Pak-Stanley labeling of hyperplane arrangements

Rui Duarte

CIDMA & University of Aveiro

rduarte@ua.pt

SLC93 Pocinho, March 26, 2025

Joint work with António Guedes de Oliveira (CMUP & University of Porto)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivation

In the 1990s Pak and Stanley introduced a labeling of the regions of the m-Shi arrangement of hyperplanes with m-parking functions. It is easy to determine the label assigned to a region but the inverse can be "hard" to find.

We started by extending the Pak-Stanley labeling to other hyperplane arrangements and determined the inverse for them.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Let $n \in \mathbb{N}$. In what follows $[n] := \{1, \ldots, n\}$.

Parking functions

Assume n drivers want to park on a one-way street with n parking spaces.

*i*th driver prefers space a_i and parks there if it is free. If a_i is occupied, *i* takes the next available space.

 $\mathbf{a} = (a_1, \ldots, a_n)$ is a parking function of length *n* if all cars can park.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example

Pak-Stanley labeling of hyperplane arrangements Parking functions

$$\begin{split} \mathsf{PF}_n = & \{ \mathsf{parking functions of length } n \} \\ \mathsf{PF}_2 = & \{ 11, 12, 21 \} \\ \mathsf{PF}_3 = & \{ 111, 112, 113, 121, 122, 123, 131, 132, \\ & 211, 212, 213, 221, 231, \\ & 311, 312, 321 \} \end{split}$$

 $\mathbf{a} = (a_1, \dots, a_n) \in \mathbb{N}^n \text{ is a parking function of length } n \text{ iff}$ $\mathbf{a}^{-1}([i]) = \{j \in [n] \mid a_j \le i\}$ $= \{\text{drivers who want to park in the first } i \text{ places}\}$

has at least *i* elements, for every $i \in [n]$.

 $\mathbf{a} = (a_1, \ldots, a_n) \in \mathbb{N}^n$ is a parking function of length n iff the unique weakly increasing rearrangement $\mathbf{b} = (b_1, \ldots, b_n)$ of \mathbf{a} satisfies

$$b_i \leq i$$
, for every $i \in [n]$,

i.e.,

$$\mathbf{b} \preceq (1, 2, 3, \ldots, n).$$

(\leq denotes the product order or componentwise order.)

 $\mathbf{a} = (a_1, \ldots, a_n) \in \mathbb{N}^n$ is an *m*-parking function of length *n* iff the unique weakly increasing rearrangement $\mathbf{b} = (b_1, \ldots, b_n)$ of **a** satisfies

$$b_i \leq m(i-1)+1, ext{ for every } i \in [n],$$

i.e.,

$$\mathbf{b} \leq (1, 1 + m, 1 + 2m, \dots, 1 + (n-1)m).$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

A parking function $\mathbf{a} \in \mathbb{N}^n$ of length n is prime iff it remains a parking function (of length n-1) when we remove a 1.

$$PF'_{n} = \{ \text{prime parking functions of length } n \}$$

 $PF'_{2} = \{ 11 \}$
 $PF'_{3} = \{ 111, 112, 121, 211 \}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Pak-Stanley labeling of hyperplane arrangements \Box Parking functions

A parking function $\mathbf{a} \in \mathbb{N}^n$ of length n is prime iff the unique weakly increasing rearrangement $\mathbf{b} = (b_1, \dots, b_n)$ of \mathbf{a} satisfies

$$b_{i+1} \leq i$$
, for every $i \in [n-1]$,

i.e.,

$$\mathbf{b} \leq (1, 1, 2, \dots, n-1).$$

A parking function $\mathbf{a} \in \mathbb{N}^n$ of length *n* is prime iff

$$\mathbf{a}^{-1}([i]) = \{j \in [n] \mid a_j \le i\}$$
$$= \{\text{drivers who want to park in the first } i \text{ places}\}$$

has more than *i* elements for every $i \in [n-1]$.

An *m*-parking function $\mathbf{a} \in \mathbb{N}^n$ of length *n* is prime iff the unique weakly increasing rearrangement $\mathbf{b} = (b_1, \dots, b_n)$ of **a** satisfies

$$b_{i+1} \leq \mathit{m}(i-1) + 1, ext{ for every } i \in [\mathit{n}-1],$$

i.e.,

b
$$\leq$$
 (1, 1, 1 + m, ..., 1 + m(n - 2)).

m- PF_n = {m-parking functions of length n} m- PF'_n = {prime m-parking functions of length n}

$$|\mathsf{PF}_n| = (n+1)^{n-1}$$
 and $|\mathsf{PF}'_n| = (n-1)^{n-1}$

$$|m ext{-}\operatorname{\mathsf{PF}}_n|=(mn+1)^{n-1}$$
 and $|m ext{-}\operatorname{\mathsf{PF}}'_n|=(mn-1)^{n-1}$

Hyperplane arrangements

n-dimensional Coxeter arrangement or braid arrangement:

$$\operatorname{Cox}_n = \bigcup_{1 \le i < j \le n} \{x_i - x_j = 0\}$$

n-dimensional Shi arrangement (Shi, 1986):

$$\mathsf{Shi}_n = \bigcup_{1 \le i < j \le n} \{x_i - x_j = 0, x_i - x_j = 1\}$$

n-dimensional Ish arrangement (Armstrong, 2013):

$$\mathsf{lsh}_n = \bigcup_{1 \le i < j \le n} \{x_i - x_j = 0, x_1 - x_j = i\}$$

n-dimensional Catalan arrangement:

$$Cat_n = \bigcup_{1 \le i < j \le n} \{x_i - x_j = 0, x_i - x_j = 1, x_i - x_j = -1\}$$

Pak-Stanley labeling of hyperplane arrangements Hyperplane arrangements

Shi₃ and Ish₃

Figure: Shi₃ (left) and Ish₃ (right)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

n-dimensional *m*-Shi arrangement:

$$m$$
-Shi_n = $\bigcup_{1 \le i < j \le n} \{x_i - x_j = k \mid k \in \{-(m-1), \dots, 0, 1, \dots, m\}\}$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

n-dimensional *m*-Catalan arrangement:

$$m$$
-Cat_n = $\bigcup_{1 \le i < j \le n} \{x_i - x_j = k \mid k \in \{-m, \dots, 0, 1, \dots, m\}\}$

hyperplane arrangement	# regions	# rel. bounded regions
Cox _n	<i>n</i> !	0
Shi _n	$(n+1)^{n-1}$	$(n-1)^{n-1}$
lsh _n	$(n+1)^{n-1}$	$(n-1)^{n-1}$
Cat _n	$\frac{(2n)!}{(n+1)!} = n! C_n$	$\frac{(2(n-1))!}{(n-1)!} = n! C_{n-1}$
<i>m</i> -Shi _n	$(mn+1)^{n-1}$	$(mn-1)^{n-1}$
<i>m</i> - Cat _n	$\frac{(mn+n)!}{(mn+1)!} = n!F(n,m)$	$\frac{(mn+n-1)!}{(mn)!}$

 $C_n = \frac{1}{n+1} {\binom{2n}{n}}$ is a Catalan number $F(n,m) = \frac{1}{mn+1} {\binom{mn+n}{mn}}$ is a Fuss-Catalan number (Remark: $F(n,1) = C_n$)

Pak-Stanley labeling

Let $R_0 = \{\mathbf{x} \in \mathbb{R}^n \mid x_n + 1 > x_1 > \cdots > x_n\}$ be the fundamental alcove, i.e, the region bounded by the hyperplanes of equation $x_i - x_{i+1} = 0$, for $i \in [n-1]$, and $x_1 - x_n = 1$.

$$\lambda(R_0) := \mathbf{1} := (1, 1, \dots, 1) \in \mathbb{N}^n.$$

Let R_1 and R_2 be two regions separated by a unique hyperplane H, of equation $x_i - x_j = k$, such that R_0 and R_1 are on the same side of H. Then

$$\lambda(R_2) = egin{cases} \lambda(R_1) + e_j & ext{if } k \leq 0, \ \lambda(R_1) + e_i & ext{if } k > 0, \end{cases}$$

where $e_i = (0, \ldots, 0, \underbrace{1}_{i \text{th pos.}}, 0, \ldots, 0)$

Pak-Stanley labeling of hyperplane arrangements Hyperplane arrangements

Problem

The original Pak-Stanley labeling is not injective when applied to the lsh arrangement.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Pak-Stanley labeling (adapted)

Let $R_0 = \{\mathbf{x} \in \mathbb{R}^n \mid x_n + 1 > x_1 > \cdots > x_n\}$ be the region bounded by the hyperplanes of equation $x_i - x_{i+1} = 0$, for $i \in [n-1]$, and $x_1 - x_n = 1$.

$$\ell(R_0) := \mathbf{1} := (1, 1, \ldots, 1) \in \mathbb{N}^n.$$

Let R_1 and R_2 be two regions separated by a unique hyperplane H, of equation $x_i - x_j = k$, such that R_0 and R_1 are on the same side of H. Then

$$\ell(R_2) = egin{cases} \ell(R_1) + e_i & ext{if } k \leq 0, \ \ell(R_1) + e_j & ext{if } k > 0, \end{cases}$$

where $e_i = (0, ..., 0, \underbrace{1}_{i \text{th pos.}}, 0, ..., 0)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Pak-Stanley labeling of hyperplane arrangements

Figure: Pak-Stanley labeling of the 3-dimensional 2-Catalan arrangement.

A D > A P > A B > A B >

æ

The Pak-Stanley labels of the regions of the *m*-Shi arrangement are the *m*-parking functions and the labels of the relatively bounded regions of the *m*-Shi arrangement are the prime *m*-parking functions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition (D. and Guedes de Oliveira, 2021) Let $\mathbf{a} = (a_1, \ldots, a_n) \in \mathbb{N}^n$ and $p \in \mathbb{Z}$. The *p*-center of \mathbf{a} , $Z_p(\mathbf{a})$, is the largest subset $X = \{x_1, \ldots, x_q\}$ of [n] such that if $1 \le x_q < x_{q-1} < \cdots < x_1 \le n$ then

$$a_{x_j} \leq p+j$$
, for every $j \in [q]$.

In other words,

$$(a_{x_q}, a_{x_{q-1}}, \ldots, a_{x_2}, a_{x_1}) \preceq (p+q, p+q-1, \ldots, p+2, p+1).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Pak-Stanley labeling of hyperplane arrangements Hyperplane arrangements

Example

Let $\mathbf{a} = 1352$. $\mathbf{a} = 1352$ ($a_1 = 1 \leq 1$ and there is no $a_{i_1}a_{i_2} \leq 21$) $Z_0(\mathbf{a}) = \{1\}$ $\mathbf{a} = 1352$ ($a_1a_2a_4 = 132 \leq 432$ and $\mathbf{a} \leq 5432$) $Z_1(\mathbf{a}) = \{1, 2, 4\}$ $\mathbf{a} = 1352$ ($a_1a_2a_4 = 132 \leq 543$ and $\mathbf{a} \leq 6543$) $Z_2(\mathbf{a}) = \{1, 2, 4\}$ $\mathbf{a} = 1352$ ($\mathbf{a} \leq 7654$) $Z_3(\mathbf{a}) = \{1, 2, 3, 4\}$ ($Z_p(\mathbf{a}) = \emptyset$, if p < 0, and $Z_p(\mathbf{a}) = [4]$, if p > 3.)

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

The *m*-Catalan arrangement

Theorem (D. & Guedes de Oliveira, 2021)

If **b** and **c** are the Pak-Stanley labels of two regions R_1 and R_2 of the m-Catalan arrangement such that R_2 is the image of R_1 by reflection on the hyperplane of equation $x_i - x_{i+1} = 0$ and R_0 and R_1 are on the same side of $x_i - x_{i+1} = 0$, then

$$c_{j} = \begin{cases} b_{j} & \text{if } j \neq i \text{ and } j \neq i+1, \\ b_{i+1} + 1 & \text{if } j = i, \\ b_{i} & \text{if } j = i+1. \end{cases}$$

・ロト・日本・日本・日本・日本・日本

Pak-Stanley labeling of hyperplane arrangements

- The *m*-Catalan arrangement

Figure: Pak-Stanley labeling of the 3-dimensional 2-Catalan arrangement.

A D > A P > A B > A B >

æ

Let
$$\pi \in S_n$$
. The *inversion table* of π , $I(\pi)$, is defined by
$$I(\pi)_i = |\{j > i \mid \pi^{-1}(j) < \pi^{-1}(i)\}|, \text{ for every } i \in [n].$$

For every $\mathbf{a} \in \mathbb{N}^n$, let $\mathbf{p}(\mathbf{a}) \in (\mathbb{N} \cup \{0\})^n$ be defined by

 $\mathbf{p}(\mathbf{a})_i := \min\{j \in \mathbb{N} \cup \{\mathbf{0}\} \mid i \in Z_j(\mathbf{a})\}, \text{ for every } i \in [n].$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Theorem (D. & Guedes de Oliveira, 2021) Let $\pi \in S_n$, R be a region of m-Cat_n contained in $\{\mathbf{x} \mid x_{\pi_1} > x_{\pi_2} > \cdots > x_{\pi_n}\}$, and **b** be the Pak-Stanley label of R. Then

$$\mathbf{b} - \mathbf{p}(\mathbf{b}) = \mathbf{1} + I(\pi).$$

 $1 + I(\pi)$ is the minimum label among the labels of the regions of *m*-Cat_n contained in $\{\mathbf{x} \mid x_{\pi_1} > x_{\pi_2} > \cdots > x_{\pi_n}\}$.

A D N A 目 N A E N A E N A B N A C N

Theorem (D & Guedes de Oliveira, 2021)

Given $\mathbf{a} \in \mathbb{N}^n$, \mathbf{a} is the Pak-Stanley label of a region of m-Cat_n if and only if for every $i \in [n]$,

$$|Z_{(i-1)m}(\mathbf{a})| \geq i.$$

This labeling is bijective.

Theorem (D & Guedes de Oliveira, 2021) Given $\mathbf{a} \in \mathbb{N}^n$, \mathbf{a} is the Pak-Stanley label of a relatively bounded region of m-Cat_n arrangement if and only if for every $i \in [2, n]$,

$$|Z_{(i-1)m-1}(\mathbf{a})| \geq i.$$

The lsh arrangement

Theorem (D. and Guedes de Oliveira, 2018) Given $\mathbf{a} \in \mathbb{N}^n$, \mathbf{a} is the Pak-Stanley label of a region of lsh_n if and only if $\mathbf{a} \in [n]^n$ and $1 \in Z_0(\mathbf{a})$. This labeling is bijective.

$$\begin{split} \mathsf{IPF}_n = & \{\mathsf{Pak-Stanley \ labels \ of \ the \ regions \ of \ lsh}_n\} \\ & \mathsf{IPF}_3 = & \{111, 112, 113, 121, 122, 123, 131, 132, 133, \\ & 211, 212, 213, 221, 231, \\ & 311, 321\} \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $133 \in \mathsf{IPF}_3 \setminus \mathsf{PF}_3$ and $312 \in \mathsf{PF}_3 \setminus \mathsf{IPF}_3$

Theorem (D.)

Let R be a region of lsh_n and $i, j \in [n]$ such that i < j. Then R_0 and R are separated by the hyperplane of equation $x_1 = x_j + i$ iff $j \notin Z_{i-1}(\ell(R))$.

Theorem (D.)

Given $\mathbf{a} \in \mathbb{N}^n$, \mathbf{a} is the Pak-Stanley label of a relatively bounded region of lsh_n if and only if $\mathbf{a} \in [1] \times [n-1]^{n-1}$.

$$\label{eq:IPF_n} \begin{split} \mathsf{IPF}_n' =& \{\mathsf{Pak-Stanley\ labels\ of\ the\ rel.\ bounded\ regions\ of\ \mathsf{lsh}_n\} \\ \mathsf{IPF}_3' =& \{111, 112, 121, 122\} \end{split}$$

Given
$$\mathbf{a} \in \mathbb{N}^n$$
, let $\mathbf{p}(\mathbf{a}), \mathbf{q}(\mathbf{a}) \in (\mathbb{N} \cup \{0\})^n$ be defined by
 $\mathbf{p}(\mathbf{a})_i := \min\{j \in \mathbb{N} \cup \{0\} \mid i \in Z_j(\mathbf{a})\}$

 $\quad \text{and} \quad$

$$\mathbf{q}(\mathbf{a})_i := \min\{\mathbf{p}(\mathbf{a})_i, i-1\},\$$

i.e.,

$$\mathsf{q}(\mathsf{a}) := \mathsf{p}(\mathsf{a}) \land (\mathsf{Id} - 1)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (D.)

Let R be a region of Ish_n , $\mathbf{a} := \ell(R)$ and $\pi \in S_n$. Then

$$R \subseteq \{\mathbf{x} \in \mathbb{R}^n \mid x_{\pi_1} > x_{\pi_2} > \cdots > x_{\pi_n}\}$$

if and only if

$$\mathbf{a} - \mathbf{q}(\mathbf{a}) = \mathbf{1} + I(\pi).$$

 $1 + I(\pi)$ is the minimum label among the labels of the regions of lsh_n contained in $\{\mathbf{x} \mid x_{\pi_1} > x_{\pi_2} > \cdots > x_{\pi_n}\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

-The Ish arrangement

Example

Let *R* be the region of Ish_n such that $\mathbf{a} = \ell(R) = 1424$. Then $Z_0 = \{1\}, Z_1 = \{1,3\}, Z_2 = \{1,2,3\}, Z_3 = \{1,2,3,4\}$. It follows that $\mathbf{p}(\mathbf{a}) = 0213$ and $\mathbf{q}(\mathbf{a}) = 0213 \land 0123 = 0113$. Hence $1 + I(\pi) = \mathbf{a} - \mathbf{q}(\mathbf{a}) = 1311$ and $\pi = 1342$. Finally,

$$R = \{ \mathbf{x} \in \mathbb{R}^4 \mid \overbrace{x_1 > x_3 > x_4 > x_2}^{\pi = 1342}, \\ \underbrace{x_1 > x_2 + 1}_{q_2 = 1}, \underbrace{x_3 + 1 < x_1 < x_3 + 2}_{q_3 = 1}, \underbrace{x_1 > x_4 + 3}_{q_4 = 3} \}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Pak-Stanley labeling of hyperplane arrangements

Thank you for your attention!

References:

R. Duarte and A. Guedes de Oliveira, The braid and the Shi arrangements and the Pak-Stanley labelling. *European J. Combin.*, DOI: 10.1016/j.ejc.2015.03.017

R. Duarte and A. Guedes de Oliveira, Between Shi and Ish. *Disc. Math.*, DOI: 10.1016/j.disc.2017.09.006

R. Duarte and A. Guedes de Oliveira, Pak-Stanley labeling of the *m*-Catalan hyperplane arrangement. *Adv. Math.*, DOI: 10.1016/j.aim.2021.107827

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @