1
χ0− 1 1 1 −1 −1
χℓ+ 1 −1 (−1)p ζ4 −ζ4
χℓ− 1 −1 (−1)p −ζ4 ζ4

χk
(0 < k < ℓ)

2 (−1)k2 2cos
(

kpπ
ℓ

)
0 0

.

The McKay graph of BD2ℓ is a Dynkin diagram of affine type D̃ℓ+2
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.

The irreducible characters of BD2ℓ are labeled by their index in the McKay graph.
We want to give a combinatorial description of An

BD2ℓ
. Let T1 denote the maximal

diagonal torus of SL2(C). In what follows, using symmetric partitions, we will give a
combinatorial description of the irreducible components of HBD2ℓ

n containing a mono-
mial ideal. To do so, restrict An

BD2ℓ
to the irreducible components of HBD2ℓ

n containing

a T1-fixed point. Let us denote this subset of An
BD2ℓ

by An,T1
BD2ℓ

. Note also that, in this
context, the coefficients of the null root in the basis of simple roots are

δ
BD2ℓ
χi :=

{
1, if i = 0+, 0−, ℓ+, ℓ−,
2, otherwise.

The central object of study will be the affine root lattice of type D̃ℓ+2 (which is the same
object as the coroot lattice of type D̃ℓ+2 since it is a simply laced type) Q(D̃ℓ+2) ⊂ h∗BD2ℓ

.
Let τℓ := αχ0− + αχℓ+

+ αχℓ− + ∑ℓ−1
i=1 2αχi be the highest root of the finite root system of

type Dℓ+2.

Definition 3.1. Define a bijection from the set IBD2ℓ to itself by

σ0− : IBD2ℓ → IBD2ℓ ,
χ 7→ χ0− .χ,

and define also an automorphism of the Dynkin diagram of type D̃ℓ+2 by

σ :
ΠBD2ℓ → ΠBD2ℓ ,

αχ 7→ ασ0− (χ).

This automorphism swaps the first two vertices (the ones with labels 0+ and 0−) and
the last two (with the labels ℓ+ and ℓ−) and fixes all the others.

We can apply Stembridge’s construction [Stem] to the root system of type D̃ℓ+2 and
to the automorphism σ. Denote the simple roots by (βi)i∈J0,ℓK and the simple coroots
associated with the root system Φ(D̃σ

ℓ+2) by (β∨
i )i∈J0,ℓK. By construction, we have

• β0 = αχ0+
+ αχ0− ,

• for all i ∈ J1, ℓ− 1K, βi = αχi ,
• βℓ = αχℓ+

+ αχℓ− ,

• β∨
0 =

α∨χ0+
+α∨χ0−
2 ,

• for all i ∈ J1, ℓ− 1K, β∨
i = α∨χi

,

• β∨
ℓ =

α∨χ
ℓ+

+α∨χ
ℓ−

2 .

Let A = (aij) be a generalized Cartan matrix. Recall that, if two vertices (i, j) are
connected by more than one edge in the associated Dynkin diagram, then these edges
are equipped with an arrow pointing towards i if |aij| > 1. With these conventions, the
root system Φ(D̃σ

ℓ+2) has the following Dynkin diagram:

.
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Proposition 3.2. The set Φ(D̃σ
ℓ+2) is a crystallographic root system of type C̃ℓ.

Definition 3.3. Let Q(D̃σ
ℓ+2)[0

+] := Q(D̃σ
ℓ+2) ⊔

(
Q(D̃σ

ℓ+2) + αχ0+

)
⊂ Q(D̃ℓ+2). Written

more explicitly,

Q(D̃σ
ℓ+2)[0

+] =

 ∑
χ∈IBD2ℓ

aχαχ ∈ Q(D̃ℓ+2)

∣∣∣∣∣∣ 0 ≤ aχ+
0
− aχ−

0
≤ 1 and aχℓ+

= aχℓ−

 .

Definition 3.4. Define the map

T : Q(D̃σ
ℓ+2)[0

+] → Q∨(D̃σ
ℓ+2) = Q∨(C̃ℓ)

given by
ℓ

∑
i=0

aiβi + qαχ0+
7→ (2a0 + q)β∨

0 +
ℓ−1

∑
i=1

aiβ
∨
i + 2aℓβ∨

ℓ ,

with q ∈ {0, 1}.

In type C̃ℓ, the null root is δ(C̃ℓ) := β0 + ∑ℓ−1
i=1 2βi + βℓ ∈ Q(C̃ℓ), and the null coroot

is δ∨(C̃ℓ) := ∑ℓ
i=0 β∨

i . For χ ∈ IBD2ℓ , let sχ ∈ W(D̃ℓ+2) denote the simple reflection
associated with αχ.

Definition 3.5. For χ ∈ IBD2ℓ , let σ.sχ := sσ0− (χ) and extend this action to W(D̃ℓ+2), the
Weyl group of type D̃ℓ+2. Let W(D̃ℓ+2)

σ := {ω ∈ W(D̃ℓ+2) | σ.ω = ω}, which is a
subgroup of W(D̃ℓ+2).

Remark 3.6. The set {s0 := sχ0+
sχ0− , s1 := sχ1 , . . . , sℓ−1 := sχℓ−1 , sℓ := sχℓ+

sχℓ−} is a
set of generators of W(D̃ℓ+2)

σ. Applying [Stem, Claim 3] to our situation, we obtain a
group isomorphism from W(D̃σ

ℓ+2) to W(D̃ℓ+2)
σ. Let us, from now on, identify these

two groups and refer to them as W(C̃ℓ). This group acts naturally by reflections on
Q(D̃σ

ℓ+2)[0
+] and Q∨(C̃ℓ). Denote this action by ∗.

Definition 3.7. Define a W(C̃ℓ)-action on Q(D̃σ
ℓ+2)[0

+] by

si ˛ α := si ∗ α + δ0
i αχ0+

, for all i ∈ J0, ℓK and α ∈ Q(D̃σ
ℓ+2)[0

+].

Similarly, define a W(C̃ℓ)-action on the coroot lattice Q∨(D̃σ
ℓ+2) by

si ˛ β∨ := si ∗ β∨ + δ0
i β∨

0 , for all i ∈ J0, ℓK and β∨ ∈ Q∨(C̃ℓ).

A simple computation shows the equivariance of T with respect to the former defined
actions.

Proposition 3.8. The map T is W(C̃ℓ)-equivariant.

Remark 3.9. Note also that T preserves sizes,

|α|D̃ℓ+2
= |T (α)|C̃ℓ

, for all α ∈ Q(D̃σ
ℓ+2)[0

+].

Let G be an abstract group acting on a set X. For x ∈ X, we denote the orbit of x under
the action of G by xG. The following lemma will be used later on when proving the
first theorem.

Lemma 3.10. If β∨ ∈ 0W(C̃ℓ) ⊂ Q∨(C̃ℓ) and k ∈ Z, then (β∨ + kδ∨(C̃ℓ)) ∈ kδ∨(C̃ℓ)
W(C̃ℓ).
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Proof. It is enough to check this on the set of generators {si | i ∈ J0, ℓK}. If i ∈ J1, ℓK,
the action is by reflections. It is then linear and si stabilizes kδ∨(C̃ℓ). For i = 0, we can
combine the fact

s0 ˛ (β∨
1 + β∨

2 ) = s0 ˛ β∨
1 + s0 ˛ β∨

2 − β∨
0 , for all β∨

1 , β∨
2 ∈ Q∨(C̃ℓ)

with the fact that s0 ˛ δ∨(C̃ℓ) = δ∨(C̃ℓ) + β∨
0 to conclude that

s0 ˛ (β∨ + kδ∨(C̃ℓ)) = s0 ˛ β∨ + kδ∨(C̃ℓ). □

Finally, let us say a few words about the dual root system of Φ(D̃σ
ℓ+2). It can be ob-

tained as a folding of type A. This will simplify proofs in the next section. Recall that
µ2ℓ denotes the cyclic subgroup of order 2ℓ contained in the maximal diagonal torus of
SL2(C) and that τ2ℓ denotes the irreducible character of µ2ℓ mapping the generator ω2ℓ
to ζ2ℓ. The McKay graph of µ2ℓ is a Dynkin diagram of affine type Ã2ℓ with 2ℓ vertices
(since µ2ℓ is abelian). Consider the automorphism of the Dynkin diagram of type Ã2ℓ
given by

ς : Πµ2ℓ → Πµ2ℓ ,
ατi 7→ ατ−i .

It fixes ατ0 and ατℓ . Applying Stembridge’s construction to (Ã2ℓ, ς) and identifying it
with the dual root system (cf. [Kac, §3.1]) of Φ(D̃σ

ℓ+2), we obtain the following result.

Proposition 3.11. The set Φ(Ãς
2ℓ) is the dual root system of Φ(D̃σ

ℓ+2).

4. BD2ℓ-RESIDUE

The T1-fixed points in Hn are the ideals Iλ generated by {xiyj | (i, j) ∈ N2 \ Y(λ)}
for λ a partition of n. These ideals are called monomial ideals. Among these ideals, the
ideals fixed by s ∈ BD2ℓ are exactly the monomial ideals parametrized by symmetric
partitions of n. This implies that C[x, y]/Iλ is a BD2ℓ-module whenever λ is symmetric.
In this section, our goal is to generalize the residue “of type A”, i.e., the usual residue
of partitions, to a residue of type D. Recall that we identify the root lattice constructed
out of Γ with the Grothendieck ring of Γ. The property from the residue that we want
to generalize is that the residue of a partition λ is equal to the character of the repre-
sentation C[x, y]/Iλ. Thus, we want to construct a map ResD from P s

n to Q(D̃ℓ+2). To
do so, let us first define the functions dk : P s

n → Z≥0, for k ∈ J0, ℓK.
Let Y(λ)k := {(i, j) ∈ Y(λ) | i − j ≡ k (mod 2ℓ)} for k ∈ J0, 2ℓ− 1K.

Definition 4.1. For k ∈ J1, ℓK define dk(λ) := #
(
Y(λ)k ∪ Y(λ)2ℓ−k

)
. For k = 0, we put

d̃0(λ) := #{(i, j) ∈ Y(λ) | i = j} and d0(λ) := #Y(λ)0 − d̃0(λ).

Furthermore, we introduce the notations

• d′0(λ) := d0(λ)
2 + d̃0(λ)−

⌊
d̃0(λ)

2

⌋
, • d′′0 (λ) := d0(λ)

2 +
⌊

d̃0(λ)
2

⌋
.

We are now able to define the residue in type D.

Definition 4.2. The residue of type D is

ResD :
P s

n → Q(D̃ℓ+2),
λ 7→ d′0(λ)αχ0+

+ d′′0 (λ)αχ0− + ∑ℓ−1
i=1

di(λ)
2 αχi +

dℓ(λ)
2 (αχℓ+

+ αχℓ− ).

Remark 4.3. Using the fact that the partition is symmetric, it is easy to see that the
image of ResD is indeed in the Z-span of the roots {αχ | χ ∈ IBD2ℓ}. Note moreover,
that

for all λ ∈ P s
n, |ResD(λ)|D̃ℓ+2

= |λ| = n.
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Example 4.4. Take ℓ = 2 and consider λ = (4, 4, 3, 2), which is symmetric and has
Young diagram

1 2

2 1 0+

1 0− 1 2

0+ 1 2 1

.

Hence, ResD(λ) = 2αχ0+
+ αχ0− + 3αχ1 + 2αχ2+

+ 2αχ2− .

Proposition 4.5. For λ ∈ P s
n, ResD(λ) is the character of the BD2ℓ-representation C[x, y]/Iλ.

Proof. Consider a basis (xiyj)(i,j)∈Y(λ) of the representation C[x, y]/Iλ. Since λ is sym-
metric, restrict the attention to Y−(λ) := {(i, j) ∈ Y(λ) | i > j} and to the diagonal
{(i, j) ∈ Y(λ) | i = j}. Take first (i, j) ∈ Y−(λ) and consider V(i,j) = Vect(xiyj, xjyi), a
subspace of C[x, y]/Iλ. Let k be an element of J1, ℓ− 1K. For (i, j) ∈ Y−(λ) such that
i − j ≡ k (mod 2ℓ), we have V(i,j) ≃BD2ℓ Xχk (recall that Xχk is an irreducible represen-
tation of BD2ℓ with character equal to χk). Moreover when i − j ≡ 2ℓ − k (mod 2ℓ),
we have V(i,j) ≃BD2ℓ Xχk . If k = ℓ, then, for each pair (i, j) ∈ Y−(λ) such that
i − j ≡ ℓ (mod 2ℓ), we have V(i,j) ≃BD2ℓ Xχℓ+

⊕ Xχℓ− . In the same way, if (i, j) ∈ Y−(λ)
such that i ≡ j (mod 2ℓ), we have V(i,j) ≃BD2ℓ Xχ0+

⊕ Xχ0− . It remains to under-

stand the action of BD2ℓ on the diagonal. For i ∈ Z≥0, we have ω2ℓ.xiyi = xiyi

and s.xiyi = (−1)i xiyi. These two computations show that, if i ≡ 0 (mod 2), then
Vi := V(i,i) ≃BD2ℓ Xχ0+

and that, if i ≡ 1 (mod 2), then Vi ≃BD2ℓ Xχ0− . To sum it all up,
the character of C[x, y]/Iλ is ResD(λ). □

By construction ResD factors through Q(D̃σ
ℓ+2)[0

+]. For a, b ∈ Z, let rem(a, b) ∈
J0, b − 1K denote the remainder of the Euclidean division of a by b. By the work of
Christopher R. H. Hanusa and Brant C. Jones [HJ12, Theoreom 5.8], we can endow the
set Cs

2ℓ of symmetric 2ℓ-cores with a W(C̃ℓ)-action. Let us quickly recall how this action
is constructed.

Definition 4.6. For a symmetric 2ℓ-core λ define the C-residue of a box positioned in
row i and column j in the Young diagram of λ as{

rem(j − i, 2ℓ), if 0 ≤ rem(j − i, 2ℓ) ≤ ℓ,
2ℓ− rem(j − i, 2ℓ), if l < rem(j − i, 2ℓ) < 2ℓ.

Example 4.7. Take ℓ = 2 and the same symmetric 4-core (4, 4, 3, 2). The Young diagram
filled with the C-residue of each box is

1 2

2 1 0

1 0 1 2

0 1 2 1

Remark 4.8. Note that for each symmetric 2ℓ-core λ, the C-residue of each box of λ is
always an integer between 0 and ℓ.

Definition 4.9. The action of W(C̃ℓ) on Cs
2ℓ is defined on generators. Take si ∈ W(C̃ℓ)

and λ ∈ Cs
2ℓ. There are three disjoint cases. Either we can add boxes with C-residue

i, or we can remove such boxes, or there are no such boxes. Define si.λ as the parti-
tion obtained from λ in either adding all boxes of Y(λ) with C-residue i so that si.λ
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remains a partition or removing all boxes of Y(λ) with C-residue i so that si.λ remains
a partition.

Definition 4.10. The C-region of index k ∈ Z of a symmetric 2ℓ-core is the following
subset of Y(λ):

Rk := {(i, j) ∈ Y(λ) | (i − j) ∈ {2kℓ, . . . , 2(k + 1)ℓ− 1}}.

More generally, we can define a shifted C-region. Let (k, h) ∈ Z2 and define the h-
shifted C-region of index k by

Rk,h := {(i, j) ∈ Y(λ) | (i − j) ∈ {2kℓ+ h, . . . , 2(k + 1)l − 1 + h}}.

Proposition 4.11. ResD : Cs
2ℓ → Q(D̃σ

ℓ+2)[0
+] is W(C̃ℓ)-equivariant.

Proof. By Proposition 3.11, we have Q(D̃σ
ℓ+2)[0

+] ⊂ Q∨(Ã2ℓ). Moreover, the type Ã2ℓ

is simply laced. We can thus identify Q∨(Ã2ℓ) with Q(Ã2ℓ). Using Proposition 3.11,
we can also identify W(Ãς

2ℓ) with W(C̃ℓ). Now, by [BJV09, Proposition 3.2.5], the usual
residue map, Res : C2ℓ → Q(Ã2ℓ), is W(Ã2ℓ)-equivariant. Finally, the restriction of
this map to Cs

2ℓ gives ResD : Cs
2ℓ → Q(D̃σ

ℓ+2)[0
+]. Indeed, using Proposition 4.5 and the

definition of the irreducible characters of BD2ℓ we see that it is already true that ResD is
the restriction of the usual residue map to symmetric partitions. We can thus conclude
that ResD : Cs

2ℓ → Q(D̃σ
ℓ+2)[0

+] is W(Ãς
2ℓ)-equivariant. □

Proposition 4.12. T ◦ ResD : Cs
2ℓ → 0W(C̃ℓ) ⊂ Q∨(C̃ℓ) is a bijection.

Proof. By definition, we have T (ResD(∅)) = 0 and the stabilizer of ∅ ∈ Cs
2ℓ in W(C̃ℓ) is

equal to W(Cℓ), the Weyl group of the finite type Cℓ, which is equal to the stabilizer of

0 ∈ 0W(C̃ℓ) in W(C̃ℓ). Moreover, using Propositions 3.8 and 4.11, we know that T ◦ResD
is W(C̃ℓ)-equivariant. To conclude, it is enough to show that the W(C̃ℓ)-action defined
on Cs

2ℓ (Definition 4.9) is transitive. This has been proven in [HJ12, Proposition 6.2]. □

Remark 4.13. Note that Proposition 4.12 can also be deduced from [BM21, Proposi-
tion 4.4] and Proposition 3.11.

Proposition 4.14. The composition of maps

φ : Cs
2ℓ Q∨(C̃ℓ) Q∨(C̃ℓ)/Zδ∨(C̃ℓ)

T ◦ResD π

is a bijection.

Proof. Consider the bijection 0W(C̃ℓ) ∼−→ Q∨(Cℓ) which is the composition of the two
bijections

0W(C̃ℓ) ∼−→ W(C̃ℓ)/W(Cℓ) ∼−→ Q∨(Cℓ).
The second bijection boils down to the choice of a representative with coordinate 0
along β∨

0 . Moreover, consider the bijection

Q∨(C̃ℓ)/Zδ∨(C̃ℓ) ∼−→ Q∨(Cℓ),
β∨ 7→ β∨ − β∨

0 δ∨(C̃ℓ).

We then have the following commutative diagram:

0W(C̃ℓ) Q∨(C̃ℓ)/Zδ∨(C̃ℓ)

Q∨(Cℓ)

∼

π

∼
.
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From there, we can use Proposition 4.12 to prove that φ is a bijection. □

5. COMBINATORIAL DESCRIPTION IN TYPE D

We now have everything needed to give a combinatorial description of the set An,T1
BD2ℓ

.

Note that, by Proposition 4.5, An,T1
BD2ℓ

⊂ An
BD2ℓ

∩ Q(D̃σ
ℓ+2)[0

+].
Consider the map

ϵ : Q(D̃σ
ℓ+2)[0

+] → Cs
2ℓ,

d 7→ (φ−1 ◦ π ◦ T )(d).

Theorem 5.1. The map ϵ defines a bijection between An,T1
BD2ℓ

and the symmetric 2ℓ-cores λ,
with the property that |λ| ≡ n (mod 2ℓ) and |λ| ≤ n. Moreover, for µ1, µ2 ∈ P s

n, Iµ1 and
Iµ2 are in the same irreducible component of HBD2ℓ

n if and only if the 2ℓ-cores of µ1 and µ2 are
equal.

Proof. We show first that, if d ∈ An,T1
BD2ℓ

, then |ϵ(d)| ≡ n (mod 2ℓ). Put λ := ϵ(d). Then

there exists k ∈ Z such that T (d) = T (ResD(λ)) + kδ∨(C̃ℓ).

In particular |T (d)|C̃ℓ
= |T (ResD(λ))|C̃ℓ

+ 2kℓ. Now, since d ∈ An,T1
BD2ℓ

, we have
|d|D̃ℓ+2

= n. Furthermore, using Remark 3.9, we have n = |λ| + 2kℓ. Moreover,

we claim that if d ∈ An,T1
BD2ℓ

, then |ϵ(d)| ≤ n. Indeed, by Lemma 3.10 and the fact

that T (ResD(λ)) ∈ 0W(C̃ℓ), we have T (d) ∈ kδ∨(C̃ℓ)
W(C̃ℓ)

. Since wt(d) ≥ 0, there

exists k′ ∈ Z≥0 such that d ∈ k′δ(D̃ℓ+2)
W(D̃ℓ+2). In fact d ∈ k′δ(D̃ℓ+2)

W(C̃ℓ) since
d ∈ Q(D̃σ

ℓ+2)[0
+]. The map T sends δ(D̃ℓ+2) to 2δ∨(C̃ℓ), which then implies that

T (d) ∈ 2k′δ∨(C̃ℓ)
W(C̃ℓ)

. Hence, we obtain k = 2k′ by construction of wt(d) (cf. [Pae1,
Lemma 4.7]). Since n = |λ|+ 2kℓ, we have that k ≥ 0 if and only if |λ| ≤ n. The map
ϵ : An,T1

BD2ℓ
→ {λ ∈ Cs

2ℓ | |λ| ≡ n (mod 2ℓ), |λ| ≤ n} has now been proven to be well de-
fined. By construction, ϵ is the inverse map of ResD and establishes a bijection between
An,T1

BD2ℓ
and {λ ∈ Cs

2ℓ | |λ| ≡ n (mod 2ℓ), |λ| ≤ n}.
Concerning the second assertion, we observe that Iµ1 and Iµ2 are in the same irre-

ducible component of HBD2ℓ
n if and only if the character of C[x, y]/Iµ1 is equal to the

character of C[x, y]/Iµ2 , by [Pae1, Corollary 4.3]. Now using Proposition 4.5, we know
that this is the case if and only if ResD(µ1) = ResD(µ2). By construction, for i ∈ {1, 2},
ϵ(ResD(µi)) is the 2ℓ-core of µi which then yields the result. □

Remark 5.2. Take d ∈ An,T1
BD2ℓ

and λ ∈ P s
n such that Iλ is in the irreducible component

parametrized by d. Let γ2ℓ denote the 2ℓ-core of λ. We have, as a by-product of the
proof of Theorem 5.1, that n−|γ2ℓ|

2ℓ , which is the number of 2ℓ-hooks that we need to
remove from λ to obtain its 2ℓ-core, is equal to 2wt(d).
Example 5.3. The set An,T1

BD2ℓ
is a proper subset of An

BD2ℓ
. If ℓ = 2, for r ∈ Z>0 we can

find an irreducible component of HBD4
8r+4 of dimension 2r that is parametrized by an

element of A8r+4
BD4

\ A8r+4,T1
BD4

. Let ω = sχ2+
sχ1sχ0+

∈ W(T̃BD4), and consider ω.rδBD4 .
We have (ω.rδBD4)χ2+

= (ω.rδBD4)χ2−
+ 1, which implies that this element is not in

A8r+4,T1
BD4

due to Proposition 4.5.
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6. ABSENCE OF COMBINATORICS IN TYPE E

The binary tetrahedral group Ã4 is a central extension of A4, the alternating group
on 4 elements [CM13, §6.5]. It has order 24 and has the following presentation

⟨a, b, c | a2 = b3 = c3 = abc⟩.
We set z := abc, which is a central element of Ã4. Note that z has order 2. The group
Ã4 has the following character table:

cardinality 1 1 6 4 4 4 4

classes
(

1 0
0 1

)
z a b c b2 c2

χ0 1 1 1 1 1 1 1
ψ 1 1 1 ζ3 ζ2

3 ζ2
3 ζ3

ψ2 1 1 1 ζ2
3 ζ3 ζ3 ζ2

3
X 3 3 −1 0 0 0 0

χstd 2 −2 0 1 1 −1 −1
ψχstd 2 −2 0 ζ3 ζ2

3 −ζ2
3 −ζ3

ψ2χstd 2 −2 0 ζ2
3 ζ3 −ζ3 −ζ2

3

The McKay graph of any finite subgroup of SL2(C) isomorphic to Ã4 is of affine type Ẽ6

.

The goal here is to study the combinatorics of the irreducible components of HΓ
n when

Γ is of type Ẽ6 (meaning that Γ is isomorphic to Ã4). We claim that the irreducible com-
ponents containing a monomial ideal are fixed under SL2(C). Indeed, let Xstd denote
the standard representation of SL2(C) with its canonical basis (e1, e2), and denote by
B1 and B2 the stabilizers of e1 and e2 in SL2(C), respectively. The subgroups B1 and B2
are the two Borel subgroups of SL2(C) containing T1. Let us fix Γ a finite subgroup of
type Ẽ6 in SL2(C).

Lemma 6.1. The group Γ is not conjugate to any subgroup of the normalizer of T1 in SL2(C),
which we denote by NSL2(C)(T1). Furthermore, the group Γ is neither conjugate to a subgroup
of B1 nor of B2.

Proof. The representation Xstd ⊗ X∗
std is isomorphic to the direct sum of the trivial rep-

resentation (generated by e1 ⊗ e∗1 + e2 ⊗ e∗2) and the adjoint representation of SL2(C).
On the one hand, note that for the character χstd of Γ, we have ⟨(χstd)

2, (χstd)
2⟩ = 2,

which implies that the restriction of the adjoint representation to Γ is irreducible. On
the other hand, the restriction of the adjoint representation to NSL2(C)(T1) is not irre-
ducible since the one-dimensional subspace of Xstd ⊗X∗

std generated by e1 ⊗ e∗1 − e2 ⊗ e∗2
is NSL2(C)(T1)-stable. Moreover, the one-dimensional subspace of Xstd generated by e1
is B1-stable and the one-dimensional subspace of Xstd generated by e2 is B2-stable. □

Proposition 6.2. The subgroup G of SL2(C) generated by T1 and Γ is SL2(C).
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Proof. By Lemma 6.1, there exists x ∈ Γ such that T1 ̸= xT1x−1. The two subgroups T1
and xT1x−1 are both irreducible and connected subgroups of SL2(C). Let us denote the
subgroup of SL2(C) generated by these two one-dimensional tori by H. From [Hump,
Section 7.5], we know that H is a closed connected subgroup of SL2(C). Since H is not
equal to SL2(C), and is of dimension at least two, H is of dimension 2. Using [Bor12,
Corollary 11.6] we know that H is solvable. The algebraic group H is then a Borel
subgroup of SL2(C) containing T1 and contained in G. Moreover, by the Bruhat de-
composition [Bor12, Theorem 14.12], we know that SL2(C) = B1sB1 ⊔ B1 = B2sB2 ⊔ B2.
Combining the Bruhat decomposition with Lemma 6.1, we see that s ∈ G. By [Bor12,
Proposition 11.19], we know that all Borel subgroups containing T1 are conjugated by
the Weyl group of T1, which we denote by W(T1). It is by construction the group gen-
erated by s̄ ∈ W(T1). We infer that all Borel subgroups containing T1 are in G. Finally,
using [Bor12, Proposition 13.7], we have G = SL2(C). □

Definition 6.3. A partition is called a staircase partition if there exists a certain integer
m such that the partition is equal to λm := (m, m − 1, . . . , 1) ⊢ m(m+1)

2 . Note that C2 is
equal to the set of all staircase partitions.

Proposition 6.4. The only SL2(C) fixed points of Hn are the monomial ideals associated with
staircase partitions of size n.

Proof. We already know that T1-fixed points are exactly monomial ideals. Moreover,
by [KT, Lemma 12], the fixed points under the subgroup B2 of GL2(C) consisting of
all upper triangular matrices are parametrized by staircase partitions. Let T2 be the
maximal diagonal torus of GL2(C). Since B2 = T2B1, we get that B1-fixed points of Hn
are also parametrized by staircase partitions, and the result follows. □

Finally, the binary octahedral group (type Ẽ7) and the binary icosahedral group
(type Ẽ8) both contain a subgroup isomorphic to Ã4, which then implies that the com-
binatorics of fixed points which are also T1-fixed is the same as the one of SL2(C). We
thus have proved the following result.

Proposition 6.5. If Γ is a finite subgroup of SL2(C) of type Ẽ6, Ẽ7 or Ẽ8, then, for n ∈ Z≥1,
there is at most one irreducible component of HΓ

n containing a T1-fixed point, and it is indexed
by the staircase partition of size n (when it exists).

7. DIMENSION OF THE IRREDUCIBLE COMPONENTS CONTAINING A T1-FIXED POINT

In this section we show that each irreducible component of HΓ
n containing a T1-fixed

point is zero-dimensional whenever Γ is of type Ẽ6 in SL2(C). By Proposition 6.5, we
know that it is enough to compute the dimensions of the irreducible components of
HΓ

n which contain a T1-fixed point indexed by a staircase partition. The results of this
section will not depend on the choice of Γ but only on the McKay graph. Since we
need to make explicit computations, we choose to work with the following model of
the binary tetrahedral group. Let t ∈ SL2(C) be the matrix

1√
2

(
ζ8 ζ8
ζ3

8 ζ−1
8

)
.

Consider the subgroup of SL2(C) generated by ω4, s and t. Let us denote this group
by BT. By setting a = sω4, b = t and c = st2, one can show that BT has the desired
presentation (namely the one of Ã4). Note also that BT = BD4 ⋊ ⟨t2⟩.
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7.1. Ẽ6-Residue. The irreducible components of HΓ
n are isomorphic to quiver varieties

over the doubled, framed McKay quiver (cf. [Pae1, Proposition 3.19]). We are interested
in the irreducible components containing a T1-fixed point. Take m ∈ Z≥1. We know
that the dimension parameter of this quiver variety is equal to the character of BT
of the representation C[x, y]/Iλm . In this subsection, we will then construct a map
ResẼ6

: C2 → Q(Ẽ6) which computes the decomposition into irreducible characters
of the character of the representations C[x, y]/Iλm for λm ∈ C2. Before doing that, we
need to introduce some notation. If m = 2k ∈ Z≥0, define

d0
m :=


1 +

⌊
k−2

3

⌋
, if m ≡ 0 (mod 3),⌊

k
3

⌋
, if m ≡ 1 (mod 3),

1 +
⌊

k−1
3

⌋
, if m ≡ 2 (mod 3).

Let dm := m−2d0
m

4 . The fact that dm ∈ Z≥0 results from the definition of d0
m. If now

m = 2k + 1 ∈ Z≥0, define

am := 1 +
⌊

k − 1
2

⌋
.

Let bm := m − 3am. Moreover define

e0
m :=


⌊

bm+1
3

⌋
, if m ≡ 0 (mod 3),

1 +
⌊

bm
3

⌋
, if m ≡ 1 (mod 3),⌊

bm
3

⌋
, if m ≡ 2 (mod 3).

Let em := bm−e0
m

2 . The fact that em ∈ Z≥0 results from the definition of e0
m. For the sake

of clarity, we introduce

βm :=

{
d0

mαχstd + dmαψχstd + dmαψ2χstd
, if m is even,

amαX + e0
mαχ0 + emαψ + emαψ2 , otherwise,

for all m ∈ Z≥0.

We define ResẼ6
such that the difference between ResẼ6

(λm) and ResẼ6
(λm−1) is exactly

the element βm of the Ẽ6-root lattice.

Definition 7.1. Define the map Ẽ6-Residue in the following way

ResẼ6
:

C2 → Q(Ẽ6),
λ0 7→ 0,
λm 7→ ResẼ6

(λm−1) + βm.

Example 7.2. Take λ3 = (3, 2, 1). Its Young diagram is filled as follows:

X

χstd X

χ0 χstd X

.

This gives ResẼ6
(λ3) = αχ0 + αχ + αX.

The following proposition assures us that ResẼ6
fulfills its purpose.

Proposition 7.3. For λm ∈ C2, ResẼ6
(λm) is the character of the BT-representation

C[x, y]/Iλm .
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Proof. To decompose the character of the SL2(C)-representation C[x, y]/Iλm along the
irreducible characters of BT, we will use the fact that BT = BD4 ⋊ ⟨t2⟩. The group ⟨t2⟩ is
conjugate to µ3 in SL2(C). Moreover, we deduce from the character tables and Clifford
theory (see [I11, Theorem 6.2]) that X = IndBT

BD4
(χ2+). By Proposition 4.5, we infer that

the recursive Definition 7.1 is the character of the BT-representation C[x, y]/Iλm . □

Now that we have computed the decomposition of the character of C[x, y]/Iλm for
λm ∈ C2, we need to define the Euler form to compute the dimension of the irreducible
component of HBT

m(m+1)
2

containing Iλm . To define this form, one needs to choose an

orientation of the McKay quiver. Let us work with the following orientation:

Let EẼ6
be the set of oriented arrows of the McKay quiver Ẽ6. For an arrow h ∈ EẼ6

, we
denote by h′ and h′′ the source and target of h, respectively.

7.2. Zero-dimensional irreducible components.

Definition 7.4. The Euler form is a bilinear form defined on the root lattice (which is
identified with the lattice of dimension parameters) in the following way:

⟨v, w⟩ := ∑
χ∈IẼ6

vχwχ − ∑
h∈EẼ6

vh′wh′′ , for all (v, w) ∈ Q(Ẽ6)
2.

Remark 7.5. Our results will only involve the Tits form (which is the associated qua-
dratic form). Thus they will not depend on the choice of an orientation. Only the
intermediate computations will use the Euler form.

Theorem 7.6. For m ∈ Z≥0, the irreducible component of HBT
m(m+1)

2

containing Iλm is of di-

mension 0.

Proof. Combining [Pae1, Proposition 3.19] and Proposition 7.3, we see that the irre-
ducible component of HBT

m(m+1)
2

containing Iλm is isomorphic to the quiver variety on

the McKay quiver with dimension parameter ResẼ6
(λm). By [Nak98, Corollary 3.12],

the dimension of this quiver variety is equal to

2
(

ResẼ6
(λm)χ0

− ⟨ResẼ6
(λm), ResẼ6

(λm)⟩
)

.

It remains to prove that this integer is equal to zero. To improve readability, we prove
the remaining equality in Proposition 7.9. □

Before being able to finish the proof of Theorem 7.6, we need to prove a technical
lemma.
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Lemma 7.7. For k ∈ Z≥1, we have

d0
2(k+1) + d0

2k = e0
2k+1 + a2k+1, (1)

e0
2k−1 + e0

2k+1 = d0
2k, (2)

k + 1 = a2k+1 + a2k+3. (3)

Proof. To prove relation (1), we consider the following cases:

• If 2k − 1 ≡ 0 (mod 3), then d0
2(k+1) + d0

2k = 1+
⌊

k−1
3

⌋
+

⌊
k
3

⌋
and e0

2k+1 + a2k+1 =⌊
2k+1

3

⌋
. In that case d0

2(k+1) + d0
2k = e0

2k+1 + a2k+1.

• If 2k − 1 ≡ 1 (mod 3), then d0
2(k+1) + d0

2k =
⌊

k+1
3

⌋
+ 1 +

⌊
k−1

3

⌋
and e0

2k+1 +

a2k+1 =
⌊

2k+2
3

⌋
. In that case d0

2(k+1) + d0
2k = e0

2k+1 + a2k+1.

• If 2k − 1 ≡ 2 (mod 3), then d0
2(k+1) + d0

2k = 1 +
⌊

k
3

⌋
+ 1 +

⌊
k−1

3

⌋
and e0

2k+1 +

a2k+1 = 1 +
⌊

2k+1
3

⌋
. In that case d0

2(k+1) + d0
2k = e0

2k+1 + a2k+1.

The same can be done to prove relation (2). Relation (3) is a direct consequence of the
definition of a2k+1. □

Definition 7.8. Take m ∈ Z≥1. For k ∈ J1, mK, define the slice k of λm to be the subset
of the Young diagram of λm given by {(i, j) ∈ Y(λm) | i + j = k − 1}. Note that, if we
remove the slice m from λm, we obtain λm−1.

We are now able to finish the proof of Theorem 7.6.

Proposition 7.9. For m ∈ Z≥0, we have

⟨ResẼ6
(λm), ResẼ6

(λm)⟩ = ResẼ6
(λm)χ0

.

Proof. We proceed by induction on m. The proposition is obviously true for m = 0. Due
to the definition of ResẼ6

, we need to distinguish two cases depending on the parity
of m.

• If m = 2k, then by Definition 7.1 we have

⟨ResẼ6
(λm), ResẼ6

(λm)⟩ = ⟨ResẼ6
(λm−1), ResẼ6

(λm−1)⟩
+ ⟨ResẼ6

(λm−1), βm⟩
+ ⟨βm, ResẼ6

(λm−1)⟩

+ (d0
m)

2
+ 2(dm)

2.

In the interest of readability, we abbreviate ResẼ6
(λm) by R(m). By the induction hy-

pothesis, we have ⟨R(m− 1), R(m− 1)⟩ = R(m − 1)χ0
. By Definition 7.1, we know that

R(m − 1)χ0
= R(m)χ0

, since m is even. It is then enough to prove that

⟨R(m − 1), βm⟩+ ⟨βm, R(m − 1)⟩+ (d0
m)

2
+ 2(dm)

2 = 0. (4)
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By Definition 7.1, we have

R(m − 1)χ0 =
k−1

∑
j=0

e0
2j+1,

R(m − 1)X =
k−1

∑
j=0

a2j+1,

R(m − 1)χstd =
k−1

∑
j=0

d0
2j.

By (1), we obtain
k−1

∑
j=0

d0
2(j+1) +

k−1

∑
j=0

d0
2j =

k−1

∑
j=0

e0
2j+1 +

k−1

∑
j=0

a2j+1.

Since d0
j = 0 for j = 0, the previous equality yields

d0
m = R(m − 1)χ0 + R(m − 1)X − 2R(m − 1)χstd . (5)

Moreover, by Proposition 7.3, the number of boxes that lie in the odd slices between
slice 1 and slice m − 1 is equal to

R(m − 1)χ0 + 2R(m − 1)ψ + 3R(m − 1)X.

Thus we have
R(m − 1)χ0 + 2R(m − 1)ψ + 3R(m − 1)X = k2.

In the same way, the number of boxes that lie in the even slices between slice 1 and
slice m − 1 is equal to 2R(m − 1)χstd + 4R(m − 1)ψχstd . Hence we have

2R(m − 1)χstd + 4R(m − 1)ψχstd = k(k − 1).

From there we have the following two relations:

d0
m = R(m − 1)χ0 + R(m − 1)X − 2R(m − 1)χstd ,

k = R(m − 1)χ0 + 2R(m − 1)ψ + 3R(m − 1)X −
(
2R(m − 1)χstd + 4R(m − 1)ψχstd

)
.

They imply that

k − d0
m = 2

(
R(m − 1)ψ + R(m − 1)X − 2R(m − 1)ψχstd

)
.

Now, since m = 2k and dm = m−2d0
m

4 , we obtain

dm = R(m − 1)ψ + R(m − 1)X − 2R(m − 1)ψχstd . (6)

Recall that, since m is even, βm = d0
mαχstd + dmαψχstd + dmαψ2χstd

. By construction of the
Euler form, we have

⟨R(m − 1), βm⟩+ ⟨βm, R(m − 1)⟩ = (R(m − 1), βm),

where ( , ) denotes the nondegenerate bilinear form on h∗Γ (cf. [Kac, §2.1]). Using the
McKay graph of type Ẽ6, we deduce that

(R(m − 1), βm) = 2d0
mR(m − 1)χstd + 4dmR(m − 1)ψχstd

− d0
m (R(m − 1)χ0 + R(m − 1)X)− 2dm

(
R(m − 1)X + R(m − 1)ψ

)
.
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Rearranging the right-hand side of the previous equation, we may rewrite this right-
hand side as

d0
m

(
2R(m − 1)χstd − R(m − 1)χ0 − R(m − 1)X

)
+ 2dm

(
2R(m − 1)ψχstd − R(m − 1)X − R(m − 1)ψ

)
.

We recognize the expressions of d0
m and dm obtained in (5) and (6). This leads to the

equation
(R(m − 1), βm) = −(d0

m)
2 − 2(dm)

2.
This gives the desired equality (4) and concludes the proof when m is even.

• Let us suppose now that m = 2k + 1 is odd. It is then enough to prove that

⟨R(m − 1), βm⟩+ ⟨βm, R(m − 1)⟩+ e0
m

2
+ 2em

2 + am
2 = e0

m.

Due to relations (2) and (3), we first have

2R(m − 1)χ0 + e0
m − R(m − 1)ψχstd = 1. (7)

Secondly, we have
4R(m − 1)ψ + 2em − 2R(m − 1)ψχstd = 0. (8)

Thirdly, we have

2R(m − 1)X + am − R(m − 1)χstd − 2R(m − 1)ψχstd = 0. (9)

Equations (7), (8) and (9) give the desired result when m is odd.

This concludes the proof of the proposition and also of Theorem 7.6. □

Remark 7.10. Theorem 7.6 implies that, if Γ is a finite subgroup of SL2(C) isomorphic
to the binary octahedral group (of type Ẽ7), or if Γ is a finite subgroup of SL2(C) iso-
morphic to the binary icosahedral group (of type Ẽ8), then all irreducible components
of HΓ

n containing a T1-fixed point are of dimension 0 since these two finite groups
contain a subgroup of type Ẽ6.
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