Intervals in a family of Fibonacci lattices SLC93

Jean-Luc Baril, Nathanaël Hassler

Overview

Fibonacci lattices

Characteristic elements

Intervals

Lattices and intervals

Definition

A *lattice* is a poset in which each pair of elements admits a *meet* (greatest lower bound) and a *join* (lowest upper bound).

Definition

In a poset (\mathcal{P}, \leq) , an interval [P, Q] is a set of the form

$${R \in \mathcal{P} \mid P \leq R \leq Q}.$$

If $[P, Q] = \{P, Q\}$, then this interval is called a *covering*.

Examples of lattices

Examples of lattices enumerated by the Catalan numbers :

- the Stanley lattice [Stanley, 1975]
- the Tamari lattice [Friedman, Tamari, 1967]
- the Kreweras lattice [Kreweras, 1972]
- the Phagocyte lattice [Baril, Pallo, 2006]
- the Pruning-grafting lattice [Baril, Pallo, 2008]
- the Pyramid lattice [Baril, Kirgizov, Naima, 2023]
- the Ascent lattice [Baril, Bousquet-Mélou, Kirgizov, Naima, 2024]

Examples of intervals in the Stanley lattice

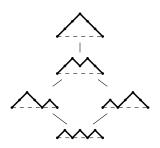


Figure - The Hasse diagram of Stan₃.

Examples of intervals in the Stanley lattice

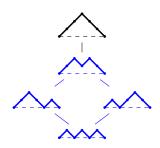


Figure - The Hasse diagram of Stan₃.

Examples of lattices on Dyck paths

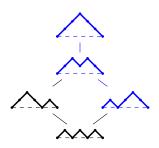


Figure - The Hasse diagram of Stan₃.

Examples of intervals in the Stanley lattice

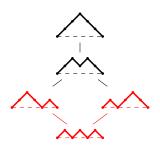


Figure - The Hasse diagram of Stan₃.

Enumeration of intervals

Intervals in Stan_n [De Sainte-Catherine, Viennot, 1986]:

$$\frac{6(2n)!(2n+2)!}{n!(n+1)!(n+2)!(n+3)!}.$$

Intervals in Tam_n [Chapoton, 2006]:

$$\frac{2(4n+1)!}{(n+1)!(3n+2)!}.$$

Linear intervals in both Stan_n and Tam_n [Chenevrière, 2022]:

$$\frac{1}{n+1}\binom{2n}{n}+\binom{2n-1}{n-2}+2\binom{2n-1}{n+2}.$$

Generalized Fibonacci numbers

Definition

The *p*-generalized Fibonacci sequences are defined for every $p \ge 2$ by

$$F_n^p = F_{n-1}^p + F_{n-2}^p + \cdots + F_{n-p}^p$$

with initial conditions $F_i^p = 0$ for i < 0, and $F_0^p = 1$.

Dyck paths enumerated by the Fibonacci numbers

Definition

For $p \ge 2$, let \mathcal{F}^p (resp. \mathcal{F}^p_n) be the set of Dyck paths (resp. of semilength n) avoiding the patterns DUU and D^{p+1} .

Definition

Let \mathcal{F}^{∞} (resp. \mathcal{F}_{n}^{∞}) be the set of Dyck paths (resp. of semilength n) avoiding the pattern DUU.

Remark: For any $n \in \mathbb{N}$,

$$\mathcal{F}_n^2 \subseteq \mathcal{F}_n^3 \subseteq \cdots \subseteq \mathcal{F}_n^p \subseteq \mathcal{F}_n^{p+1} \subseteq \cdots \subseteq \mathcal{F}_n^{\infty},$$

$$|\mathcal{F}_n^p| = \mathcal{F}_n^p, \quad \text{and} \quad |\mathcal{F}_n^{\infty}| = 2^{n-1}.$$

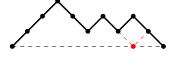
Lattice on \mathcal{F}_n^p

Let \leq be the Stanley order.

Definition-Proposition

 $\mathbb{F}_n^p=(\mathcal{F}_n^p,\leq)$ and $\mathbb{F}_n^\infty=(\mathcal{F}_n^\infty,\leq)$ are sublattices of the Stanley lattice.

Remark : The cover relation corresponds to transformations $DU \rightarrow UD$.



Lattice on \mathcal{F}_n^p

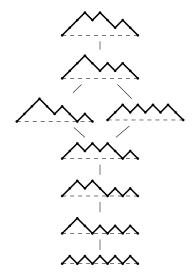


Figure – The Hasse diagram of \mathbb{F}_5^2 $\bullet \bigcirc \bullet \bullet \bigcirc \bullet \bigcirc \bullet \bigcirc \bullet \bigcirc \bullet \bigcirc \bullet$

Upper covers

Let $F_p(x, y)$ be the generating function where the coefficient of $x^n y^k$ is the number of elements in \mathbb{F}_p^p that have exactly k upper covers.

Theorem

The generating function $F_p(x, y)$ is given by

$$F_p(x,y) = \frac{(1-x)(1+(y-1)x^p)}{1-2x+x^{p+1}-(y-1)(x^2-x^p+x^{p+1}-x^{p+2})}.$$

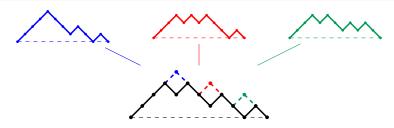


Figure – A path having 3 upper covers in \mathbb{F}_6^3 .

Coverings

Corollary

The generating function for the number of coverings in \mathbb{F}_n^p , $n \geq 0$, is

$$\partial_y F_p(x,y)|_{y=1} = \frac{(1-x)(x^2-x^{p+1})(1-x^p)}{(1-2x+x^{p+1})^2}.$$

Corollary

For any $p \geq 2$, the number of meet-irreducible elements in \mathbb{F}_n^p , is given by

$$b_p(n) = \left| \frac{n^2(p-1)}{2p} \right|,$$

which also counts the number of edges in the (n, p)-Turán graph.

Boolean intervals

Definition

An interval is said *boolean* if it is isomorphic to the poset of subsets of [n] ordered by inclusion.

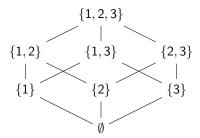


Figure – The boolean lattice of size 3.

Boolean intervals

Theorem

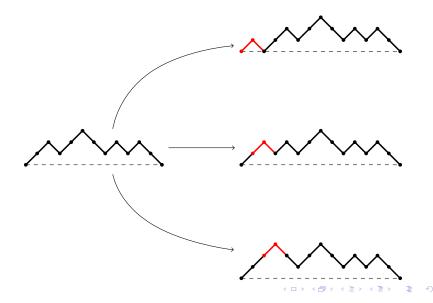
The generating function $B_p(x,y)$ for the number of boolean intervals in \mathbb{F}_n^p , with respect to the semilength $n \geq 0$, and the interval height is given by

$$B_p(x,y) = \frac{(1-x)(1+yx^p)}{1-2x+x^{p+1}-y(x^2-x^p+x^{p+1}-x^{p+2})}.$$

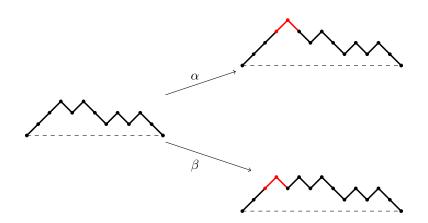
Proof. Since \mathbb{F}_n^p is a distributive lattice, we have that

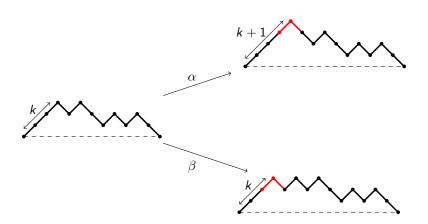
$$B_p(x,y) = F_p(x,1+y).$$

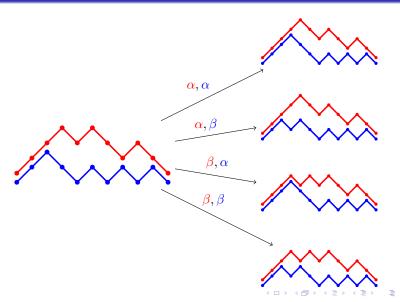
Extending a Dyck path

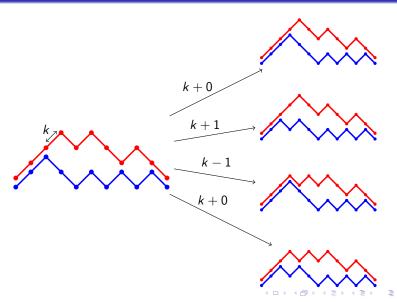


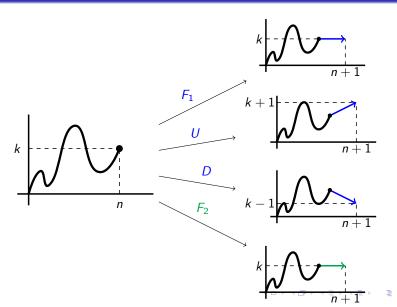
Extending a Dyck path in \mathbb{F}_n^{∞}











Theorem

There is a bijection between intervals in \mathbb{F}_n^{∞} and bicolored Motzkin paths of length n-1 in the quarter plane.

Corollary

There are $\binom{2n-1}{n}$ intervals in \mathbb{F}_n^{∞} .

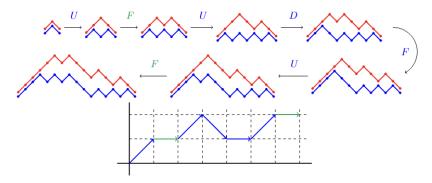


Figure – The generation of the interval $[U^2(UD)^3D^2(UD)^3, U^4(UD)^2D^2(UD^2)^2]$. This interval is thus associated with the bicolored Motzkin path $UF_2UDF_1UF_2$.

Intervals in \mathbb{F}_n^p

Theorem

There is a bijection between intervals in \mathbb{F}_n^p and bicolored Motzkin paths of length n-1 and avoiding the $2^{p+1}-1$ consecutive patterns of the set $\{F_2,U\}^p\cup\{F_2,D\}^p$.

Corollary

The generating function J(x) for the number of intervals in \mathcal{F}_n^2 is

$$J(x) = \frac{-x^2 + 3x - 1 + \sqrt{x^4 - 2x^3 - x^2 - 2x + 1}}{2x(x^2 - 3x + 1)(x + 1)}.$$

The coefficient of x^n in the series expansion is asymptotically

$$\frac{11+5\sqrt{5}}{20}\sqrt{\frac{14\sqrt{5}-30}{\pi}}\cdot n^{-1/2}\left(\frac{3+\sqrt{5}}{2}\right)^{n}.$$

ㅁ > 《畵》 《돌》 《돌》 - 돌 - 쒸٩연

The end

Thank you for your attention!

Structure of the linear intervals I

Definition

An interval is said *linear* when all its elements are pairwise comparable.

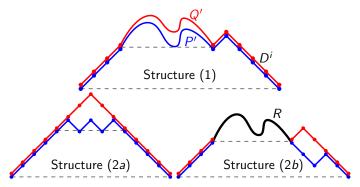


Figure – The structures of linear intervals [P, Q] in \mathbb{F}_n^p .

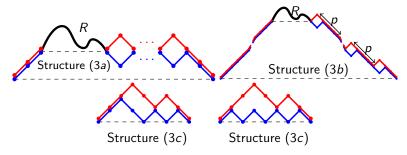


Figure – The structures of linear intervals [P, Q] in \mathbb{F}_n^p .

Enumeration of the linear intervals

Corollary

The generating function $L_2(x,y)$ of the number of linear intervals in \mathbb{F}_n^2 with respect to n and the interval height is given by

$$L_{2}(x,y) = \frac{x^{4}y^{4} + y^{3}x^{4} + 1}{1 - x - x^{2}} + \frac{x^{2}y(x^{2} - 1)(x^{3}y^{2} - 1)}{(xy - 1)(x^{2} + x - 1)^{2}(x^{2}y - 1)}.$$

Theorem

Asymptotically, the number of linear intervals in \mathbb{F}_n^p is proportional to the number of coverings.

Catalan words

Definition

A length *n Catalan word* is a word $w_1 \dots w_n$ over the set of non-negative integers, with $w_1 = 0$ and $0 \le w_i \le w_{i-1} + 1$ for $i = 2, 3, \dots, n$.

Non-decreasing Catalan words

Proposition

There is a bijection between \mathcal{F}_n^p and the set \mathcal{C}_n^p of length n non-decreasing Catalan words avoiding p+1 consecutive occurrences of the same letter.

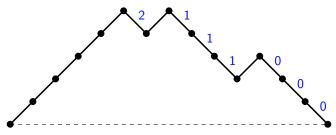


Figure – The path $P=U^5D(UD^3)^2\in\mathcal{F}_7^\infty$ is associated with the Catalan word w(P)=0001112.

Non-decreasing Catalan words

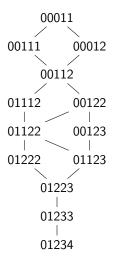


Figure – The lattice \mathbb{F}_5^3 on the non-decreasing Catalan words of length 5 avoiding 4 consecutive occurrences of the same letter.

Compositions of *n*

Proposition

There is a bijection between the elements of \mathcal{F}_n^p and the compositions of n with parts in [1, p].

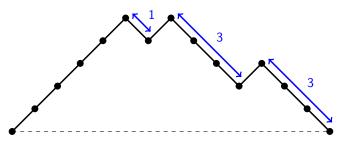


Figure – The path $P = U^5 D(UD^3)^2 \in \mathcal{F}_7^{\infty}$ is associated with the composition $\lambda(P) = (3,3,1)$.

Compositions of n

Figure – The lattice \mathbb{F}_5^3 on the compositions of 5 with parts in [1, 3].

Powerset of [1, n-1]

Proposition

There is a bijection between \mathcal{F}_n^p and the subsets of [1, n-1] having no pconsecutive elements.

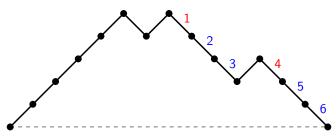


Figure – The path $P = U^5 D(UD^3)^2 \in \mathcal{F}_7^{\infty}$ is associated with the subset $A(P) = \{2, 3, 5, 6\} \subseteq \{1, \dots, 6\}.$

Powerset of [1, n-1]

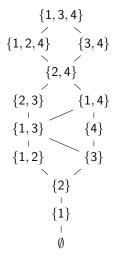


Figure – The lattice \mathbb{F}_5^3 on the subsets of [1, 4] having no 3 consecutive elements.