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ABSTRACT. We determine the Riordan matrix associated to Eulerian numbers and establish a
formula defining Eulerian polynomials as well. We refine the factorial Euler—Seidel matrix consid-
ering the excedance distribution over permutations and derangements. We introduce the so called
(n, k)-permutations. Combining with the number of cycles, we establish exponential generating
functions and their g-analogues as well.

1. REMINDER AND INTRODUCTION

Clarke et al. [2], Dumont and Randrianarivony [4], and Rakotondrajao [9] studied Euler’s dif-
ference table (d¥),, 1>0, also called difference factorial numbers, which are given by

ar =nl,
db = drtt — gk for 1 <k<n-1.

n—1»

(1.1)
Their matrix is presented in Table 1.

TABLE 1. Euler’s difference matrix (d¥), x>0

d,
k[0 1 2 3 4
0 |0
1 |0 1
2 11 1 2
3 12 3 4 3
4 |9 11 14 18 4!
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Dumont [5] reintroduced the Euler—Seidel matrix associated to a given sequence (ay)n>o. It is an
infinite matrix and is determined recursively by the formula

0 _

a, = ap, for n > 0,
k
n

1.2
(1.2) =att+alll, forn>0, k>1.

The sequence (), is called the initial sequence, and (ag),,, is called the final sequence.

Theorem 1.1 (DUMONT [5]). The relation between any entry and the initial sequence is deter-
mained by

k
(1.3) Z ( ) i, forn >0, k>0.

=

Firengiz and Dil [6] reconsidered the Euler—Seidel matrix, by introducing the parameters p and ¢
as follows:

@, = a,(p. q)
(1.4) =pat+qail, forn>0, k>1.

Theorem 1.2 (FIRENGIZ AND DIL [6]). The relation between any entry and the initial sequence
18 determined by

(1.5) i( )p’“ "y

1=

Theorem 1.3 (FIRENGIZ AND DIL [6]). The exponential generating function of( )k >0 has the

closed form

ktn

(1.6) Z fl% = = exp(pu) A(t + qu), where A(t Z 0"

n>0 k>0 n>0

We study the factorial Euler—Seidel matrix deduced from Euler’s difference table as follows. The
initial sequence is (n!),>0, and the infinite matrix is determined recursively by

a,,Ol :7’L'7
(1.7) . ah1
a, = +afl, forn>0, k> 1.

Definition 1.1 (SHAPIRO [12], SPRUGNOLI [14]). Consider an infinite matrix R = (rn),, x>0

with complex coefficients and two formal power series g(x) = > oo, gkz”, f(z) = 1o fex® with
go =1, fi #0. Let Ry(z) = 7, rn iz be the formal power series of the k-th column of R. Then
R is called a Riordan matrix if

(1.8) Ri(z) = g(2)[f(2)]".

R is an infinite lower-triangular matrix which we denote by a pair R = (g(w), f (x)) Note that
the identity I = (1, z) is a Riordan matrix.

Remark 1.1. If we have g(z) = Y, gk% and f(x) = > 2, kak—]?, with go = 1 and f; # 0, then

Ri(x) = g(x) [f(z} . We denote the matrix by R = [ (), f(x)}



FACTORIAL EULER-SEIDEL MATRIX: REFINEMENT AND ¢-ANALOGUE 3

Theorem 1.4 (SHAPIRO [12], SHAPIRO ET AL. [13]). Let (ay),>, and (b,),>, be two sequences.
Set a(x) =Y oo axx® and b(z) = Y7, bra®. Then we have

Qo bo
aq bl
(1.9) (g(m),f(x)) ar| = |by| = g(x)a(f(:v)) = b(z).

Theorem 1.5 (SHAPIRO [12]|, SHAPIRO ET AL. [13]). For any Riordan matriz (g(x), f(x)), its

inverse R is given by

(1.10) =| 7=/ ],

where f(f(:v)) = f(f(a:)) =uz.

Let us write [n] = {1,2,...,n}. We say that an integer ¢ € [n] is a fixed point for a permutation o
if o(i) = i. We denote by FIX(¢) the set of fixed points of 0. A derangement is a permutation
without fixed points, that is, a permutation o such that FIX (o) = (). We denote by D,, the set of
all derangements of the symmetric group S,,. We say that a permutation o is an (n, k)-permutation
if the length of o is equal to (n + k) and FIX (o) C [n].

This class of (n, k)-permutations should not be confused with the ”n-fixed-points-permutations”
introduced by Rakotondrajao [10]. An n-fixed-points-permutation is an (n, k)-permutation. For
example, (1)(2,3)(4)(5,6) is a (4, 2)-permutation, but it is not a 4-fixed-points-permutation.

We denote by £F the set of (n, k)-permutations. Note that the coefficient of the n-th column
and k-th row of the classical Euler-Seidel matrix is the cardinality of E¥. Since n + 1 is either a
fixed point or not for a permutation o € £* ne1: if n411s, then o € EF; otherwise o € EFL,

We say that an integer i is an excedance for o if o (i) > i. We denote the number of excedances
by e(o) and the number of cycles of o by ¢(o).

The numbers E, ; count the number of permutations of size n having k excedances. They are
given by the formula

1, ifn=0, k=0,
(1.11) En,k = (n — k?)En_l,k_1 + (l{? + 1)En—1,k, if 0 < k<n,
0, otherwise.

The Eulerian numbers E, ; are classical numbers in mathematics. They can be found in many
places in the literature (Brenti [1], Comtet [3], Foata and Schiitzenberger [7], Roselle [11], Stan-
ley [15], Worpitzky [16]).

We are interested in refining the factorial Euler-Seidel matrix using the excedance distribu-
tion over permutations. The Eulerian polynomials E,(z) = Y"1, En 2’ =Y .o Bz’ become the
initial sequence. We have -

e (z) = E,(x), for n >0,
(1.12) k() — _ k=1 k-1
er(z) = —er Hz) +epq(x), forn>0, k>1,

and their matrix is presented in Table 2
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TABLE 2. Refined factorial Euler—Seidel matrix

en()
k\n 0 1 2 3
0 1 1 142z 144z + 22
1 0 T 3z + 22 .-
2 x 2r + 22 .-
3 x4z -

The Hurwitz generating function of the classical Eulerian polynomials [7] is

E(z,t) = Z Z Enkxkg

n>0 k>0
rz—1

(1.13) - r—exp(t(x — 1))

We define the g-analogue of the refined factorial Euler-Seidel matrix combining the excedance
distribution and the number of cycles. We write

(1.14) ek(z) = Z 2,

o€k

(115) bz, = 3 a0 ¢

oek

Mantaci and Rakotondrajao [8] extensively studied the excedance distribution over derangements.
The number a,j counts derangements over [n| having k excedances,

(1.16) ank = |{0 € D, | 6 has k excedances}|.
Let us write Ag(z) = Z?:o ay;x', and let A(z,q) be its g-analogue.

Remark 1.2. Note that a derangement of D,, is a (0,n)-permutation, and a permutation of .S, is
a (n,0)-permutation.

Let us denote by E,(z,q) the g-analogue of the Eulerian polynomials E,(z) = Y " E, ;2" given
by

(1.17) E.(x,q) = Z 2% ge),

gESy

Theorem 1.6 (BRENTI [1]). The polynomials E,(x,q) satisfy the recursion relation

d
(1.18) En(z,q) = (2(n = 1) + ¢) En-1(2,9) +2(1 — 2) 7 Ena (2, 9)
with initial condition Eo(z,q) = 1.

Theorem 1.7 (BRENTI [1]). The exponential generating function of E,(x,q) is given by

(1.19) E(zx,t,q) = thn = ( vl »)q, Eo(x,q) = 1.

= n! x —exp(t(x —1
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2. RIORDAN MATRIX REPRESENTATION OF WORPITZKY IDENTITY

For a fixed integer n with n > 0, let us consider the infinite matrix R,, = (r,ﬁ”} > , given by
) k>0

1 0 0 0 0
™ 1 0 0 0
32" 1 0 0
(2.1) Ry= 140 3n on 1 0
57 4n 3n oon ]

Theorem 2.1. R, is a Riordan matrix and

2.2 R,=|—"""—,2).
22 (@)
Its inverse R,’! is given by

(1 — )+t

(2.3) R' = (T(:c) x) .

Proof. We have
— n, .k
k>0
Let U = R,,. If U = (g(x), f(x)), from Definition 1.1, we have Equation (2.2), that is

En(x
g(z) = ﬁa

9(2)f(x) = o ik,

( Up()
Ul(.fC)

Uz(x) - g({lj) (f(x))z = xi(l?;()ilru

\ -

Then U™ = <(1_x)n+1,x> = R, ! (cf. Theorem 1.5). O

En(z) n

For a fixed integer n with n > 0, let us consider the Eulerian number vector E, and the signed
binomial coefficient vector B,, given by

1
Eno -("
En,l :
E, = and B, = ( 1)1(71:-1)
Emn—i—l
(=D ()]
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Theorem 2.2. For a fized integer n with n > 0, we have

(2.4)
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1
2TL
3TL
4n
5n

_ o O OO

|
ST

3 3 3

3
& oo Jro b= F o
\_/\_/\:\_/

—_

—_ =

Proof. Equation (2.4) is a matrix representation of the Worpitzky [16] formula

(2.5)

Theorem 2.3. Let us consider the infinite matriz R = (ry), ,~, given by

We have

(2.6)

Proof. For a fixed integer n with n > 0, let us consider the matrix R, = (fk’g

Eq

En,k

k

otherwise,

E,

0

Es

S (=1 (k+1—4)"

1=0

(k—(+1)?, ifk>and 2E2R > >

Tke = {07

By

)

By

0

Bs

T withp = {

—3+fV9+8£J
— |

(n)

(n + 2) rows and (n + 2) columns extracted from R, in Equation (2.1), that is,

From Theorem 2.2, we have E, = R,, B,,. Hence, we have

Eo

myl

27’1
371

0
1

27’L

(n+2)" (1)

0

o O

By

By

> k,£>0

of the first
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That is,
Eo 10 (o)
o) R -0 | "
Eio B 100 (é)
0 |Ei 1 0 210 0 —(;)
0 32 1 &

Identifying the coefficients, we get

{(k—£+1)p, it k> and ZHERP > g > Gio
Tke =

with p = O

-3+ V9 + 8¢
0, otherwise, 2 '
3. REFINED FACTORIAL EULER-SEIDEL MATRIX AND ¢-ANALOGUE
Let us consider the refined factorial Euler—Seidel matrix coefficient e (z).
Theorem 3.1. For any integers n > 0 and k > 0, we have
: k
(3.) h) = L0 () Bt
i=0

Proof. Setting p = —1 and ¢ = 1 in Theorem 1.2, we get

(32) o) = S0 (1) o)

Proof. Set n =0 in Theorem 3.1. 0
Remark 3.1. We have ef(z) = Ax(x) = Zf:o i,
Theorem 3.2. The polynomial eF(x) is the polynomial of the excedance distribution over EF.
Proof. From the construction of set £, we have

enti(7) = e,(2) + ey (2).

This follows from the interpretation of e (x) as the excedance distribution over £ +1 where n + 1

is not a fixed point, and ef~!(x) as the excedance distribution over & ~1 where n + 1 is a fixed
point (Equation (1.14)). O

Theorem 3.3. The exponential generating function of e (x) has the closed form

(3.3) Flz,u,t) Zze _k o (x — 1) exp(—u)

n>0 k>0 oz —exp((t+u)(z—1)
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Proof. From Equation (1.12) and Theorem 1.3, we have

SN chtarg s = eaplc) 3 B

n>0 k>0 n>0

From Equation (1.13), we have

S B = — 2

n!  x—exp(t(z—1))

Hence,

Z Zek(:v)u o (x — 1) exp(—u) ‘ 0

e Knl  z—exp ((t+u)(z—1))

Corollary 3.2. The exponential generating function of Ax(x) has the closed form

o e Dexp()
(3.4) A(xz,u) = F(z,u,0) T — o (uz — 1))

o(7)),50 as an infinite matrix. The coefficient

[2]e% () is the classical Eulerian number F,, ¢, and Equation (1.12) becomes

Moreover, we can express the initial sequence (e

[2]ep () = —[2el " (2) + [2)es 11 (2).
That is,
[wg]e‘%(a?) = Eyy, for n > 0,
(3:5) {[xé]eﬁ(x) = —[2']ef 1 (z) + [xg]eflji(x), forn>0, k> 1.

Theorem 3.4. For fived integers k and {, the coefficient of x* in ef(x) is

k

(3.6) [2)ek(2) = any = Z(—l)k_i (IE) Eiy, fork>0andl>0.

i=0
Proof. We have

Qo = [lj] k

=§() ed).

()

Here, we obtained the second line by setting p = —1 and ¢ = 1 in Equation (1.5). 0

Ed

Theorem 3.5. We have

10000 --- 1 0 0 0 0 1 0 0 00
00000 - 1 1 0 0 0 1 0 0 00
01000 - 1 -2 1 0 0 1 1 000

(3.7) 01100 --|=|-1 3 -3 1 0 1 4 1 00
01710 - 1 -4 6 —4 1 1 11 11 1 0
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That 1is,
(38) (ak,ﬂ)k’gzo = [eXp(—t),t] (En,f)n’gzoa
with S = [exp(—t),t] the Riordan matrix associated to the refined factorial Euler—Seidel matriz.

Theorem 3.6. For all integers k > 0 and [ > 0, we have

(3.9) zk:é kz+ﬂ<)(“?1)(e+1—j) for k>0, £>0.

=0 j=

Proof. Using the Worpitzky identity in Equation (2.5) with n = ¢ and k = ¢ and Theorem 3.4, we
have

:0

Qe :

.

g e omenn()

=0 j=0

Theorem 3.7. We have

1 0 0 0O 100 00 10000

1 0 0 0O 11000 00 00O

1 1 0 00 12100 01 000
(3.10) 1 4 1 00 =11 3310 01100

1 11 11 1 0 146 4 1 01710
That 1is,
(3.11) (Brt)p o0 = [exp(t),t} (@n,e)yy 50> with [exp( ), t} =
Proof. This is obtained from Equation (3.8) and Theorem 1.5. O

Corollary 3.3. We have

(3.12) (Brt) om0 = ((i))km (@), p50 -

Corollary 3.4. For a fived integer £ > 0, the sequence (E(n,()),~, of a row of the Eulerian
number matriz is given by

Eo ao,¢
Eu Q.0
Es az
(313> Egvg = |:6Xp(t), t} as.e
Eyy oy,

Theorem 3.8. The Euler—Seidel matrix preserves the excedance distribution.
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Proof. This process is derived from the construction of the (n + 1,k — 1)-permutation. Consider
first the case where n + 1 is a fixed point. By removing n + 1 from the permutation and re-
ordering the sequence, that is, decreasing by 1 all integers greater than n + 1 in the remaining
permutation, we obtain an (n, k — 1)-permutation. Conversly, if n + 1 is not a fixed point, then
the (n+ 1,k — 1)-permutation is, by definition, an (n, k)-permutation. This construction leads
directly to the recurrence relation

en(z) = —en 7 () + i (). 0

Theorem 3.9. For a fived integer { > 0, the exponential generating function of [x*]ek(x), that is,
the exponential generating function of all (n, k)-permutations with { excedances, is given by

u t"
=22 @)

n>0 k>0

(3.14) = i bl ((e i)+ u))i_l((e i D)) + z) exp (t (- i)(t+ u)).

7!
i=0

Proof. For fixed integers ¢ and n, from the Worpitzky identity in Equation (2.5), we consider the
initial term of the sequence

By = i(—l)i(é +1—4)" (" j 1).

ZDEZ% - >Zl é(—l)iw 1o z)%
_ [Z e in__i)i;)n_w
-3 G s =9) (e o res1-0)
(3.15) - ‘Z W er1-0) (e s i -0) e (e 41-9).

From Equations (1.6) and (3.5), setting p=—1and ¢ = 1, we obtain

ZZ —exp ZEngt_'_u

n>0 k>0 n>0

By Equation (3.15)7 we have

S 0y CL

n>0 k>0 i=0

( €+1—2)(t+u)>i_1

((t+u )€+ 1) +Z(1—t—u))exp<(€+1—z’)(t+u)>
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- (_!W ((£+ 1 — i)t —|—u)>i_1((t +u)(l+1) +i(1—t — u))

J4
) . exp (t(€+1—z’)+u(€—z’)). 0

Corollary 3.5. For a fized integer ¢ > 0, the exzponential generating function a,(u) = Zkzo akf,‘g—':
of derangements with ¢ excedances has the closed form

¢ ; .
(—1)* , i1 : : :
(3.16) ag(u) = ——(u(l—i+1) u(l —i+1)+i)exp (ul—1)).
‘ ZZ; 2! < ) ( > ( )
Proof. Setting t = 0 in Equation (3.14), we get as(u) = €,(0, u). O

Corollary 3.6. For a fized integer £ > 0, the exponential generating function ey (t) = ano Emg;—n!
of permutations with { excedances has the closed form

¢ ; ,
(—1) , i1 : : ,
(3.17) eo(t) = —(t(l—i+1) tl—i+1)+i)exp(t(l—i+1)).
¢ ; 7! ( ) < ) ( )
Proof. Setting v = 0 in Equation (3.14), we get e,(t) = ex(t, 0). O

Theorem 3.10. The g-analogue of the refined factorial Euler—Seidel matrix (eﬁ(w))k Lo LS deter-
mined by the formula -

(3.18) en(w,q) = —q e (2,9) + ey 1 (7, ).

Proof. From the construction of (n + 1,k + 1)-permutations, we distinguish whether the integer
(n+1) is a fixed point or not. By doing the corresponding case analysis, we get the result. 0

Theorem 3.11. We have

(3.19) ST W ( A

=0
Proof. From Equation (3.18) and Theorem 1.2, we get the result. O
Theorem 3.12. We have
[e0(2,q)] 1 0 0 0 0 [ E.(z,q) ]
6712(']:7 Q) —q 1 0 0 0 En+1 (xa Q)
ex(x,q) ¢ -2 1 0 0 Enio(z,q)
(3.20) ed(z,q)| = = 3¢ -3¢ 1 0 Enis(z,q)
en(T,q) ¢' —4¢® 64> —4q 1 Enta(2,q)
That 1s,
(321) [el:L(xa q)} k>0 = [eXp(—qt), t] [En—l-k (l’, q)]kZO :

Proof. Equation (3.20) follows from Equation (3.19). O
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Theorem 3.13. The matriz T given by

1 0 0 0 0
—q 1 0 0 0
q —2q 1 0 0
(3.22) T=lexp(=gt),t] = | —¢* 3¢ =3¢ 1 0
¢ -4 6¢° —4g 1
is the g-analogue of [exp(—t),t].
Proof. We have
4
Z(—Q)ZE = exp(—qt).
>0 ’
If T'=[g(t), f(¢)], from Definition 1.1, we have Equation (3.22), that is,
( To(t) = g(t) = exp(—qt),

T2(t) — g0 F(0) = tg(t)

Remark 3.2. T—' = [exp(qt), t] is the g-analogue of the inverse Riordan matrix of 7.
Theorem 3.14. We have

ek(r,q)] 1 0 0 0 o0 - Ap(z,q) ]
ek (x, q) g 1 0 0 0 - A1z, q)
ek(x,q) ¢ 2¢ 1 0 0 - Apya(,q)
(3.23) eSx,q)| = | ¢ 3¢ 3¢ 1 0 - Agys(z, q)
ei(z, q) ¢' 4¢° 6¢° 4¢ 1 - Apalz, q)
That 1s,
(3.24) [en(@,0)] 50 = [exp(at), ] [Apin(z, )]0, with [exp(qt),t] =T7".
Proof. From Equation (3.18), we get

e i(z,q) = q e Nz, q) + €l (x,q).

Let us consider b}(z,q) = eh"}(z,q). Then

bi(z,q) = q by Nz, q) + b1 (z, q) and b = Ay(z, q).
Combining this with Theorem 1.2, we get the result.
Theorem 3.15. We have

Ey(z,q) 1 0 0 0 0 [Ao(2,q)]
Ei(z,q) g 1 0 0 0 Aq(z,q)
Ey(z,q) ¢ 2¢ 1 0 0 Ay(z,q)
(3.25) Es(x,q)| = | ¢ 3¢ 3¢ 1 0 As(z,q)
Ey(z,q) q" 4¢® 6¢* 4q 1 Ay(z,q)
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That 1is,
(3.26) [En(z,q)], = [exp(qt), t] [An(z,q)], -
Proof. Setting k = 0 in Equation (3.23), we get the result. O

Theorem 3.16. For a fized integer n with n > 0, the exponential generating function A(x,t,q) =
> o0 An(z, Q)% has the closed form

n!

(3.27) Az, t,q) :exp(—qt)( vl ))) |

r —exp (t(x —1
Proof. Setting n = 0 in Equation (3.21), we get
[6’8(37, q)] k>0 = [eXp(_qt)a t] [Ek<x7 Q>]k20 :

Hence .
E —1
Z %tk = ( ° . ) (cf. Brenti [1]),
= ! x —exp (t(x —1))
and from Theorem 1.4 we get the result. O
Corollary 3.7. We have
(3.28) Alw,t.q) = (A1),

Proof. We have
Az, t) = 1<_1 ;e:;)pe?(ﬁ(:zt)i) (cf. Mantaci and Rakotondrajao [8])
(x — 1) exp(—t)
r—exp (t(x — 1))

Hence
r—1 1
o) = vlat) ()
- (s bew )
r—exp(t(x—1)) /) °
It follows that A(x,t,q) = (A(x,t))". O

Theorem 3.17. For a fized integer n with n > 0, the exponential generating function F,(z,t,q) =
> k0 ek (x, q)% of (n, k)-permutations has the closed form

(3.29) Fo.(z,t,q) = exp(—qt);% (x — exf) (_t(is — 1))) :

Proof. From Equation (3.21) and Theorem 1.4, we get
tk

Fu(wt,q) = exp(—qt) Y Bui(w, )5

k>0

dn tk
= exp(—qt)% <Z Ey(x, Q)E>
k>0 '

=05 (et 1>>)q‘ -
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Corollary 3.8. We have

(3.30) F.(z,t,q) = exp(—qt) %E(m t,q).

Theorem 3.18. For a fized integer k with k > 0, the exzponential generating function Fy(x,t,q) =

> nso On(, q)% of (n, k)-permutations has the closed form

(3.31) Fi(z,t,q) = exp(qt)— - ( (z=1) exp(—t)))q.

dtk \ x —exp (t(x — 1)
Proof. From Equation (3.24) and Theorem 1.4, we get

tk
Fr(x,t,q) = exp(qt) Y Apin(z, 90

k>0

k n
= explat) e (Z Az, q%)

n>0

d* ( (:c—l)exp(—t)))q.

dtF \ @ —exp (t(x — 1)

= exp(qt)—
Corollary 3.9. We have
k

dtk
Theorem 3.19. The exponential generating function

F(z,t,u,q) = ZZ

n>0 k>0

(3.32) Fi(x,t,q) = exp(qt) —A(z,t,q).

of (n, k)-permutations has the closed form

r—1 )q
r—exp((z—1)(u+t))
Proof. From Equation (3.18) and Theorem 1.3, we have

F(z,t,u,q) = ZZ@ Z'Zl'

(3.33) F(z,t,u,q) = exp(—qu) <

= exp(—qu)E(z, t + u, q)
xr—1 !
= exp(—qu) (m —exp ((z — D)(u+ t))) '

Here, the last line follows from Equation (1.19).

Corollary 3.10. We have
(3.34) F(z,t,u,q) = (F(z,t,u))".

Proof. We have
o (__(@=Dexp(-u) \*
(F(x,t,u))" = <m “exp (@ — D)(ut t)))

z—1

x—exp((z— 1)(u—i—t))) '

= exp(—qu) (
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